Selective Recovery of Zinc from Oxide Ores Using Monosodium Glutamate as a Green Lixiviant
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Leaching Procedures
2.3. Zn Recovery by Electrowinning and Recirculation of Spent Electrowinning Solution
3. Results and Discussions
3.1. Ore Mineralogy and Leaching Residue Characterization
3.2. Optimization of Leaching Conditions
3.2.1. Effect of Temperature
3.2.2. Effect of pH
3.2.3. Effect of Initial MSG Concentration
3.2.4. Effect of Particle Size
3.2.5. Effect of Solid-to-Liquid Ratio
3.3. Zn Recovery by Electrowinning
3.3.1. Process Efficiency and Product Characterization
3.3.2. Reusability of MSG in Leaching–Electrowinning Cycles
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaya, M.; Hussaini, S.; Kursunoglu, S. Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy 2020, 195, 105362. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Reynolds, N.A.; Sangster, D.F.; Allen, C.R.; Carman, C.E. Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ. Geol. 2003, 98, 685–714. [Google Scholar] [CrossRef]
- Gilg, H.A.; Boni, M.; Cook, N.J. A Special issue devoted to nonsulfide Zn-Pb deposits. Ore Geol. Rev. 2008, 33, 115–116. [Google Scholar] [CrossRef]
- Hussaini, S.; Kursunoglu, S.; Top, S.; Ichlas, Z.T.; Kaya, M. Testing of 17-different leaching agents for the recovery of zinc from a carbonate-type Pb-Zn ore flotation tailing. Miner. Eng. 2021, 168, 106935. [Google Scholar] [CrossRef]
- Moradi, S.; Monhemius, A.J. Mixed sulphide–oxide lead and zinc ores: Problems and solutions. Miner. Eng. 2011, 24, 1062–1076. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Han, Y. Efficient flotation separation of lead–zinc oxide ores using mineral sulfidation reconstruction technology: A review. Green Smart Min. Eng. 2024, 1, 175–189. [Google Scholar] [CrossRef]
- Frenay, J. Leaching of oxidized zinc ores in various media. Hydrometallurgy 1985, 15, 243–253. [Google Scholar] [CrossRef]
- Xu, H.; Wei, C.; Li, C.; Fan, G.; Deng, Z.; Zhou, X.; Qiu, S. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure. Sep. Purif. Technol. 2012, 85, 206–212. [Google Scholar] [CrossRef]
- Yu, Y.S.; Cui, L.X.; Zhang, L.B.; Wang, Y.F. Efficient mechanochemical leaching of zinc from zinc oxide ores. Trans. Nonferrous Met. Soc. China 2024, 34, 1976–1993. [Google Scholar] [CrossRef]
- Chen, A.; Zhao, Z.W.; Jia, X.; Long, S.; Huo, G.; Chen, X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy 2009, 97, 228–232. [Google Scholar] [CrossRef]
- Tanda, B.C.; Eksteen, J.J.; Oraby, E.A. An investigation into the leaching behaviour of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy 2017, 167, 153–162. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. The leaching of gold, silver and their alloys in alkaline glycine peroxide solutions and their adsorption on carbon. Hydrometallurgy 2015, 152, 199–203. [Google Scholar] [CrossRef]
- Khodaei, H.; Haghshenas, D.F.; Firoozi, S. Selective leaching of zinc from carbonate source using glycine as an ecofriendly lixiviant. Miner. Eng. 2022, 185, 107680. [Google Scholar] [CrossRef]
- Prasetyo, E.; Anderson, C.; Nurjaman, F.; Muttaqii, M.A.; Handoko, A.S.; Bahfie, F.; Mufakhir, F.R. Monosodium glutamate as selective lixiviant for alkaline leaching of zinc and copper from electric arc furnace dust. Metals 2020, 10, 644. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Jacques Eksteen, J. An alternative amino acid leaching of base metals from waste printed circuit boards using alkaline glutamate solutions: A comparative study with glycine. Sep. Purif. Technol. 2025, 356, 129953. [Google Scholar] [CrossRef]
- Perea, C.G.; Restrepo Baena, O.J.; Ihle, C.F.; Estay, H. Copper leaching from wastes electrical and electronic equipment (WEEE) using alkaline monosodium glutamate: Thermodynamics and dissolution tests. Clean. Eng. Technol. 2021, 5, 100312. [Google Scholar] [CrossRef]
- Kostudis, S.; Bachmann, K.; Kutschke, S.; Pollmann, K.; Gutzmer, J. Leaching of copper from Kupferschiefer by glutamic acid and heterotrophic bacteria. Miner. Eng. 2015, 75, 38–44. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Y.; Zhao, G. Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy 2011, 110, 79–84. [Google Scholar] [CrossRef]
- Lupi, C.; Pilone, D. Effectiveness of saponified D2EHPA in Zn(II) selective extraction from concentrated sulphuric solutions. Miner. Eng. 2020, 150, 106278. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, Y.; Zhang, X.; Peng, C.; Cheng, Y.; Chen, W. Removal of Zn(II) from manganese-zinc chloride waste liquor using ion exchange with D201 resin. Hydrometallurgy 2019, 190, 105171. [Google Scholar] [CrossRef]
- Rudnik, E. Recovery of zinc from zinc ash by leaching in sulphuric acid and electrowinning. Hydrometallurgy 2019, 188, 256–263. [Google Scholar] [CrossRef]
- Estay, H.; Barros, L.; Troncoso, E. Metal sulfide precipitation: Recent breakthroughs and future outlooks. Minerals 2021, 11, 1385. [Google Scholar] [CrossRef]
- Sole, K. Solvent extraction in the hydrometallurgical processing and purification of metals: Process design and selected applications. In Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials; CRC Press: Boca Raton, FL, USA; Taylor &Francis: Boca Raton, FL, USA, 2008; pp. 141–200. [Google Scholar]
- Taute, C.C.; Sole, K.C.; Hardwick, E. Removal of zinc from a base-metal solution using ion exchange at Rustenburg Base Metal Refiners. J. Chem. Technol. Biotechnol. 2014, 89, 919–926. [Google Scholar] [CrossRef]
- Xu, X.; Li, D.; Chen, L.; Liu, M.; Liu, C.; Jia, J. Improve the energy efficiency: Effects of additives on longtime zinc electrowinning. Hydrometallurgy 2020, 193, 105326. [Google Scholar] [CrossRef]
- Badenhorst, W.D.; Rossouw, C.; Cho, H.; Kerres, J.; Bruinsma, D.; Krieg, H. Electrowinning of iron from spent leaching solutions using novel anion exchange membranes. Membranes 2019, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, A. Dissociation constants and structures of glutamic acid and its esters. Biochem. J. 1936, 30, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Prasetyo, E.; Muryanta, W.A.; Amin, M.; Sudibyo; Al Muttaqii, M.; Bahfie, F.; Handoko, A.S. Glutamate leaching of spent lithium-ion battery cathode in weak acidic-neutral condition: New insight on kinetics and dissolution mechanism. Miner. Process. Extr. Metall. Rev. 2024, 46, 386–399. [Google Scholar] [CrossRef]
- Murphy, J.M.; Powell, B.A.; Brumaghim, J.L. Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord. Chem. Rev. 2020, 412, 213–253. [Google Scholar] [CrossRef]
- Wang, G.R.; Liu, Y.Y.; Tong, L.L.; Jin, Z.N.; Chen, G.B.; Yang, H.Y. Effect of temperature on leaching behavior of copper minerals with different occurrence states in complex copper oxide ores. Trans. Nonferrous Met. Soc. China 2019, 29, 2192−2201. [Google Scholar] [CrossRef]
- Faraji, F.; Amirhossein, A.; Fereshteh, R.; Navid, M. Kinetics of leaching: A review. Rev. Chem. Eng. 2022, 38, 113–148. [Google Scholar] [CrossRef]
- Sajadi, A.A. Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a comparative investigation. Nat. Sci. 2010, 2, 85–90. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, G.; Cen, S.; Liu, R.; Taoac, C. Leaching of phosphate ores with lower dissolution of metallic impurities: The dual role of sodium oleate. RSC Adv. 2023, 13, 10600–10609. [Google Scholar] [CrossRef]
- Hursit, M.; Lacin, O.; Sarac, H. Dissolution kinetics of smithsonite ore as an alternative zinc source with an organic leach reagent. J. Taiwan Inst. Chem. Eng. 2009, 40, 6–12. [Google Scholar] [CrossRef]
- Markovic, Z.S.; Jankovic, A.; Tomanec, R. Effect of particle size and liberation on flotation of a low grade porphyry copper ore. J. Min. Metall. 2008, 44, 24–30. [Google Scholar]
- Souza, A.D.; Pina, P.S.; Santos, F.M.F.; Silva, C.A.; Leão, V.A. Effect of iron in zinc silicate concentrate on leaching with sulphuric acid. Hydrometallurgy 2009, 95, 207–214. [Google Scholar] [CrossRef]
- Sadeghi, N.; Moghaddam, J.; Ilkhchi, M.O. Kinetics of zinc sulfide concentrate direct leaching in pilot plant scale and development of semi-empirical model. Trans. Nonferrous Met. Soc. China 2017, 27, 2272−2281. [Google Scholar] [CrossRef]
- Jia, L.; Zhong, Y.; Li, K.; Li, B.; Gao, J.; Liu, T.; Wang, F.; Wu, W.; Feng, J. Recovery of zinc resources from secondary zinc oxide via composite ammonia leaching: Analysis of Zn leaching behavior. Chem. Eng. J. 2023, 472, 144930. [Google Scholar] [CrossRef]
- Parada, T.F.; Asselin, E. Reducing power consumption in zinc electrowinning. J. Miner. Met. Mater. Soc. 2009, 61, 54–58. [Google Scholar] [CrossRef]
- Gomes, R.A.M.; Porto, M.P.; Vieira, K.C.P.; Cardoso Filho, B.J.; Rezende, S.L.S.P.; Ciminelli, V.S.T.; Majuste, D. Use of hybrid renewable energy system with organic photovoltaic cells in zinc electrowinning. J. Clean. Prod. 2021, 293, 125333. [Google Scholar] [CrossRef]
- Youcai, Z.; Qiang, L.; Chenglong, Z.; Jiachao, J. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution. Braz. J. Chem. Eng. 2013, 30, 857–864. [Google Scholar] [CrossRef]
- Takayama, Y. Studies on amino acids and related compounds Part VII. On the oxidation of various amino acids. Bull. Chem. Soc. Jpn. 1933, 8, 213. [Google Scholar] [CrossRef]
- Takayama, Y. Studies on amino acids and related compounds Part XI. The formation of aldehydes by the electrolytic oxidation of α amino acids. Bull. Chern. Soc. Jpn. 1937, 12, 338. [Google Scholar] [CrossRef]
- Marangoni, D.G.; Wylie, I.G.N.; Roscoe, S.G. Surface electrochemistry of the oxidation reactions of α- and β-alanine at a platinum electrode. J. Electroanal. Chem. Interf. Electrochem. 1991, 320, 269–284. [Google Scholar] [CrossRef]
- Marangoni, D.G.; Smith, R.; Roscoe, S. Surface electrochemistry of the oxidation of glycine at Pt. Can. J. Chem. 1989, 67, 921. [Google Scholar] [CrossRef]
Zn% | Pb% | Fe% | Ca% | Mg% | Si% | Mn% |
---|---|---|---|---|---|---|
14.77 | 4.53 | 27.92 | 6.98 | 0.29 | 2.70 | 0.76 |
Parameter | Unit | Value |
---|---|---|
Temperature | °C | 30–50–70 |
pH | - | 7.1–8.5–9.5–10.5 |
MSG Concentration | M | 0.5–1.0–1.5 |
Particle Size | µm | 75–115–200 |
S/L Ratio | g/L | 30–50–70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, Y. Selective Recovery of Zinc from Oxide Ores Using Monosodium Glutamate as a Green Lixiviant. Minerals 2025, 15, 870. https://doi.org/10.3390/min15080870
Ozturk Y. Selective Recovery of Zinc from Oxide Ores Using Monosodium Glutamate as a Green Lixiviant. Minerals. 2025; 15(8):870. https://doi.org/10.3390/min15080870
Chicago/Turabian StyleOzturk, Yasemin. 2025. "Selective Recovery of Zinc from Oxide Ores Using Monosodium Glutamate as a Green Lixiviant" Minerals 15, no. 8: 870. https://doi.org/10.3390/min15080870
APA StyleOzturk, Y. (2025). Selective Recovery of Zinc from Oxide Ores Using Monosodium Glutamate as a Green Lixiviant. Minerals, 15(8), 870. https://doi.org/10.3390/min15080870