Exploring Smoothing and Interpolation in Thellier-Type Paleointensity Determinations
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Smoothing and Interpolation Methods
3. Results and Discussion
3.1. Standard Double-Heating Coe Method
3.2. Smoothed Data in Standard Double-Heating Coe Method
3.3. Interpolated Data in Single-Step Heating Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thellier, E.; Thellier, O. Sur l’intensité Du Champ Magnétique Terrestre Dans Le Passé Historique et Géologique. Ann. Géophys. 1959, 15, 285–376. [Google Scholar]
- Thellier, E. Sur La Thermoremanence et La Theorie Du Metamagnetisme. C. R. Acad. Sci. Paris 1946, 223, 319–321. [Google Scholar]
- Shaar, R.; Tauxe, L. Thellier GUI: An Integrated Tool for Analyzing Paleointensity Data from Thellier-Type Experiments. Geochem. Geophys. Geosyst. 2013, 14, 677–692. [Google Scholar] [CrossRef]
- Selkin, P.A.; Gee, J.S.; Tauxe, L. Nonlinear Thermoremanence Acquisition and Implications for Paleointensity Data. Earth Planet. Sci. Lett. 2007, 256, 81–89. [Google Scholar] [CrossRef]
- Coe, R.S. Paleo-Intensities of the Earth’s Magnetic Field Determined from Tertiary and Quaternary Rockstle. J. Geophys. Res. 1967, 72, 3247–3262. [Google Scholar] [CrossRef]
- Zijderveld, J.D.A. AC Demagnetization of Rocks: Analysis of Results. In Methods in Paleomagnetism; Collinson, D.W., Creer, K.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; pp. 254–286. [Google Scholar]
- Nagata, T.; Momose, K.; Arai, Y. Secular Variation of Geomagnetic Total Force during Last 5000 Years. J. Geophys. Res. 1963, 68, 5277. [Google Scholar] [CrossRef]
- Aitken, M.J.; Alcock, P.A.; Bussell, G.D.; Shaw, C.J. Archaeomagnetic Determination of the Past Geomagnetic Intensity Using Ancient Ceramics: Allowance for Anisotropy. Archaeometry 1981, 23, 53–64. [Google Scholar] [CrossRef]
- Hervé, G.; Chauvin, A.; Lanos, P.; Rochette, P.; Perrin, M.; Perron d’Arc, M. Cooling Rate Effect on Thermoremanent Magnetization in Archaeological Baked Clays: An Experimental Study on Modern Bricks. Geophys. J. Int. 2019, 217, 1413–1424. [Google Scholar] [CrossRef]
- Muxworthy, A.R.; Baker, E.B. ThellierCoolPy: A Cooling-Rate Correction Tool for Paleointensity Data. Geochem. Geophys. Geosyst. 2021, 22, e2021GC010145. [Google Scholar] [CrossRef]
- Dunlop, D.J.; Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521000987. [Google Scholar]
- Levi, S. The Effect of Magnetite Particle Size on Paleointensity Determinations of the Geomagnetic Field. Phys. Earth Planet. Inter. 1977, 13, 245–259. [Google Scholar] [CrossRef]
- Tauxe, L.; Santos, C.N.; Cych, B.; Zhao, X.; Roberts, A.P.; Nagy, L.; Williams, W. Understanding Nonideal Paleointensity Recording in Igneous Rocks: Insights from Aging Experiments on Lava Samples and the Causes and Consequences of “Fragile” Curvature in Arai Plots. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009423. [Google Scholar] [CrossRef]
- Brown, M.C.; Hervé, G.; Korte, M.; Genevey, A. Global Archaeomagnetic Data: The State of the Art and Future Challenges. Phys. Earth Planet. Inter. 2021, 318, 106766. [Google Scholar] [CrossRef]
- Coe, R.S.; Grommé, S.; Mankinen, E.A. Geomagnetic Paleointensities from Radiocarbon-Dated Lava Flows on Hawaii and the Question of the Pacific Nondipole Low. J. Geophys. Res. Solid Earth 1978, 83, 1740–1756. [Google Scholar] [CrossRef]
- Riisager, P.; Riisager, J. Detecting Multidomain Magnetic Grains in Thellier Palaeointensity Experiments. Phys. Earth Planet. Inter. 2001, 125, 111–117. [Google Scholar] [CrossRef]
- Spassov, S.; Valet, J.-P.; Kondopoulou, D.; Zananiri, I.; Casas, L.; Goff, M.L. Rock Magnetic Property and Paleointensity Determination on Historical Santorini Lava Flows. Geochem. Geophys. Geosyst. 2010, 11, Q07006. [Google Scholar] [CrossRef]
- Prevosti, M.; Casas, L.; Pérez, J.F.R.; Fouzai, B.; Álvarez, A.; Pitarch, À. Archaeological and Archaeomagnetic Dating at a Site from the Ager Tarraconensis (Tarragona, Spain): El Vila-Sec Roman Pottery. J. Archaeol. Sci. 2013, 40, 2686–2701. [Google Scholar] [CrossRef]
- Casas, L.; Ramírez, J.; Navarro, A.; Fouzai, B.; Estop, E.; Rosell, J.R. Archaeometric Dating of Two Limekilns in an Industrial Heritage Site in Calders (Catalonia, NE Spain). J. Cult. Herit. 2014, 15, 550–556. [Google Scholar] [CrossRef]
- Casas, L.; Prevosti, M.; Fouzai, B.; Álvarez, A. Archaeomagnetic Study and Dating at Five Sites from Catalonia (NE Spain). J. Archaeol. Sci. 2014, 41, 856–867. [Google Scholar] [CrossRef]
- Day, R.; Fuller, M.; Schmidt, V.A. Hysteresis Properties of Titanomagnetites: Grain-Size and Compositional Dependence. Phys. Earth Planet. Inter. 1977, 13, 260–267. [Google Scholar] [CrossRef]
- Paterson, G.A.; Biggin, A.J.; Yamamoto, Y.; Pan, Y. Towards the Robust Selection of Thellier-Type Paleointensity Data: The Influence of Experimental Noise. Geochem. Geophys. Geosyst. 2012, 13, Q05Z43. [Google Scholar] [CrossRef]
- Arrott, A.; Noakes, J.E. Approximate Equation of State for Nickel Near Its Critical Temperature. Phys. Rev. Lett. 1967, 19, 786–789. [Google Scholar] [CrossRef]
- Kono, M.; Tanaka, H. Analysis of the Thelliers’ Method of Paleointensity Determination 2. J. Geomagn. Geoelectr. 1984, 36, 285–297. [Google Scholar] [CrossRef]
- Koh, J.; Hogue, J.A.; Wang, Y.; DiSalvo, M.; Allbritton, N.L.; Shi, Y.; Olson, J.A.J.; Sosa, J.A. Single-Cell Functional Analysis of Parathyroid Adenomas Reveals Distinct Classes of Calcium Sensing Behaviour in Primary Hyperparathyroidism. J. Cell Mol. Med. 2016, 20, 351–359. [Google Scholar] [CrossRef]
- Giraldo, J.; Vivas, N.M.; Vila, E.; Badia, A. Assessing the (a)Symmetry of Concentration-Effect Curves: Empirical versus Mechanistic Models. Pharmacol. Ther. 2002, 95, 21–45. [Google Scholar] [CrossRef]
- Benenke, T.W.; Schwippert, W.W. Datenanalyse Und Präsentation Mit Origin: Anwendungsbeispiele Und Lösungsvorschläge Aus Der Praxis; Addison-Wesley-Longman: Bonn, Germany, 1997; ISBN 382731061X. [Google Scholar]
- Salomon, D. Hermite Interpolation BT—The Computer Graphics Manual; Salomon, D., Ed.; Springer: London, UK, 2011; pp. 545–575. ISBN 978-0-85729-886-7. [Google Scholar]
- Morales, J.; Goguitchaichvili, A.; Alva-Valdivia, L.M.; Urrutia-Fucugauchi, J. Further Details on the Applicability of Thellier Paleointensity Method: The Effect of Magnitude of Laboratory Field. Comptes Rendus. Géosci. 2006, 338, 507–513. [Google Scholar] [CrossRef]
- Cottrell, R.D.; Tarduno, J.A. In Search of High-Fidelity Geomagnetic Paleointensities: A Comparison of Single Plagioclase Crystal and Whole Rock Thellier-Thellier Analyses. J. Geophys. Res. Solid Earth 2000, 105, 23579–23594. [Google Scholar] [CrossRef]
- Le Goff, M.; Gallet, Y. A New Three-Axis Vibrating Sample Magnetometer for Continuous High-Temperature Magnetization Measurements: Applications to Paleo- and Archeo-Intensity Determinations. Earth Planet. Sci. Lett. 2004, 229, 31–43. [Google Scholar] [CrossRef]
- Gallet, Y.; Le Goff, M. High-Temperature Archeointensity Measurements from Mesopotamia. Earth Planet. Sci. Lett. 2006, 241, 159–173. [Google Scholar] [CrossRef]
- Paterson, G.A.; Tauxe, L.; Biggin, A.J.; Shaar, R.; Jonestrask, L.C. On Improving the Selection of Thellier-Type Paleointensity Data. Geochem. Geophys. Geosyst. 2014, 15, 1180–1192. [Google Scholar] [CrossRef]
- Biggin, A.J.; Perrin, M.; Shaw, J. A Comparison of a Quasi-Perpendicular Method of Absolute Palaeointensity Determination with Other Thermal and Microwave Techniques. Earth Planet. Sci. Lett. 2007, 257, 564–581. [Google Scholar] [CrossRef]
- Biggin, A.J.; Perrin, M.; Dekkers, M.J. A Reliable Absolute Palaeointensity Determination Obtained from a Non-Ideal Recorder. Earth Planet. Sci. Lett. 2007, 257, 545–563. [Google Scholar] [CrossRef]
- Carvallo, C.; Roberts, A.P.; Leonhardt, R.; Laj, C.; Kissel, C.; Perrin, M.; Camps, P. Increasing the Efficiency of Paleointensity Analyses by Selection of Samples Using First-Order Reversal Curve Diagrams. J. Geophys. Res. Solid Earth 2006, 111, B12103. [Google Scholar] [CrossRef]
Label | Material and Color | Position | Total Samples | ||
---|---|---|---|---|---|
In | Out | Trans | |||
ReB | refractory brick (yellowish) | 5 | 1 | 2 | 8 |
S | slag (black and porous) | 1 | 3 | 1 | 5 |
BC | baked clay (reddish) | 2 | 1 | 2 | 5 |
VR | volcanic rock (black and porous) | 2 | 1 | 2 | 5 |
RB | brick (reddish) | 2 | 2 | 2 | 6 |
BB | brick (black) | 2 | 0 | 0 | 2 |
Sample | Flab (µT) | T Range (°) | F (µT) | ΔF% | σ (µT) | n | f | g | q |
---|---|---|---|---|---|---|---|---|---|
BC1 | 50 | 20–470 | 52 | 4 | 7.8 | 8 | 0.82 | 0.73 | 6.68 |
BC2 | 30 | 20–510 | 48 | −4 | 1.0 | 11 | 0.99 | 0.83 | 49.90 |
ReB1 | 50 | 20–470 | 52 | 4 | 8.3 | 8 | 0.67 | 0.78 | 6.33 |
ReB2 | 30 | 20–510 | 50 | 0 | 3.1 | 11 | 0.77 | 0.86 | 16.02 |
BB1 | 50 | 20–470 | 51 | 2 | 3.1 | 8 | 0.79 | 0.71 | 16.52 |
BB2 | 30 | 20–510 | 48 | −4 | 2.5 | 10 | 0.86 | 0.74 | 19.13 |
Sample | Not Smoothed | Smoothed Using (2) | Smoothed Using (3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F (µT) | ΔF% | σ (µT) | q | F (µT) | ΔF% | σ (µT) | q | F (µT) | ΔF% | σ (µT) | q | |
BC1 | 52 | 4 | 7.8 | 6.68 | 42 | −16 | 11.4 | 3.67 | 51 | 2 | 6.5 | 7.83 |
BC2 | 48 | −4 | 1.0 | 49.90 | 46 | −8 | 0.4 | 130.30 | 48 | −4 | 1.1 | 41.85 |
ReB1 | 52 | 4 | 8.3 | 6.33 | 57 | 14 | 3.6 | 16.10 | 53 | 6 | 4.7 | 11.34 |
ReB2 | 50 | 0 | 3.1 | 16.02 | 64 | 28 | 3.7 | 17.41 | 47 | −6 | 1.8 | 26.88 |
BB1 | 51 | 2 | 3.1 | 16.52 | 60 | 20 | 5.9 | 10.13 | 51 | 2 | 1.9 | 27.81 |
BB2 | 48 | −4 | 2.5 | 19.13 | 57 | 14 | 2.5 | 22.78 | 45 | −10 | 3.8 | 11.66 |
mean | 50.2 | 4.3 | 54.3 | 4.6 | 49.2 | 3.3 |
N | F (µT) | σ (µT) | q | |
---|---|---|---|---|
experimental | 8 | 51 | 3.1 | 16.5 |
smoothed | 8 | 51 | 1.9 | 27.8 |
interpolated | 16 | 52 | 0.9 | 58.3 |
interpolated | 46 | 52 | 0.5 | 110.0 |
interpolated | 91 | 52 | 0.3 | 158.9 |
Sample | 5PL Smoothing and 5PL Interpolation | Cubic Hermite Spline Interpolation | |||||||
---|---|---|---|---|---|---|---|---|---|
N | F (µT) | ΔF% | σ (µT) | q | F (µT) | ΔF% | σ (µT) | q | |
BC2 | 11 | 50 | 0 | 0.7 | 71.9 | 49 | −2 | 1.2 | 41.2 |
ReB2 | 11 | 59 | 18 | 3.2 | 18.5 | 54 | 8 | 3.5 | 15.3 |
BB2 | 11 | 46 | −8 | 6.0 | 7.6 | 46 | −8 | 6.0 | 7.6 |
Label | Position | N | Applied Field (µT) | F (µT) | ΔF% | σ (µT) | q | f |
---|---|---|---|---|---|---|---|---|
BC3 | trans | 7 | 50 | 55.7 | 11.4 | 7.2 | 7.8 | 0.7 |
BC4 | trans | 10 | 30 | 48.6 | −2.8 | 1.5 | 32.0 | 0.9 |
BC5 | in | 10 | 30 | 42.4 | −15.2 | 3.3 | 12.9 | 0.8 |
RB1 | trans | 9 | 30 | 52.6 | 5.2 | 8.0 | 6.6 | 0.4 |
RB2 | out | - | 30 | - | - | - | - | - |
RB3 | in | 10 | 30 | 49.6 | −0.8 | 4.9 | 10.1 | 0.7 |
RB4 | trans | 7 | 50 | 53.4 | 6.8 | 6.9 | 7.8 | 0.3 |
RB5 | out | 7 | 50 | 51.0 | 2.0 | 3.7 | 13.9 | 0.3 |
RB6 | in | 7 | 50 | 53.7 | 7.4 | 3.0 | 17.8 | 0.5 |
ReB3* | in | 7 | 50 | 54.3 | 8.6 | 11.2 | 4.8 | 0.7 |
ReB4* | trans | 10 | 30 | 55.1 | 10.2 | 6.4 | 8.6 | 0.5 |
ReB5 | trans | 7 | 50 | 46.5 | −7.0 | 5.6 | 8.3 | 0.6 |
ReB6 | out | 10 | 30 | 50.4 | 0.8 | 11.9 | 4.2 | 0.8 |
ReB7 | in | 10 | 30 | 51.8 | 3.6 | 5.1 | 10.1 | 0.7 |
ReB8 | in | 10 | 30 | 36.4 | −27.2 | 2.3 | 16.13 | 0.9 |
S1 | out | 7 | 50 | 53.5 | 7.0 | 7.1 | 7.5 | 0.8 |
S2 | in | 7 | 50 | 55.6 | 11.2 | 10.2 | 5.5 | 0.6 |
S3 | out | 10 | 30 | 58.1 | 16.2 | 5.7 | 10.2 | 0.7 |
S4 | trans | 7 | 50 | 58.4 | 16.8 | 7.2 | 8.1 | 0.9 |
S5 | out | 10 | 30 | 55.9 | 11.8 | 6.2 | 9.0 | 0.7 |
VR1 | trans | - | 50 | - | - | - | - | - |
VR2 | in | - | 50 | - | - | - | - | - |
VR3 | trans | 10 | 30 | 56.0 | 12.0 | 4.8 | 11.7 | 0.8 |
VR4* | out | 10 | 30 | 60.0 | 20.0 | 12.5 | 4.8 | 0.9 |
VR5* | in | 10 | 30 | 55.6 | 11.2 | 6.1 | 9.1 | 1.0 |
Label | N | Applied Field (µT) | F (µT) | ΔF% | σ (µT) | f | g | q |
---|---|---|---|---|---|---|---|---|
RB5 | 7 | 50 | 51.0 | 2.0 | 3.7 | 0.3 | 0.8 | 13.9 |
RB5bis | 13 | 50 | 46.8 | 6.4 | 1.8 | 0.8 | 0.9 | 25.9 |
VR3 | 10 | 30 | 56.0 | 12.0 | 4.8 | 0.8 | 0.8 | 11.7 |
VR3bis | 14 | 30 | 54.2 | 8.4 | 1.7 | 1.0 | 0.9 | 32.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas, L.; Ortiz, M.; Di Febo, R. Exploring Smoothing and Interpolation in Thellier-Type Paleointensity Determinations. Minerals 2025, 15, 873. https://doi.org/10.3390/min15080873
Casas L, Ortiz M, Di Febo R. Exploring Smoothing and Interpolation in Thellier-Type Paleointensity Determinations. Minerals. 2025; 15(8):873. https://doi.org/10.3390/min15080873
Chicago/Turabian StyleCasas, Lluís, Marc Ortiz, and Roberta Di Febo. 2025. "Exploring Smoothing and Interpolation in Thellier-Type Paleointensity Determinations" Minerals 15, no. 8: 873. https://doi.org/10.3390/min15080873
APA StyleCasas, L., Ortiz, M., & Di Febo, R. (2025). Exploring Smoothing and Interpolation in Thellier-Type Paleointensity Determinations. Minerals, 15(8), 873. https://doi.org/10.3390/min15080873