Identification of Mineral Pigments on Red- and Dark-Decorated Prehistoric Pottery from Bulgaria
Abstract
1. Introduction
2. Materials and Methods
2.1. Analyzed Decorated Sherds
2.2. Laser-Induced Breakdown Spectroscopy (LIBS)
2.3. Fourier-Transformed Infrared Spectroscopy in Attenuated Total Reflection Mode (ATR-FTIR)
3. Results
3.1. Elemental Composition
3.2. Molecular Composition
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinopoli, C.M. Approaches to Archaeological Ceramics, 1st ed.; Springer: New York, NY, USA, 1991. [Google Scholar]
- Rosiak, A.; Józefowska, A.; Jałowiecka, M.; Kałuzna-Czaplinska, J. Advanced Characterization of Archaeological Ceramics. Annu. Rev. Mater. Res. 2025, 55, 443–468. [Google Scholar] [CrossRef]
- Barnett, J.R.; Miller, S.; Pearce, E. Colour and art: A brief history of pigments. Opt. Laser Technol. 2006, 38, 445–453. [Google Scholar] [CrossRef]
- Pirovska, A. Technique and Technology of Colorful Decoration in Prehistory. Ph.D. Thesis, Faculty of History, Sofia University, “St. Kliment Ohridski”, Sofia, Bulgaria, 2024. [Google Scholar]
- Iordanidis, A.; Garcia-Guinea, J. A preliminary investigation of black, brown and red coloured potsherds from ancient upper Macedonia, northern Greece. Mediterr. Archaeol. Archaeom. 2011, 11, 85–97. [Google Scholar]
- Yiouni, P. Painted pottery from East Macedonia, in North Greece: Technological analysis of decorative techniques. Doc. Praehist. 2000, XXVII, 199–214. [Google Scholar]
- Yiouni, P. Surface Treatment of Neolithic Vessels from Macedonia and Thrace. Annu. Br. Sch. Athens 2001, 96, 1–25. [Google Scholar] [CrossRef]
- Jones, R. The Decoration and Firing of Ancient Greek Pottery: A Review of Recent Investigations. Adv. Archaeomaterials 2021, 2, 67–127. [Google Scholar] [CrossRef]
- Sakalis, A.J.; Kazakis, N.A.; Merousis, N.; Tsirliganis, N.C. Study of Neolithic pottery from Polyplatanos (Imathia) using micro X-ray fluorescence spectroscopy, stereoscopic microscopy and multivariate statistical analysis. J. Cult. Herit. 2013, 14, 485–498. [Google Scholar] [CrossRef]
- Tsirtsoni, Z.; Malamidou, D.; Kilikoglou, V.; Karatasios, I.; Lespez, L. Black-on-red painted pottery production and distribution in late Neolithic Macedonia. In Archaeometric and Archaeological Approaches to Ceramics; Waksman, S.Y., Ed.; BAR Publishing: Oxford, UK, 2007; pp. 57–62. [Google Scholar]
- Rondiri, V.; Asderaki-Tzoumerkioti, E. The ‘management’ of painted and monochrome pottery of Neolithic Thessaly, Central Greece: Technology and provenance. In Proceedings of the 6th Symposium of the Hellenic Society for Archaeometry (Bar International Series 2780); Photos-Jones, E., Bassiakos, Y., Filippaki, E., Hein, A., Karatasios, I., Kilikoglou, V., Kouloumpi, E., Eds.; British Archaeological Reports (BAR): Oxford, UK, 2016; pp. 3–12. [Google Scholar]
- Spataro, M.; Cubas, M.; Craig, O.E.; Chapman, J.C.; Boroneanţ, A.; Bonsall, C. Production and function of Neolithic black-painted pottery from Schela Cladovei (Iron Gates, Romania). Archaeol. Anthrop. Sci. 2019, 11, 6287–6304. [Google Scholar] [CrossRef]
- Opris, V.; Dragos, M.; Andrei, R.; Straticiuc, M.; Simion, C.; Stanculescu, I.; Miu, L.; Dinca, L. Archaeometric Studies of Boian Pottery from Nanov-‘Vistireasa 3’ (Teleorman County, Romania, c. 4800-4500 cal BC). In Bridging Science and Heritage in the Balkans: Studies in Archaeometry, Cultural Heritage and Conservation; Palincaș, N., Ponta, C., Eds.; Archaeopress Publishing Ltd.: Oxford, UK, 2019; pp. 92–102. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.I.; Buzatu, A. Characterization and source of Cucuteni black pigment (Romania): Vibrational spectrometry and XRD study. J. Archaeol. Sci. 2013, 40, 2128–2135. [Google Scholar] [CrossRef]
- Buzgar, N.; Bodi, G.; Aştefanei, D.; Buzatu, A. The Raman study of white, red and black pigments used in Cucuteni Neolithic painted ceramics. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII „AL. I. CUZA” IAŞI”, Geologie 2010, 56, 5–14. [Google Scholar]
- Buzgar, N.; Bodi, G.; Buzatu, A.; Apopei, A.I.; Aștefanei, D. Raman and XRD studies of black pigment from Cucuteni ceramics. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII „AL. I. CUZA” IAŞI”,Geologie 2010, 56, 95–108. [Google Scholar]
- Oancea, A.V.; Bodi, G.; Nica, V.; Ursu, L.E.; Drobota, M.; Cotofana, C.; Vasiliu, A.L.; Simionescu, B.C.; Olaru, M. Multianalytical characterization of Cucuteni pottery. J. Eur. Ceram. Soc. 2017, 37, 5079–5098. [Google Scholar] [CrossRef]
- Szíki, G.Á.; Biró, K.T.; Uzonyi, I.; Dobos, E.; Kiss, Á.Z. Investigation of incrusted pottery found in the territory of Hungary by micro-PIXE method. Nucl. Instrum. Meth. B 2003, 210, 478–482. [Google Scholar] [CrossRef]
- Mihály, J.; Komlósi, V.; Tóth, A.; Tóth, Z.; Ilon, G. Vibrational spectroscopic study of pigment raw materials and painted ceramics excavated at Szombathely-Oladi plató, Hungary. In Vessels: Inside and Outside, Proceedings of the Conference EMAC ’07. 9th European Meeting on Ancient Ceramics, Hungarian National Museum, Budapest, Hungary, 24–27 October 2007; Biró, K.T., Szilágyi, V., Kreiter, A., Eds.; The Hungarian National Museum: Budapest, Hungary, 2009; pp. 47–51. [Google Scholar]
- Ndreçka, E.; Civici, N.; Beqiraj, E.; Gjipali, I. Results from Multi Technique Investigation of Pottery from Different Early Neolithic Sites in Albania. J. Mater. Sci. Chem. Eng. 2017, 5, 10–26. [Google Scholar] [CrossRef]
- Ndreçka, E.; Civici, N.; Gjipali, I.; Niccolai, F.; Ridolfi, S. Investigation of Pottery from Different Neolithic Sites in Southeast Albania Using Various Analytical Techniques. J. Mater. Sci. Chem. Eng. 2017, 5, 71–89. [Google Scholar] [CrossRef]
- Elezi, G. Sociocultural Dimensions of Production, Use, and Circulation of Late Neolithic Pottery from Southern Balkans. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2020. [Google Scholar]
- Mioč, U.B.; Colomban, P.; Sagon, G.; Stojanović, M.; Rosić, A. Ochre decor and cinnabar residues in Neolithic pottery from Vinča, Serbia. J. Raman Spectrosc. 2004, 35, 843–846. [Google Scholar] [CrossRef]
- Gajič-Kvaščev, M.; Stojanoviš, M.M.; Šmit, Ž.; Kantarelou, V.; Karydas, A.G.; Šljivar, D.; Milovanovič, D.; Andrič, V. New evidence for the use of cinnabar as a colouring pigment in the Vinča culture. J. Archaeol. Sci. 2012, 39, 1025–1033. [Google Scholar] [CrossRef]
- Perisic, N.; Stojanović, M.M.; Andrić, V.; Mioc, U.; Damjanović-Vasilić, L. Physicochemical characterisation of pottery from the Vinča culture, Serbia, regarding the firing temperature and decoration techniques. J. Serb. Chem. Soc. 2016, 81, 1415–1426. [Google Scholar] [CrossRef]
- Lukačević, I.; Rajković, D. Non-invasive Analyses of Ancient Ceramics Colorants. Croat. Chem. Acta 2015, 88, 53–58. [Google Scholar] [CrossRef]
- Pernicheva–Perets, L.; Grębska–Kulow, M.; Kulov, L. Balgarchevo. The Prehistoric Settlement, Volume I; Craft House Bulgaria: Sofia, Bulgaria, 2011. [Google Scholar]
- Dzhanfezova, T.; Tzvetanova, Y.; Bakamska, A. Prehistoric colour palettes decoded by painted pottery analysis: The vivid past of the Early Neolithic Galabnik settlement mound (southwestern Bulgaria) over time. J. Archaeol. Sci. Rep. 2025, 63, 105088. [Google Scholar] [CrossRef]
- Hristov, M. Early Chalcolithic pottery from the Region of Panagyurishte. In Early Symbolic Systems for Communication in Southeast Europe; Nikolova, L., Ed.; International Series 1139; British Archaeological Reports: Oxford, UK, 2003; pp. 606–607. [Google Scholar]
- Georgieva, P.; Kostov, R. Geoarchaeological and archaeomineralogical studies of the Kozareva mogila—A settlement and a necropolis, district of Burgas. Geol. Miner. Resour. 2014, 5, 17–23. [Google Scholar]
- Dzhanfezova, T.; Doherty, C.; Elenski, N. Shaping a Future of Painting: The Early Neolithic Pottery from Dzhulyunitsa, North Central Bulgaria. Bulg. E-J. Archaeol. 2014, 4, 137–159. [Google Scholar]
- Boyadzhiev, Y. The transition between Neolithic and Chalcolithic on the territory of Bulgaria. In the Neolithic and Eneolithic in Southeast Europe. New Approaches to Dating and Cultural Dynamics in the 6th to 4th Millennium BC. Prähistorische Archäologie in Südost Europa, Band 28; Schier, W., Draşovean, F., Eds.; Verlag Marie Leidorf GmbH: Rahden, Germany, 2014; pp. 49–68. [Google Scholar]
- Vajsov, I. Promachon-Topolnica. A typology of painted decorations and its use as a chronological marker. In the Struma/Strymon River Valley in Prehistory. In the Steps of James Harvey Gaul, 2; Todorova, H., Stefanivic, M., Ivanov, G., Eds.; Museum of History-Kyustendil: Sofia, Bulgaria, 2007; pp. 79–120. [Google Scholar] [CrossRef]
- Grębska-Kulow, M.; Zidarov, P. The Routes of Neolithisation: The Middle Struma Valley from a Regional Perspective. Open Archaeol. 2021, 7, 1000–1014. [Google Scholar] [CrossRef]
- Grębska-Kulow, M.; Vajsov, I.; Ivanov, G.; Chukalev, K.; Evlogiev, Y. Archaeological research of the prehistoric settlement Damyanitsa 2017, Stage 1. In Archaeological Discoveries and Excavations in 2017; Vagalinski, L., Ed.; National Archaeological Institute with Museum, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2018; pp. 30–33. [Google Scholar]
- Nikolov, B. An early Neolithic settlement near the village of Gradeshnitsa, Vratsa District. In Archaeology; National Archaeological Institute with Museum, Bulgarian Academy of Sciences: Sofia, Bulgaria, 1975; Volume 17. [Google Scholar]
- Ganetsovski, G. Regular arhaeological excavation of the prehistoric layer at Kaleto. Multilayer site in the town of mezdra, Vratsa district. In Archaeological Discoveries and Excavations in 2014; Kabakchieva, G., Ed.; National Archaeological Institute with Museum, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2015; pp. 79–81. [Google Scholar]
- Kalchev, P. The Transition from Late Neolithic to Early Chalcolithic in the Stara Zagora Area. In Prehistoric Thrace; Nikolov, V., Băčvarov, K., Kalchev, P., Eds.; Institute of Archaeology with Museum—BAS, Regional Museum of History—Stara Zagora: Sofia-Stara Zagora, Bulgaria, 2004; pp. 215–226. [Google Scholar]
- Kalchev, P.; Andreeva, D. Rescue archeological excavations at a prehistoric site near the village of Madzherito, Stara Zagora municipality. In Archaeological Discoveries and Excavations in 2016; Vagalinski, L., Ed.; National Archaeological Institute with Museum, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2017; pp. 69–72. [Google Scholar]
- Georgieva, P.; Danov, V.; Russeva, V.; Gurova, M.; Parvanov, S.; Rachev, R. Kozareva mogila: A tell and a cemetery. In Archaeological Discoveries and Excavations in 2017; Vagalinski, L., Ed.; National Archaeological Institute with Museum, Bulgarian Academy of Sciences: Sofia, Bulgaria, 2018; pp. 65–68. [Google Scholar]
- Siozos, P.; Philippidis, A.; Anglos, D. Portable laser-induced breakdown spectroscopy/diffuse reflectance hybrid spectrometer for analysis of inorganic pigment. Spectrochim. Acta B 2017, 137, 93–100. [Google Scholar] [CrossRef]
- Syta, O.; Wagner, B.; Bulska, E.; Zielińska, D.; Żukowska, G.Z.; Gonzalez, J.; Russo, R. Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry measurements. Talanta 2018, 179, 784–791. [Google Scholar] [CrossRef]
- Singh, J.P.; Thakur, S.N. Laser Induced Breakdown Spectroscopy, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2013. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (version 5.10); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 2 June 2025).
- Erdem, A.; Çilingiroglu, A.; Giakoumaki, A.; Castanys, M.; Kartsonaki, E.; Fotakis, C.; Anglos, D. Characterization of Iron age pottery from eastern Turkey by laser-induced breakdown spectroscopy (LIBS). J. Archaeol. Sci. 2008, 35, 2486–2494. [Google Scholar] [CrossRef]
- Schröder, S.; Pavlov, S.G.; Rauschenbach, I.; Jessberger, E.K.; Hübers, H.W. Detection and identification of salts and frozen salt solutions combining laser-induced breakdown spectroscopy and multivariate analysis methods: A study for future martian exploration. Icarus 2013, 223, 61–73. [Google Scholar] [CrossRef]
- Smith, L.A. A Tutorial on Principal Components Analysis; Computer Science Technical Report OUCS-2002-12; University of Otago: Dunedin, New Zealand, 2002. [Google Scholar]
- Akyuz, S.; Guliyev, F.; Celik, S.; Ozel, A.E.; Alakbarov, V. Investigations of the Neolithic potteries of 6th millennium BC from Göytepe-Azerbaijan by vibrational spectroscopy and chemometric techniques. Vib. Spectrosc. 2019, 105, 102980. [Google Scholar] [CrossRef]
- Bintintan, A.; Gligor, M.; Radulescu, C.; Dulama, I.D.; Lucian Olteanu, R.; Teodorescu, S.; Stirbescu, R.M.; Bucurica, I.A. Multielemental and Chemical Characterization of Eneolithic Petresti Painted Pottery from the Alba Iulia-Lumea Noua Archaeological Site, Romania. Anal. Lett. 2019, 52, 2348–2364. [Google Scholar] [CrossRef]
- Ménager, M.; Esquivel, P.F.; Conejo, P.S. The use of FT-IR spectroscopy and SEM/EDS characterization of slips and pigments to determine the provenances of archaeological ceramics: The case of Guanacaste ceramics (Costa Rica). Microchem. J. 2021, 162, 105838. [Google Scholar] [CrossRef]
- Hunt, A.M.W. The Oxford Handbook of Archaeological Ceramic Analysis, 1st ed.; Hunt, A.M.W., Ed.; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Kuzmanovic, M.; Stancalie, A.; Milovanovic, D.; Staicu, A.; Damjanovic-Vasilic, L.; Rankovic, D.; Savovic, J. Analysis of lead-based archaeological pottery glazes by laser induced breakdown spectroscopy. Opt. Laser Technol. 2021, 134, 106599. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, M.R. A Review on Historical Earth Pigments Used in India’s Wall Paintings. Heritage 2021, 4, 1970–1994. [Google Scholar] [CrossRef]
- Cubillas, P.; Hu, X.; Higgins, S.R. Strontium incorporation during calcite growth: Implications for chemical mapping using friction force microscopy. Chem. Geol. 2015, 411, 274–282. [Google Scholar] [CrossRef]
- Lerouge, C.; Gaucher, E.C.; Tournassat, C.; Negrel, P.; Crouzet, C.; Guerrot, C.; Gautier, A.; Michel, P.; Vinsot, A.; Buschaert, S. Strontium distribution and origins in a natural clayey formation (Callovian-Oxfordian, Paris Basin, France): A new sequential extraction procedure. Geochim. Cosmochim. Acta 2010, 74, 2926–2942. [Google Scholar] [CrossRef]
- Lindroos, A.J.; Aro, L. Natural factors influencing strontium concentrations in bulk and throughfall deposition, soil solution and litterfall in forest ecosystems on Olkiluoto Island, southwestern Finland. Boreal Environ. Res. 2019, 24, 233–242. [Google Scholar]
- Shoval, S. Fourier Transform Infrared Spectroscopy (FTIR) in Archaeological Ceramic Analysis. In the Oxford Handbook of Archaeological Ceramic Analysis; Hunt, A., Ed.; Oxford University Press: Oxford, UK, 2016; pp. 509–530. [Google Scholar]
- De Benedetto, G.E.; Laviano, R.; Sabbatini, L.; Zambonin, P.G. Infrared Spectroscopy in the Mineralogical Characterization of Ancient Pottery. J. Cult. Herit. 2002, 3, 177–186. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. Dev. Clay. Sci. 2017, 8, 107–149. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C. Earth Pigments in Painting: Characterisation and Differentiation by Means of FTIR Spectroscopy and SEM-EDS Microanalysis. Anal. Bioanal. Chem. 2005, 382, 269–274. [Google Scholar] [CrossRef]
- Molefe, D.M.; Labuschagne, J.; Focke, W.W.; Van Der Westhuizen, I.; Ofosu, O. The Effect of Magnesium Hydroxide, Hydromagnesite and Layered Double Hydroxide on the Heat Stability and Fire Performance of Plasticized Poly(Vinyl Chloride). J. Fire. Sci. 2015, 33, 493–510. [Google Scholar] [CrossRef]
- Cortea, I.M.; Chiroşca, A.; Angheluţǎ, L.M.; Seriţan, G. INFRA-ART: An Open Access Spectral Library of Art-Related Materials as a Digital Support Tool for Cultural Heritage Science. J. Comput. Cult. Herit. 2023, 16, 1–11. [Google Scholar] [CrossRef]
- Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D.R.T. Vibrational Spectroscopy of Bulk and Supported Manganese Oxides. Phys. Chem. Chem. Phys. 1999, 1, 185–190. [Google Scholar] [CrossRef]
- Taranu, B.O.; Novaconi, S.D.; Ivanovici, M.; Gonçalves, J.N.; Rus, F.S. α-MnO2 Nanowire Structure Obtained at Low Temperature with Aspects in Environmental Remediation and Sustainable Energy Applications. Appl. Sci. 2022, 12, 6821. [Google Scholar] [CrossRef]
- Derrick, M.R.; Stulik, D.; Landry, J.M. Scientific Tools for Conservation-Infrared Spectroscopy in Conservation Science; The Getty Conservation Institute: Los Angeles, CA, USA, 1999. [Google Scholar]
- Siddall, R. Mineral Pigments in Archaeology: Their Analysis and the Range of Available Materials. Minerals 2018, 8, 201. [Google Scholar] [CrossRef]
- Mclaughlin, R.J.W. Iron and titanium oxides in soil clays and silts. Geochim. Cosmochim. Acta 1954, 5, 85–96. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilová, J.; Bezdicka, P. Clay Minerals in European Painting of the Mediaeval and Baroque Periods. Minerals 2020, 10, 255. [Google Scholar] [CrossRef]
- Casale, S.; Donner, N.; Braekmans, D.; Geurds, A. Geochemical and petrographic assessment of clay outcrops and archaeological ceramics from the pre-hispanic site of Aguas Buenas (cal 400–1250 CE), Central Nicaragua. Microchem. J. 2020, 156, 104829. [Google Scholar] [CrossRef]
- Domingo, I.; García-Borja, P.; Roldán, C. Identification, processing and use of red pigments (hematite and cinnabar) in the valencian early neolithic (Spain). Archaeometry 2012, 54, 868–892. [Google Scholar] [CrossRef]
- Shoval, S.; Gaft, M.; Beck, P.; Kirsh, Y. Thermal behaviour of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J. Therm. Anal. 1993, 40, 263–273. [Google Scholar] [CrossRef]
- Toschi, F.; Paladini, A.; Colosi, F.; Cafarelli, P.; Valentini, V.; Falconieri, M.; Gagliardi, S.; Santoro, P. A multi-technique approach for the characterization of Roman mural paintings. Appl. Surf. Sci. 2013, 284, 291–296. [Google Scholar] [CrossRef]
- Capel, J.; Huertas, F.; Pozzuoli, A.; Linares, J. Red ochre decorations in Spanish Neolithic ceramics: A mineralogical and technological study. J. Archaeol. Sci. 2006, 33, 1157–1166. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ghervase, L.; Radvan, R.; Seritan, G. Assessment of Easily Accessible Spectroscopic Techniques Coupled with Multivariate Analysis for the Qualitative Characterization and Differentiation of Earth Pigments of Various Provenance. Minerals 2022, 12, 755. [Google Scholar] [CrossRef]
- Angeli, L.; Arias, C.; Cristoforetti, G.; Fabbri, C.; Legnaioli, S.; Palleschi, V.; Radi, G.; Salvetti, A.; Tognoni, E. Spectroscopic Techniques Applied to the Study of Italian Painted Neolithic Potteries. Laser Chem. 2006, 2006, 61607. [Google Scholar] [CrossRef]
- Domingo, I.; Chieli, A. Characterizing the pigments and paints of prehistoric artists. Archaeol. Anthropol. Sci. 2021, 13, 196. [Google Scholar] [CrossRef]
- Fabbri, B.; Gualtieri, S.; Shoval, S. The Presence of Calcite in Archeological Ceramics. J. Eur. Ceram. Soc. 2014, 34, 1899–1911. [Google Scholar] [CrossRef]
- Kostov, I.; Breskovska, V.; Mincheva-Stefanova, J.; Kirov, G.N. Minerals in Bulgaria. Original Title: Mineralite v Bulgaria; Prof. Marin Drinov Publishing House of BAS: Sofia, Bulgaria, 1964; pp. 199–201. [Google Scholar]
- Guineau, B.; Lorblanchet, M.; Gratuze, B.; Dulin, L.; Roger, P.; Akrich, R.; Muller, F. Manganese Black Pigments in Prehistoric Paintings: The Case of the Black Frieze of Pech Merle (France). Archaeometry 2002, 43, 211–225. [Google Scholar] [CrossRef]
- Chalmin, E.; Vignaud, C.; Salomon, H.; Farges, F.; Susini, J.; Menu, M. Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure. Appl. Phys. A 2006, 83, 213–218. [Google Scholar] [CrossRef]
- Lahlil, S.; Lebon, M.; Beck, L.; Rousselière, H.; Vignaud, C.; Reiche, I.; Menu, M.; Paillet, P.; Plassard, F. The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. J. Raman Spectrosc. 2012, 43, 1637–1643. [Google Scholar] [CrossRef]
- Mitkidou, S.; Dimitrakoudi, E.; Urem-Kotsou, D.; Papadopoulou, D.; Kotsakis, K.; Stratis, J.A.; Stephanidou-Stephanatou, I. Organic residue analysis of Neolithic pottery from North Greece. Microchim. Acta 2008, 160, 493–498. [Google Scholar] [CrossRef]
- Irto, A.; Micalizzi, G.; Bretti, C.; Chiaia, V.; Mondello, L.; Cardiano, P. Lipids in Archaeological Pottery: A Review on Their Sampling and Extraction Techniques. Molecules 2022, 27, 3451. [Google Scholar] [CrossRef]
- Giustetto, R.; Berruto, G.; Diana, E.; Costa, E. Decorated Prehistoric Pottery from Castello Di Annone (Piedmont, Italy): Archaeometric Study and Pilot Comparison with Coeval Analogous Finds. J. Archaeol. Sci. 2013, 40, 4249–4263. [Google Scholar] [CrossRef]
- Constantinescu, B.; Bugoi, R.; Niculescu, G.H.; Popovici, D.; Manacu-Adamesteanu, G.H. Studies on Pigments for Ancient Ceramics and Glass Using X-Ray Methods. In X-rays for Archaeology, 1st ed.; Uda, M., Demortier, G., Nakai, I., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2005; pp. 163–171. [Google Scholar] [CrossRef]
- Amicone, S.; Radivojević, M.; Quinn, P.S.; Berthold, C.; Rehren, T. Pyrotechnologi- cal connections? Re-investigating the link between pottery firing technology and the origins of metallurgy in the Vinča Culture, Serbia. J. Arch. Sci. 2020, 118, 105123. [Google Scholar] [CrossRef]
- Gardner, E.; Renfrew, C. Technical analysis of the ceramics. In Prehistoric Sitagroi: Excavations in Northeast Greece, 1968–1970 2: The Final Report; Elster, E.S., Renfrew, C., Eds.; University of California: Los Angeles, CA, USA, 2003; pp. 283–300. [Google Scholar]
- Hasa, E.; Elezi, G.; Muros, M. Graphite-painted pottery in Albania. In Proceedings of the 70 Vjet Arkeologji Shqiptare: Kërkime në Fushën e Arkeologjisë Prehistorike, Maliq, Korçë, 12–13 November 2018; Academy of Albanian Studies, Institute of Archaeology: Tiranë, Albania in press. [Google Scholar]
- Vandova, V.; Sultanov, A. Summary of the results from laboratory analysis of fragments from ceramic vessels from the neolithic village Kremenick near Sapareva Bania. In Proceeding of the Museum of History Kyustendil; Spasov, R., Ed.; Faber: Veliko Tarnovo, Bulgaria, 2002; Volume II, pp. 5–24. [Google Scholar]
Sample Photos | Sample ID | Type of Decoration | Epoch | Cultural Affiliation | Archeological Site |
---|---|---|---|---|---|
U6 | paint | LN/EC | Balgarchevo I | Strumsko | |
U7 | paint | LN/EC | Balgarchevo I | Strumsko | |
U8 | paint | LN/EC | Balgarchevo I | Strumsko | |
U9 | paint | LN/EC | Balgarchevo I | Balgarchevo | |
U10 | paint | LN | Topolnica–Acropotamos | Damyanitsa | |
U11 | paint | LN | Topolnica–Acropotamos | Damyanitsa | |
U13 | paint | LN | Topolnica–Acropotamos | Damyanitsa | |
N1 | paint | LN | Topolnica–Acropotamos | Topolnica–Promachon | |
N2 | paint | LN | Topolnica–Acropotamos | Topolnica–Promachon | |
N4 | paint | LN | Topolnica–Acropotamos | Topolnica–Promachon | |
N5 | paint | LN | Topolnica–Acropotamos | Topolnica–Promachon | |
N7 | paint | LN | Topolnica–Acropotamos | Topolnica–Promachon | |
B1 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B3 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B4 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B5 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B6 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B7 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B8 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B9 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B10 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B11 | paint | EN | Gradeshnitsa | Gradeshnitsa, Malo Pole | |
B25 | paint | LC | Krivodol–Sălcuţa–Bubani | Mezdra, Kaleto | |
B26 | paint | LC | Krivodol–Sălcuţa–Bubani | Mezdra, Kaleto | |
S5 | paint | EN | Karanovo I | Madzherito | |
S15 | Pseudo-incrustation | LC | Karanovo VI | Starozagorski Bani | |
S16 | Pseudo-incrustation | LC | Karanovo VI | Starozagorski Bani | |
S20 | Pseudo-incrustation | LC | Karanovo VI | Starozagorski Bani | |
S21 | Pseudo-incrustation | LC | Karanovo VI | Starozagorski Bani | |
S26 | Pseudo-incrustation | LC | Karanovo VI | Starozagorski Bani | |
K2 | paint | LC | Kozarevo Mound | ||
K3 | paint | LC | Kozarevo Mound | ||
K4 | Pseudo-incrustation | LC | Kozarevo Mound | ||
K5 | Pseudo-incrustation | LC | Kozarevo Mound |
Element | Wavelengths (nm) |
---|---|
Ca | 315.89 II, 317.93 II, 393.36 II, 396.85 II, 457.85 I, 458.14 I, 527.03 I *, 671.77 I |
Si | 250.69 I *, 251.61 I, 252.41 I, 252.85 I, 288.16 I |
Al | 308.22 I *, 309.27 I, 394.40 I, 396.15 I |
Mg | 279.55 II, 280.27 II, 285.21 I, 382.93 I, 383.23 I, 516.73 I * |
Na | 449.42 I *, 589.00 I, 589.59 I |
K | 404.41 I *, 693.88 I |
Fe | 271.90 I, 275.01 I, 293.69 I *, 302.06 I, 356.54 I, 357.01 I, 358.12 I, 374.55 I |
Mn | 259.37 II, 403.08 I, 403.31 I, 403.45 I, 475.40 I * |
Ti | 334.94 II, 336.12 II, 337.75 I *, 338.38 II, 498.17 I, 499.11 I, 499.95 I, 500.72 I |
Sr | 407.77 II, 421.55 II *, 460.73 I |
Ba | 455.40 II, 493.41 II *, 553.55 I |
Sample ID | Mineral Composition |
---|---|
U6 | quartz, magnetite, hematite, and hydromagnesite |
U7 | quartz, magnetite, hematite, and protein (tr) (in brown) // quartz magnetite, hematite, and organic (tr) (in red) |
U8 | quartz, magnetite, and hematite |
U9 | quartz and hematite (brown) // quartz, hematite, and magnetite (red) |
U10 | quartz, magnetite, and hematite |
U11 | quartz, magnetite, gypsum (tr), and hydromagnesite |
U13 | quartz, magnetite, and hematite |
N1 | Magnetite and hematite |
N2 | quartz, magnetite, calcite, and lipids (tr) |
N4 | quartz, magnetite, hematite, and calcite |
N5 | quartz, magnetite, and hematite |
N7 | quartz and hematite |
B1 | quartz, hematite, and magnetite |
B3 | quartz and magnetite |
B4 | quartz and manganese oxides |
B5 | quartz, hematite, calcite, and organic (tr) |
B6 | quartz, hematite, magnetite, manganese oxides, and calcite (tr) |
B7 | quartz, hematite, manganese oxides, and protein (tr) |
B8 | quartz, hematite, and carbonate (tr) (brown) |
B9 | quartz, hematite, magnetite, and carbonate (tr) (brown) // quartz, hematite, carbonate (tr), and organic (tr) (red) |
B10 | quartz, hematite, manganese oxides, carbonate (tr), and lipids (tr) (black) // quartz, hematite, carbonate (tr), and lipids (tr) (red) |
B11 | quartz, hematite, magnetite, and calcite tr (brown) // quartz and hematite (red) |
B25 | quartz, kaolinite, and hematite |
B26 | calcite, hematite, kaolinite, and quartz (red) // calcite, hematite, kaolinite, and quartz (yellow) |
S5 | quartz, hematite, and calcite |
S15 | quartz, hematite, calcite (tr), and organic (tr) |
S16 | quartz, hematite, magnetite, and calcite (tr) |
S20 | quartz, hematite, and calcite (tr) |
S21 | quartz, hematite, and calcite |
S26 | quartz, hematite, calcite, and magnetite (tr) |
K2 | quartz, kaolinite, and hematite |
K3 | quartz and hematite |
K4 | quartz, hematite, and magnetite |
K5 | quartz and hematite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tankova, V.; Atanassova, V.; Mihailov, V.; Pirovska, A. Identification of Mineral Pigments on Red- and Dark-Decorated Prehistoric Pottery from Bulgaria. Minerals 2025, 15, 877. https://doi.org/10.3390/min15080877
Tankova V, Atanassova V, Mihailov V, Pirovska A. Identification of Mineral Pigments on Red- and Dark-Decorated Prehistoric Pottery from Bulgaria. Minerals. 2025; 15(8):877. https://doi.org/10.3390/min15080877
Chicago/Turabian StyleTankova, Vani, Victoria Atanassova, Valentin Mihailov, and Angelina Pirovska. 2025. "Identification of Mineral Pigments on Red- and Dark-Decorated Prehistoric Pottery from Bulgaria" Minerals 15, no. 8: 877. https://doi.org/10.3390/min15080877
APA StyleTankova, V., Atanassova, V., Mihailov, V., & Pirovska, A. (2025). Identification of Mineral Pigments on Red- and Dark-Decorated Prehistoric Pottery from Bulgaria. Minerals, 15(8), 877. https://doi.org/10.3390/min15080877