Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea
Abstract
1. Introduction
2. Regional Geological Background
3. Geological Characteristics of the Deposit
4. Sample Description and Analytical Methods
4.1. Sample Location and Selection
4.2. Analytical Methods
4.2.1. Monazite BSE Imaging
4.2.2. Major and Trace Element Analysis of Monazite
4.2.3. In Situ U-Pb Dating of Monazite
5. Analytical Results
5.1. Major and Trace Elements
5.2. Monazite U-Pb Dating
6. Discussion
6.1. Formation Environment and Genesis of Monazite
6.1.1. Formation Environment of Monazite
6.1.2. Genesis of Monazite
6.2. Metallogenic Epoch of the Koka Gold Deposit
6.3. Tectonic Evolution Model of the Koka Gold Deposit
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.M.; Shen, J. Isotopic dating for metallic deposits and its significance. Geol. Expl. N-Fe Met. 1998, 7, 107–113, (In Chinese with English Abstract). [Google Scholar]
- Li, W.B.; Huang, Z.L.; Xu, D.R.; Cheng, J.; Xu, C.; Guan, T. Rb-Sr isotopic method on zinc–lead ore deposits: A review. Geotect. Mela. 2002, 26, 436–441, (In Chinese with English Abstract). [Google Scholar]
- Zu, B.; Xue, C.; Zhao, Y.; Qu, W.; Li, C.; Symons, D.T.A.; Du, A. Late Cretaceous metallogeny in the Zhongdian area: Constraints from Re–Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China. Ore Geol. Rev. 2015, 64, 1–12. [Google Scholar] [CrossRef]
- Liu, D.; Shi, R.; Ding, L.; Huang, Q.; Zhang, X.; Yue, Y.; Zhang, L. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong Nujiang Tethyan Ocean. Gondwana Res. 2017, 41, 157–172. [Google Scholar] [CrossRef]
- Hnatyshin, D.; Creaser, R.A.; Meffre, S.; Stern, R.A.; Wilkinson, J.J.; Turner, E.C. Understanding the microscale spatial distribution and mineralogical residency of Re in pyrite: Examples from carbonate–hosted Zn–Pb ores and implications for pyrite Re–Os geochronology. Chem. Geol. 2020, 533, 119427. [Google Scholar] [CrossRef]
- Sun, X.; Hollings, P.; Lu, Y.-J. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet. Miner. Depos. 2021, 56, 457–480. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, X.; Schertl, H.-P.; Hoare, L.; Cambeses, A.; Uribe, D.H.; Zhang, W. Rutile petrochronology and titanium isotope compositions record multiple melt-fluid-rock interactions in a continental subduction zone. Geochim. Cosmochim. Acta 2025, 400, 94–114. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, X.; Jiang, S.; Hoare, L.; Zhang, W.; Lian, D.; Liu, H. Immiscibility of carbonatitic and alkaline silicate melts from an evolved ultramafic magma: Titanite geochronology and in-situ Ti Nd isotope insights. Chem. Geol. 2024, 670, 122433. [Google Scholar] [CrossRef]
- Burisch, M.; Gerdes, A.; Walter, B.F.; Neumann, U.; Fettel, M.; Markl, G. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol. Rev. 2017, 81, 42–61. [Google Scholar] [CrossRef]
- MacDonald, J.M.; Faithfull, J.W.; Roberts, N.M.W.; Davies, A.J.; Holdsworth, C.M.; Newton, M.; Williamson, S.; Boyce, A.; John, C.M. Clumped-isotope palaeothermometry and LA-ICP-MS U-Pb dating of lava-pile hydrothermal calcite veins. Contrib. Mineral. Petrol. 2019, 174, 63. [Google Scholar] [CrossRef]
- Jiang, X.; Zheng, Y.; Gao, S.; Yan, J.; Kang, Y.; Jiang, G.; Chen, X. In-situ U–Pb geochronology of Ti-bearing andradite as a practical tool for linking skarn alteration and Pb–Zn mineralization: A case study of the Mengya’a deposit, tibet. Ore Geol. Rev. 2021, 139, 104565. [Google Scholar] [CrossRef]
- Ni, Y.X.; Hughes, J.M.; Mariano, A.N. Crystal-chemistry of the monazite and xenotime structures. Am. Miner. 1995, 80, 21–26. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J.; Goncalves, P.; Mahan, K. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chem. Geol. 2006, 225, 1–15. [Google Scholar] [CrossRef]
- Žák, J.; Svojtka, M.; Opluštil, S. Topographic inversion and changes in the sediment routing systems in the Variscan orogenic belt as revealed by detrital zircon and monazite U-Pb geochronology in post-collisional continental basins. Sediment. Geol. 2018, 377, 63–81. [Google Scholar] [CrossRef]
- Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand- A new report of Early Paleozoic granite. Lithos 2014, 200–201, 64–79. [Google Scholar] [CrossRef]
- Liu, P.H.; Zou, L.; Tian, Z.H.; Ji, L.; Shi, J.R. Discovery and Geological Significance of an Early Paleozoic (Ca. 420 Ma) Metamorphic Event from the Eastern Alxa Block: New Evidence from Monazite and Zircon LA-ICP-MS U-Pb Dating. Earth Sci. 2019, 44, 2441–2470. [Google Scholar]
- Catlos, E.J.; Miller, N.R. Speculations linking monazite compositions to origin: Llallagua tin ore deposit (Bolivia). Resources 2017, 6, 36. [Google Scholar] [CrossRef]
- Benaouda, R.; Kraemer, D.; Sitnikova, M. Thorium-poor monazite and columbite-(Fe) mineralization in the Gleibat Lafhouda carbonatite and its associated iron-oxide-apatite deposit of the Ouled Dlim Massif, South Morocco. Gondwana Res. 2020, 77, 19–39. [Google Scholar] [CrossRef]
- Wu, L.G.; Li, X.H. Isotopic and Elemental Microanalyses of Monazite and its Geological Application. Bull. Miner. Petrol. Geochem. 2020, 39, 1077–1094, (In Chinese with English Abstract). [Google Scholar]
- Cherniak, D.; Watson, E.; Grove, M.; Harrison, T. Pb diffusion in monazite: A combined RBS/SIMS study. Geochim. Cosmochim. Acta 2004, 68, 829–840. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Wirth, R.; Deutsch, A.; Schärer, U. Microstructure of 24–1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits. Geochim. Cosmochim. Acta 2004, 68, 2517–2527. [Google Scholar] [CrossRef]
- Weinberg, R.F.; Wolfram, L.C.; Nebel, O.; Hasalová, P.; Závada, P.; Kylander-Clark, A.R.C.; Becchio, R. Decoupled U-Pb date and chemical zonation of monazite in migmatites: The case for disturbance of isotopic systematics by coupled dissolution-reprecipitation. Geochim. Cosmochim. Acta 2020, 269, 398–412. [Google Scholar] [CrossRef]
- Rubatto, D.; Williams, I.S.; Buick, I.S. Zircon and monazite response to prograde metamorphism in the reynolds range, central australia. Contrib. Miner. Petrol. 2001, 140, 458–468. [Google Scholar] [CrossRef]
- Rubatto, D.; Chakraborty, S.; Dasgupta, S. Timescales of crustal melting in the higher himalayan crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib. Miner. Petrol. 2013, 165, 349–372. [Google Scholar] [CrossRef]
- Williams, I.S. Response of detrital and zircon and monazite, and their u-pb isotopic systems, to regional metamorphism and host-rock partial melting, cooma complex, southeastern australia. J. Geol. Soc. Aust. 2001, 48, 557–580. [Google Scholar] [CrossRef]
- Williams, M.L.; Jercinovic, M.J.; Harlov, D.E.; Budzyń, B.; Hetherington, C.J. Resetting monazite ages during fluid-related alteration. Chem. Geol. 2011, 283, 218–225. [Google Scholar] [CrossRef]
- Stepanov, A.S.; Hermann, J.; Rubatto, D.; Rapp, R.P. Experimental study of monazite/melt partitioning with implications for the ree, th and u geochemistry of crustal rocks. Chem. Geol. 2012, 300–301, 200–220. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Montel, J.M.; Bingen, B.; Valérie, B.; Parseval, P.D.; Paquette, J.L.; Janots, E.; Wirth, R. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chem. Geol. 2012, 330–331, 140–158. [Google Scholar] [CrossRef]
- Rasmussen, B.; Sheppard, S.; Fletcher, I.R. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia. Geology 2006, 34, 77. [Google Scholar] [CrossRef]
- Muhling, J.R.; Fletcher, I.R.; Rasmussen, B. Dating fluid flow and Mississippi Valley type base-metal mineralization in the Paleoproterozoic Earaheedy Basin, Western Australia. Precambrian Res. 2012, 212–213, 75–90. [Google Scholar] [CrossRef]
- Fielding, I.O.H.; Johnson, S.P.; Zi, J.-W.; Rasmussen, B.; Muhling, J.R.; Dunkley, D.J.; Sheppard, S.; Wingate, M.T.D.; Rogers, J.R. Using in situ SHRIMP U-Pb Monazite and Xenotime Geochronology to Determine the Age of Orogenic Gold Mineralization: An Example from the Paulsens Mine, Southern Pilbara Craton. Econ. Geol. 2017, 112, 1205–1230. [Google Scholar] [CrossRef]
- Fielding, I.O.H.; Johnson, S.P.; Zi, J.-W.; Sheppard, S.; Rasmussen, B. Neighbouring orogenic gold deposits may be the products of unrelated mineralizing events. Ore Geol. Rev. 2018, 95, 593–603. [Google Scholar] [CrossRef]
- Kohn, M.J.; Wieland, M.S.; Parkinson, C.D.; Upreti, B.N. Five generations of monazite in Langtang gneisses: Implications for chronology of the Himalayan metamorphic core. J. Metamorph. Geol. 2005, 23, 399–406. [Google Scholar] [CrossRef]
- Kelly, N.M.; Harley, S.L.; Moller, A. Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem. Geol. 2012, 322–323, 192–208. [Google Scholar] [CrossRef]
- Taylor, R.J.M.; Clark, C.; Fitzsimons, I.C.W.; Santosh, M.; Hand, M.; Evans, N. Post-peak, fluid- mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contrib. Mineral. Petrol. 2014, 168, 1044. [Google Scholar] [CrossRef]
- Zhang, J.; Linnen, R.; Lin, S.; Davis, D.; Martin, R. Paleoproterozoic hydrothermal reactivation in a neoarchean orogenic lode-gold deposit of the southern abitibi subprovince: U-Pb monazite geochronological evidence from the young-davidson mine, ontario. Precambrian Res. 2014, 249, 263–272. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Fletcher, I.R.; Zeng, Q.T. Triassic mineralization with cretaceous overprint in the dahu au–mo deposit, xiaoqinling gold province: Constraints from shrimp monazite U–Th–Pb geochronology. Gondwana Res. 2011, 20, 543–552. [Google Scholar] [CrossRef]
- Li, L.X.; Zi, J.W.; Meng, J.; Li, H.M.; Rasmussen, B.; Sheppard, S.; Wilde, S.A.; Li, Y.H. Using In Situ Monazite and Xenotime U-Pb Geochronology to Resolve the Fate of the “Missing” Banded Iron Formation-Hosted High-Grade Hematite Ores ofthe North China Craton. Econ. Geol. 2020, 115, 189–204. [Google Scholar] [CrossRef]
- Stern, R.J. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history. Gondwana Res. 2008, 14, 33–50. [Google Scholar] [CrossRef]
- Stern, R.J. Neoproterozoic (900–550 Ma) arc assembly and continental collision in the east Africa orogen: Implications for the consol idation of Gondwanaland. Anmu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Johnson, P.R.; Woldehaimanot, B. Development of the Arabian-Nubian Shield: Perspectives on Accretion and Deformation in the Northern East African Orogen and the Assembly of Gondwana; Special Publication: London, UK, 2003; pp. 290–325. [Google Scholar]
- Johnson, P.R.; Zoheir, B.A.; Ghebreab, W.; Stern, R.J.I.; Barrie, C.T.; Hamer, R.D. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield. S. Afr. J. Geol. 2017, 120, 63–76. [Google Scholar] [CrossRef]
- Drury, S.A.; De Souza Filho, C.R. Neoproterozoic Terrane Assemblages in Eritrea: Review and Prospects. J. Afr. Earth Sci. 1998, 27, 331–348. [Google Scholar] [CrossRef]
- Teklay, M. Neoproterozoic arc–back–arc system analog to modern arc–back–arc systems: Evidence from tholeiite–boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian shield. Precambrian Res. 2006, 145, 81–92. [Google Scholar] [CrossRef]
- Woldehaimanot, B. Tectonic Setting and Geochemical Characterisation of Neoproterozoic Volcanics and Granit-oids from the Adobha Belt, Northern Eritrea. J. Afr. Earth Sci. 2000, 30, 817–831. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, J.; Xiang, W.; Zhang, Z.; Jiang, J.; Xiang, P. The Augaro Arc-type Granite in the Nubia Shield, Western Eritrea: Petrogenesis and Implications for Neoproterozoic Geodynamic Evolution of the East African Orogen. Northwest. Geol. 2024, 57, 159–173, (In Chinese with English Abstract). [Google Scholar]
- Teklay, M.; Kröner, A.; Mezger, K. Geochemistry, geochronology and isotope geology of Nakfa intrusive rocks, northern Eritrea: Products of a tectonically thickened Neoproterozoic crust. J. Afr. Earth Sci. 2001, 33, 283–301. [Google Scholar] [CrossRef]
- Teklay, M.; Berhe, K.; Reimold, W.; Armstrong, R.; Asmerom, Y.; Watson, J. Geochemistry and Geochronology of a Neoproterozoic Low-K Tholeiite-Boninite Association in Central Eritrea. Gondwana Res. 2002, 5, 597–611. [Google Scholar] [CrossRef]
- Zhao, K.; Yao, H.; Wang, J.; Ghebretnsae, G.F.; Xiang, W.; Xiong, Y.Q. Genesis of the Koka gold deposit in northwest eritrea, NE africa: Constraints from fluid inclusions and C-H-O-S isotopes. Minerals 2019, 9, 201. [Google Scholar] [CrossRef]
- Filjak, R.; Glumicic, N.; Zagorak, Z. Oil Possibilities of the Red Sea Region in Ethiopia; Naftaplin: Zagreb, Croatia, 1959; 104p. [Google Scholar]
- Ghebreab, W.; Greiling, R.O.; Solomon, S. Structural setting of Neoproterozoic mineralization, Asmara district, Eritrea. J. Afr. Earth Sci. 2009, 55, 219–235. [Google Scholar] [CrossRef]
- Zhao, K.; Yao, H.Z.; Wang, J.X.; Ghebsha, F.G.; Xiang, W.S.; Yang, Z. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea. Earth Sci. 2020, 45, 156–167, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Zong, K.; Liu, Y.; Gao, C.; Hu, Z.; Gao, S.; Gong, H. In situ U–Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultra high-pressure metamorphism of the Sulu terrane, China. Chem. Geol. 2010, 269, 237–251. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol. Soc. Am. Bull. 2006, 118, 39–64. [Google Scholar] [CrossRef]
- Luo, T.; Hu, Z.; Zhang, W.; Liu, Y.; Zong, K.; Zhou, L.; Hu, S. Water vapor-assisted “Universal” nonmatrix-matched analytical method for the in situ U–Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry. Anal. Chem. 2018, 90, 9016–9024. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Itano, K.; Iizuka, T.; Hoshino, M. REE-Th-U and Nd isotope systematics of monazites in magnetite-and ilmenite-series granitic rocks of the Japan arc: Implications for its use as a tracer of magma evolution and detrital provenance. Chem. Geol. 2018, 484, 69–80. [Google Scholar] [CrossRef]
- Bergemann, C.A.; Gnos, E.; Berger, A.; Whitehouse, M.J.; Mullis, J.; Walter, F.; Bojar, H.P. Constraining long-term fault activity in the brittle domain through in situ dating of hydrothermal monazite. Terra Nova 2018, 30, 440–446. [Google Scholar] [CrossRef]
- Xu, L.; Yang, J.; Ni, Q.; Yang, Y.; Hu, Z.; Liu, Y.; Hu, S. Determination of Sm-Nd isotopic compositions in fifteen geological materials using laser ablation MC-ICP-MS and application to monazite geochronology of metasedimentary rock in the North China Craton. Geostand. Geoanal. Res. 2018, 42, 379–394. [Google Scholar] [CrossRef]
- Tera, F.; Wasserburg, G.J. U-Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett. 1972, 14, 281–304. [Google Scholar] [CrossRef]
- Gratz, R.; Heinrich, W. Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am. Miner. 1997, 82, 772–780. [Google Scholar] [CrossRef]
- Heinrich, W.; Rehs, G.; Franz, G. Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J. Metamorph. Geol. 1997, 15, 3–16. [Google Scholar] [CrossRef]
- Andrehs, G.; Heinrich, W. Experimental determination of REE distributions between monazite and xenotime: Potential for temperature-calibrated geochronology. Chem. Geol. 1998, 149, 83–96. [Google Scholar] [CrossRef]
- Gratz, R.; Heinrich, W. Monazite-xenotime thermometry. III. Experimental calibration of the partitioning of gadolinium between monazite and xenotime. Eur. J. Miner. 1998, 10, 579–588. [Google Scholar] [CrossRef]
- Viskupic, K.; Hodges, K.V. Monazite–xenotime thermochronometry: Methodology and an example from the Nepalese Himalaya. Contrib. Miner. Petrol. 2001, 141, 233–247. [Google Scholar] [CrossRef]
- Zhao, K.; Yao, H.Z.; Wang, J.X.; Xiang, W.S.; Ghebsha, F.G. Characteristics of ore-forming fluids of Koka gold deposit in Eritrea and their geological significances. Miner. Depos. 2018, 37, 1337–1348. [Google Scholar]
- Liu, X.H. Mineralogy, Geochemistry and Metallogeny of Rubidium Polymetallic Deposit in Zhengchong, Daoxian County, Hunan Province; Central South University: Changsha, China, 2023. [Google Scholar]
- Tiddy, C.; Zivak, D.; Hill, J.; Giles, D.; Hodgkison, J.; Neumann, M.; Brotodewo, A. Monazite as an Exploration Tool for Iron Oxide-Copper-Gold Mineralisation in the Gawler Craton, South Australia. Minerals 2021, 11, 809. [Google Scholar] [CrossRef]
- Zhu, Y.; Lai, S.C.; Xie, W.L.; Qin, J.F.; Zhu, R.Z.; Zhao, S.W.; Yang, H. Neoproterozoic tectonic transition from subduction to back-arc extension along the western Yangtze Block, South China: Petrological evidence of Nb-enriched basalts and arc-type intrusive rocks. Gondwana Res. 2023, 122, 163–180. [Google Scholar] [CrossRef]
- Zi, J.W.; Rasmussen, B.; Muhling, J.R.; Fletcher, I.R.; Thorne, A.M.; Johnson, S.P.; Korhonen, F.J. In situ U–Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn Orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Res. 2015, 260, 91–112. [Google Scholar] [CrossRef]
- Wu, L.G.; Li, X.H.; Ling, X.X.; Yang, Y.H.; Li, C.F.; Li, Y.L.; Putlitz, B. Further characterization of the RW-1 monazite: A new working reference material for oxygen and neodymium isotopic microanalysis. Minerals 2019, 9, 583. [Google Scholar] [CrossRef]
- Kempe, U.; Lehmann, B.; Wolf, D.; Rodionov, N.; Bombach, K.; Schwengfelder, U.; Dietrich, A. U–Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochim. Cosmochim. Acta 2008, 72, 4352–4366. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.-Q.; Groves, D.I.; Zhang, L.; Qiu, K.-F.; Wang, Q.-F. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Jiang, X.; Lai, X.; Zheng, Y.; Chen, X.; Gao, S.; Chen, H. Apatite and REE minerals petrochronology and Sr-Nd isotopic signatures: Age and hydrothermal evolution in the formation of the Mengya’a skarn deposit, eastern Nyainqêntanglha belt, Xizang. Ore Geol. Rev. 2025, 185, 106806. [Google Scholar] [CrossRef]
- Fielding, I.O.H.; Johnson, S.P.; Meffre, S.; Zi, J.; Sheppard, S.; Large, R.R.; Rasmussen, B. Linking gold mineralization to regional-scale drivers of mineral systems using in situ U–Pb geochronology and pyrite LA-ICP-MS element mapping. Geosci. Front. 2019, 10, 89–105. [Google Scholar] [CrossRef]
- Fielding, I.O.H.; Johnson, S.P.; Zi, J.-W.; Rasmussen, B.; Sheppard, S. Gold metallogeny of the northern Capricorn Orogen: The relationship between crustal architecture, fault reactivation and hydrothermal fluid flow. Ore Geol. Rev. 2020, 122, 103515. [Google Scholar] [CrossRef]
- Zi, J.-W.; Muhling, J.R.; Rasmussen, B. Geochemistry of low-temperature (<350 °C) metamorphic and hydrothermal monazite. Earth Sci. Rev. 2024, 249, 104688. [Google Scholar]
- Rasmussen, B.; Fletcher, I.R.; Muhling, J.R. In situ U–Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes. Geochim. Cosmochim. Acta 2007, 71, 670–690. [Google Scholar] [CrossRef]
- Cherniak, D.J. Diffusion in accessory minerals: Zircon, titanite, apatite, monazite and xenotime. Rev. Miner. Geochem. 2010, 72, 827–869. [Google Scholar] [CrossRef]
- Stern, R.J. Arc assembly and continental collision in the Neoproterozoic East African Orogen: Implications for the consolidation of Gondwanaland. Annu. Rev. Earth Planet. Sci. 1994, 22, 319–351. [Google Scholar] [CrossRef]
- Andersson, U.B.; Ghebreab, W.; Teklay, M. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield. J. Afr. Earth Sci. 2006, 44, 45–65. [Google Scholar] [CrossRef]
- Johnson, P.R.; Andresen, A.; Collins, A.S.; Fowler, A.R.; Fritz, H.; Ghebreab, W.; Kusky, T.; Stern, R.J. Late Cryogenian–Ediacaran history of the Arabian–Nubian shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. J. Afr. Earth Sci. 2011, 61, 167–232. [Google Scholar] [CrossRef]
- Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; et al. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. J. Afr. Earth Sci. 2013, 86, 65–106. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 2003, 375, 261–288. [Google Scholar] [CrossRef]
- Teklay, M.; Kröner, A.; Mezger, K. Enrichment from Plume Interaction in the Generation of Neoproterozoic Arc Rocks in Northern Eritrea: Implications for Crustal Accretion in the Southern Arabian-Nubian Shield. Chem. Geol. 2002, 184, 167–184. [Google Scholar] [CrossRef]
- Teklay, M.; Haile, T.; Kröner, A.; Asmerom, Y.; Watson, J. A Back-Arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea. Gondwana Res. 2003, 6, 629–640. [Google Scholar] [CrossRef]
- Stern, R.J.; Reagan, M.; Ishizuka, O.; Ohara, Y.; Whattam, S. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere 2012, 4, 469–483. [Google Scholar] [CrossRef]
- Ghebretensae, G.F.; Yao, H.Z.; Zhao, J.H.; Zhao, K. Neoproterozoic magmatism in the southern Arabian-Nubian Shield: Implications for petrogenesis and tectonic setting. Arab. J. Sci. Eng. 2019, 44, 6525–6545. [Google Scholar] [CrossRef]
- Ghebretensae, G.F.; Yao, H.Z.; Zhao, K.; Zhao, J.H. Petrogenesis and tectonic implications of the Neoproterozoic adakitic and A-type granitoids in the southern Arabian-Nubian shield. Arab. J. Geosci. 2019, 12, 1–18. [Google Scholar] [CrossRef]
- Hu, P.; Zeng, G.; Zhang, Z.; Xiang, W.; Jiang, J.; Zhao, K. Neoproterozoic Tectonics of the Arabian-Nubian Shield: Insights from U–Pb Zircon Geochronology, Sr–Nd–Hf Isotopes, and Geochemistry of the Deki Amhare Complex Granitoids, Central Eritrea. Minerals 2024, 14, 1067. [Google Scholar] [CrossRef]
(a) | |||||||||||||||||
No. | SiO2 | P2O5 | TiO2 | As | Y | Nb | Ag | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho |
wt% | wt% | wt% | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | |
KK-216-01 | 1.34 | 24.4 | 0.01 | 494 | 12,706 | 0.63 | 0.00 | 121,586 | 260,674 | 33,153 | 146,386 | 31,880 | 3817 | 19,534 | 1540 | 3891 | 340 |
KK-216-02 | 6.31 | 24.0 | 0.04 | 484 | 10,848 | 3.26 | 0.11 | 112,597 | 245,183 | 31,381 | 138,051 | 30,085 | 3786 | 18,258 | 1424 | 3529 | 295 |
KK-216-04 | 0.83 | 25.3 | 0.00 | 491 | 12,632 | 0.26 | 0.29 | 118,578 | 258,230 | 33,328 | 147,340 | 32,202 | 3942 | 20,196 | 1585 | 3989 | 336 |
KK-216-05 | 0.48 | 25.9 | 0.00 | 528 | 13,388 | 0.03 | 0.16 | 116,618 | 257,663 | 33,363 | 147,158 | 32,415 | 3912 | 20,378 | 1629 | 4107 | 357 |
KK-216-06 | 1.99 | 26.4 | 0.02 | 484 | 11,595 | 1.72 | 0.00 | 116,650 | 252,055 | 31,942 | 141,784 | 30,475 | 3608 | 18,449 | 1459 | 3592 | 313 |
KK-216-07 | 2.00 | 26.1 | 0.02 | 477 | 11,410 | 0.87 | 0.21 | 116,394 | 253,975 | 32,438 | 142,219 | 30,708 | 3644 | 18,731 | 1465 | 3649 | 310 |
KK-216-08 | 4.81 | 25.4 | 0.05 | 475 | 11,647 | 3.32 | 0.08 | 111,245 | 245,689 | 31,535 | 139,536 | 30,337 | 3657 | 18,694 | 1462 | 3643 | 307 |
KK-216-09 | 5.24 | 26.2 | 0.04 | 465 | 10,557 | 3.32 | 0.00 | 111,372 | 243,463 | 30,611 | 134,763 | 29,062 | 3533 | 17,316 | 1361 | 3285 | 276 |
KK-216-10 | 1.47 | 27.1 | 0.02 | 493 | 11,871 | 1.17 | 0.00 | 116,359 | 251,192 | 32,346 | 141,062 | 30,833 | 3644 | 18,905 | 1495 | 3726 | 324 |
KK-216-11 | 2.17 | 26.9 | 0.02 | 474 | 12,358 | 1.16 | 0.00 | 112,212 | 247,793 | 31,799 | 142,014 | 30,899 | 3763 | 19,609 | 1543 | 3860 | 338 |
KK-216-12 | 0.01 | 28.0 | 0.00 | 464 | 11,170 | 0.12 | 0.00 | 114,571 | 252,374 | 32,543 | 143,247 | 31,298 | 3804 | 18,925 | 1480 | 3590 | 305 |
KK-216-13 | 5.89 | 26.6 | 0.01 | 467 | 9568 | 0.37 | 0.44 | 113,234 | 240,644 | 30,475 | 130,430 | 27,489 | 3351 | 16,493 | 1257 | 3070 | 254 |
KK-216-14 | 1.47 | 28.8 | 0.01 | 483 | 12,257 | 0.84 | 0.00 | 113,297 | 246,074 | 31,764 | 135,827 | 30,031 | 3686 | 18,646 | 1489 | 3733 | 322 |
KK-216-15 | 2.07 | 28.3 | 0.01 | 470 | 12,079 | 0.96 | 0.01 | 111,771 | 243,592 | 31,415 | 138,644 | 30,510 | 3728 | 18,794 | 1501 | 3722 | 325 |
KK-216-16 | 2.34 | 28.4 | 0.01 | 463 | 11,039 | 0.86 | 0.00 | 111,294 | 244,040 | 31,168 | 137,776 | 30,168 | 3719 | 18,323 | 1429 | 3527 | 302 |
KK-216-17 | 1.77 | 28.5 | 0.00 | 455 | 10,301 | 0.26 | 0.10 | 114,241 | 243,438 | 30,987 | 136,186 | 30,987 | 4141 | 18,952 | 1460 | 3484 | 285 |
KK-216-18 | 1.06 | 29.1 | 0.00 | 482 | 11,556 | 0.33 | 0.08 | 113,193 | 245,187 | 31,480 | 138,348 | 30,238 | 3795 | 18,677 | 1459 | 3643 | 317 |
KK-216-20 | 2.43 | 28.5 | 0.01 | 450 | 12,813 | 0.94 | 0.15 | 114,453 | 242,539 | 30,832 | 134,302 | 29,494 | 3464 | 18,836 | 1503 | 3884 | 346 |
KK-216-21 | 0.99 | 29.5 | 0.01 | 459 | 11,300 | 1.14 | 0.00 | 113,292 | 241,039 | 31,013 | 136,128 | 30,620 | 3975 | 19,259 | 1535 | 3762 | 315 |
KK-216-22 | 3.56 | 29.3 | 0.03 | 448 | 11,874 | 3.27 | 0.00 | 108,480 | 236,202 | 30,398 | 131,865 | 28,789 | 3668 | 18,312 | 1475 | 3718 | 325 |
KK-216-23 | 4.71 | 29.1 | 0.04 | 464 | 13,009 | 3.02 | 0.10 | 107,891 | 231,545 | 30,013 | 129,204 | 28,195 | 3494 | 17,977 | 1462 | 3819 | 346 |
KK-216-24 | 3.18 | 29.4 | 0.03 | 436 | 15,762 | 1.46 | 0.33 | 114,551 | 239,036 | 29,615 | 125,650 | 27,184 | 3494 | 17,649 | 1534 | 4279 | 405 |
KK-216-25 | 2.83 | 29.7 | 0.02 | 475 | 11,542 | 1.75 | 0.00 | 110,557 | 237,286 | 30,175 | 132,566 | 28,880 | 3568 | 17,949 | 1409 | 3571 | 308 |
(b) | |||||||||||||||||
No. | Er | Tm | Yb | Lu | Hf | Ta | Au | Pb | Th | U | ΣREE | LREE | HREE | LREE/HREE | LaN/YbN | δEu | δCe |
ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | |||||
KK-216-01 | 387 | 24.2 | 69.4 | 4.60 | 0.06 | 0.06 | 0.00 | 2.37 | 3779 | 64.7 | 623,286 | 597,496 | 25,789 | 23.2 | 1257 | 0.43 | 0.99 |
KK-216-02 | 319 | 19.2 | 58.5 | 3.55 | 0.07 | 0.06 | 0.00 | 2.41 | 4410 | 58.8 | 584,988 | 561,082 | 23,906 | 23.5 | 1382 | 0.46 | 0.99 |
KK-216-04 | 374 | 21.1 | 64.9 | 4.05 | 0.08 | 0.11 | 0.02 | 1.68 | 3890 | 61.7 | 620,188 | 593,619 | 26,569 | 22.3 | 1310 | 0.44 | 0.99 |
KK-216-05 | 397 | 23.9 | 69.0 | 4.63 | 0.11 | 0.00 | 0.00 | 2.43 | 3733 | 64.7 | 618,095 | 591,129 | 26,966 | 21.9 | 1212 | 0.43 | 1.00 |
KK-216-06 | 342 | 21.6 | 59.9 | 2.32 | 0.55 | 0.04 | 0.00 | 3.26 | 4297 | 74.3 | 600,753 | 576,514 | 24,238 | 23.8 | 1397 | 0.43 | 0.99 |
KK-216-07 | 339 | 19.6 | 63.3 | 4.30 | 0.00 | 0.02 | 0.00 | 3.33 | 4065 | 68.3 | 603,959 | 579,378 | 24,581 | 23.6 | 1320 | 0.43 | 1.00 |
KK-216-08 | 354 | 20.3 | 59.5 | 4.41 | 0.00 | 0.06 | 0.00 | 2.96 | 3365 | 60.8 | 586,543 | 561,998 | 24,545 | 22.9 | 1342 | 0.44 | 1.00 |
KK-216-09 | 300 | 19.6 | 53.6 | 3.50 | 0.25 | 0.07 | 0.00 | 1.69 | 4096 | 57.6 | 575,418 | 552,804 | 22,614 | 24.5 | 1492 | 0.44 | 1.00 |
KK-216-10 | 363 | 21.8 | 65.1 | 4.50 | 0.17 | 0.02 | 0.00 | 2.74 | 3442 | 63.8 | 600,341 | 575,436 | 24,904 | 23.1 | 1282 | 0.43 | 0.99 |
KK-216-11 | 390 | 23.2 | 65.5 | 4.36 | 0.22 | 0.02 | 0.00 | 3.39 | 4479 | 88.0 | 594,312 | 568,480 | 25,832 | 22.0 | 1229 | 0.44 | 1.00 |
KK-216-12 | 329 | 19.7 | 57.0 | 3.33 | 0.14 | 0.04 | 0.00 | 2.17 | 6011 | 75.9 | 602,547 | 577,837 | 24,709 | 23.4 | 1441 | 0.44 | 1.00 |
KK-216-13 | 291 | 16.6 | 48.3 | 3.07 | 0.26 | 0.02 | 0.67 | 1.75 | 3993 | 49.1 | 567,056 | 545,622 | 21,433 | 25.5 | 1683 | 0.44 | 0.98 |
KK-216-14 | 378 | 22.2 | 64.4 | 4.90 | 0.09 | 0.05 | 0.55 | 1.55 | 3894 | 55.2 | 585,337 | 560,678 | 24,659 | 22.7 | 1261 | 0.44 | 0.99 |
KK-216-15 | 374 | 21.9 | 68.8 | 4.63 | 0.11 | 0.00 | 0.00 | 1.98 | 4097 | 56.4 | 584,472 | 559,661 | 24,811 | 22.6 | 1166 | 0.44 | 0.99 |
KK-216-16 | 331 | 20.7 | 59.5 | 3.46 | 0.04 | 0.04 | 0.07 | 1.99 | 3714 | 59.7 | 582,160 | 558,166 | 23,995 | 23.3 | 1341 | 0.45 | 1.00 |
KK-216-17 | 302 | 17.5 | 52.8 | 3.16 | 0.14 | 0.00 | 0.00 | 2.45 | 5634 | 70.1 | 584,538 | 559,981 | 24,557 | 22.8 | 1551 | 0.48 | 0.98 |
KK-216-18 | 351 | 20.6 | 73.7 | 4.75 | 0.27 | 0.02 | 0.00 | 1.93 | 3877 | 61.6 | 586,787 | 562,241 | 24,546 | 22.9 | 1101 | 0.45 | 0.99 |
KK-216-20 | 379 | 23.1 | 68.7 | 4.56 | 0.32 | 0.04 | 0.00 | 3.92 | 3222 | 88.5 | 580,129 | 555,085 | 25,044 | 22.2 | 1196 | 0.42 | 0.98 |
KK-216-21 | 342 | 20.7 | 56.5 | 3.53 | 0.06 | 0.08 | 0.00 | 3.10 | 6165 | 84.6 | 581,359 | 556,066 | 25,293 | 22.0 | 1437 | 0.47 | 0.98 |
KK-216-22 | 361 | 21.6 | 60.5 | 4.06 | 0.19 | 0.07 | 0.00 | 3.18 | 3599 | 96.9 | 563,679 | 539,403 | 24,276 | 22.2 | 1287 | 0.46 | 0.99 |
KK-216-23 | 385 | 23.6 | 72.5 | 5.11 | 0.29 | 0.04 | 0.00 | 4.38 | 3616 | 114 | 554,432 | 530,342 | 24,090 | 22.0 | 1067 | 0.44 | 0.98 |
KK-216-24 | 503 | 32.7 | 103 | 7.07 | 0.26 | 0.10 | 0.49 | 6.10 | 2993 | 108 | 564,043 | 539,530 | 24,513 | 22.0 | 801 | 0.46 | 0.98 |
KK-216-25 | 347 | 22.0 | 57.9 | 4.28 | 0.18 | 0.05 | 0.30 | 2.68 | 3115 | 79.0 | 566,699 | 543,031 | 23,668 | 22.9 | 1369 | 0.45 | 0.99 |
(c) | |||||||||||||||||
No. | La2O3 | Ce2O3 | Pr2O3 | Nd2O3 | Sm2O3 | Gd2O3 | Y2O3 | P2O5 | SiO2 | Formula | |||||||
Mol Prop | |||||||||||||||||
KK-216-01 | 0.044 | 0.093 | 0.012 | 0.051 | 0.011 | 0.006 | 0.007 | 0.172 | 0.022 | (La0.2Ce0.5Pr0.1Nd0.2)1(Si0.1P0.9)1O4 | |||||||
KK-216-02 | 0.041 | 0.088 | 0.011 | 0.048 | 0.010 | 0.006 | 0.006 | 0.169 | 0.105 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.2P0.8)1O4 | |||||||
KK-216-04 | 0.043 | 0.092 | 0.012 | 0.051 | 0.011 | 0.006 | 0.007 | 0.178 | 0.014 | (La0.2Ce0.5Pr0.1Nd0.2)1P1O4 | |||||||
KK-216-05 | 0.042 | 0.092 | 0.012 | 0.051 | 0.011 | 0.006 | 0.008 | 0.182 | 0.008 | (La0.2Ce0.5Pr0.1Nd0.2)1P1O4 | |||||||
KK-216-06 | 0.042 | 0.090 | 0.011 | 0.049 | 0.010 | 0.006 | 0.007 | 0.186 | 0.033 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-07 | 0.042 | 0.091 | 0.012 | 0.049 | 0.010 | 0.006 | 0.006 | 0.184 | 0.033 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-08 | 0.040 | 0.088 | 0.011 | 0.048 | 0.010 | 0.006 | 0.007 | 0.179 | 0.080 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.2P0.8)1O4 | |||||||
KK-216-09 | 0.040 | 0.087 | 0.011 | 0.047 | 0.010 | 0.006 | 0.006 | 0.185 | 0.087 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-10 | 0.042 | 0.090 | 0.011 | 0.049 | 0.010 | 0.006 | 0.007 | 0.191 | 0.025 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-11 | 0.040 | 0.088 | 0.011 | 0.049 | 0.010 | 0.006 | 0.007 | 0.190 | 0.036 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-12 | 0.041 | 0.090 | 0.012 | 0.050 | 0.010 | 0.006 | 0.006 | 0.197 | 0.000 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1P1O4 | |||||||
KK-216-13 | 0.041 | 0.086 | 0.011 | 0.045 | 0.009 | 0.005 | 0.005 | 0.188 | 0.098 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-14 | 0.041 | 0.088 | 0.011 | 0.047 | 0.010 | 0.006 | 0.007 | 0.203 | 0.024 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1P1O4 | |||||||
KK-216-15 | 0.040 | 0.087 | 0.011 | 0.048 | 0.010 | 0.006 | 0.007 | 0.199 | 0.034 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-16 | 0.040 | 0.087 | 0.011 | 0.048 | 0.010 | 0.006 | 0.006 | 0.200 | 0.039 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-17 | 0.041 | 0.087 | 0.011 | 0.047 | 0.010 | 0.006 | 0.006 | 0.201 | 0.029 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1P1O4 | |||||||
KK-216-18 | 0.041 | 0.088 | 0.011 | 0.048 | 0.010 | 0.006 | 0.007 | 0.205 | 0.018 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1P1O4 | |||||||
KK-216-20 | 0.041 | 0.087 | 0.011 | 0.046 | 0.010 | 0.006 | 0.007 | 0.200 | 0.040 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-21 | 0.041 | 0.086 | 0.011 | 0.047 | 0.010 | 0.006 | 0.006 | 0.208 | 0.017 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1P1O4 | |||||||
KK-216-22 | 0.039 | 0.084 | 0.011 | 0.046 | 0.010 | 0.006 | 0.007 | 0.206 | 0.059 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-23 | 0.039 | 0.083 | 0.011 | 0.045 | 0.009 | 0.006 | 0.007 | 0.205 | 0.078 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-24 | 0.041 | 0.085 | 0.011 | 0.043 | 0.009 | 0.006 | 0.009 | 0.207 | 0.053 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1(Si0.1P0.9)1O4 | |||||||
KK-216-25 | 0.040 | 0.085 | 0.011 | 0.046 | 0.010 | 0.006 | 0.007 | 0.209 | 0.047 | (La0.2Ce0.4Pr0.1Nd0.2Sm0.1)1P1O4 |
No. | Pb | Th | U | Th/U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 208Pb/232Th | rho | 207Pb/235U | 206Pb/238U | 208Pb/232Th | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Age(Ma) | 1σ | Age(Ma) | 1σ | Age(Ma) | 1σ | |||
KK-216-01 | 2.37 | 3779 | 64.7 | 58.4 | 0.094624 | 0.009705 | 1.850485 | 0.107847 | 0.099391 | 0.003790 | 0.029033 | 0.000267 | 0.17 | 1064 | 38 | 611 | 22 | 578 | 5 |
KK-216-02 | 2.41 | 4410 | 58.8 | 75.0 | 0.117592 | 0.017875 | 2.290949 | 0.141095 | 0.114498 | 0.004196 | 0.029812 | 0.000308 | 0.27 | 1209 | 44 | 699 | 24 | 594 | 6 |
KK-216-03 | 2.05 | 4150 | 60.3 | 68.9 | 0.108650 | 0.009203 | 1.690283 | 0.082765 | 0.093789 | 0.002421 | 0.029506 | 0.000234 | 0.03 | 1005 | 31 | 578 | 14 | 588 | 5 |
KK-216-04 | 1.68 | 3890 | 61.7 | 63.1 | 0.070753 | 0.008455 | 1.583287 | 0.072104 | 0.102088 | 0.003209 | 0.029294 | 0.000285 | 0.07 | 964 | 28 | 627 | 19 | 584 | 6 |
KK-216-05 | 2.43 | 3733 | 64.7 | 57.7 | 0.095268 | 0.011200 | 1.919528 | 0.113890 | 0.106843 | 0.003638 | 0.029191 | 0.000284 | 0.01 | 1088 | 40 | 654 | 21 | 582 | 6 |
KK-216-06 | 3.26 | 4297 | 74.3 | 57.8 | 0.103020 | 0.012066 | 1.880401 | 0.166081 | 0.116970 | 0.004757 | 0.028894 | 0.000380 | 0.11 | 1074 | 59 | 713 | 27 | 576 | 7 |
KK-216-07 | 3.33 | 4065 | 68.3 | 59.5 | 0.124228 | 0.011242 | 1.967605 | 0.124367 | 0.102024 | 0.003716 | 0.029217 | 0.000329 | 0.25 | 1104 | 43 | 626 | 22 | 582 | 6 |
KK-216-08 | 2.96 | 3365 | 60.8 | 55.3 | 0.123658 | 0.016649 | 2.186563 | 0.142856 | 0.110803 | 0.003936 | 0.029805 | 0.000382 | 0.10 | 1177 | 46 | 677 | 23 | 594 | 7 |
KK-216-09 | 1.69 | 4096 | 57.6 | 71.2 | 0.063833 | 0.012055 | 2.067922 | 0.126554 | 0.108607 | 0.005068 | 0.029752 | 0.000373 | 0.04 | 1138 | 42 | 665 | 29 | 593 | 7 |
KK-216-10 | 2.74 | 3442 | 63.8 | 53.9 | 0.113250 | 0.012013 | 2.161769 | 0.124632 | 0.102220 | 0.003233 | 0.029810 | 0.000293 | 0.01 | 1169 | 40 | 627 | 19 | 594 | 6 |
KK-216-11 | 3.39 | 4479 | 88.0 | 50.9 | 0.092068 | 0.008501 | 1.470064 | 0.099886 | 0.104642 | 0.002604 | 0.029717 | 0.000274 | 0.00 | 918 | 41 | 642 | 15 | 592 | 5 |
KK-216-12 | 2.17 | 6011 | 75.9 | 79.2 | 0.074395 | 0.008453 | 1.489247 | 0.097024 | 0.096618 | 0.003287 | 0.029539 | 0.000248 | 0.23 | 926 | 40 | 595 | 19 | 588 | 5 |
KK-216-13 | 1.75 | 3993 | 49.1 | 81.3 | 0.102163 | 0.015649 | 2.417711 | 0.137628 | 0.106139 | 0.004272 | 0.029629 | 0.000346 | 0.11 | 1248 | 41 | 650 | 25 | 590 | 7 |
KK-216-14 | 1.55 | 3894 | 55.2 | 70.6 | 0.072062 | 0.011794 | 1.766040 | 0.135041 | 0.102082 | 0.003580 | 0.029625 | 0.000328 | 0.01 | 1033 | 50 | 627 | 21 | 590 | 6 |
KK-216-15 | 1.98 | 4097 | 56.4 | 72.7 | 0.090044 | 0.011078 | 1.995849 | 0.111047 | 0.104578 | 0.003708 | 0.029727 | 0.000259 | 0.09 | 1114 | 38 | 641 | 22 | 592 | 5 |
KK-216-16 | 1.99 | 3714 | 59.7 | 62.2 | 0.094330 | 0.013149 | 1.882476 | 0.099845 | 0.104608 | 0.003005 | 0.029847 | 0.000241 | 0.22 | 1075 | 35 | 641 | 18 | 594 | 5 |
KK-216-17 | 2.45 | 5634 | 70.1 | 80.4 | 0.098379 | 0.010563 | 1.700738 | 0.093328 | 0.097045 | 0.002949 | 0.029830 | 0.000219 | 0.11 | 1009 | 35 | 597 | 17 | 594 | 4 |
KK-216-18 | 1.93 | 3877 | 61.6 | 62.9 | 0.085329 | 0.011204 | 1.837346 | 0.096009 | 0.102662 | 0.003437 | 0.029572 | 0.000232 | 0.12 | 1059 | 34 | 630 | 20 | 589 | 5 |
KK-216-20 | 3.92 | 3222 | 88.5 | 36.4 | 0.111135 | 0.009682 | 1.884170 | 0.117622 | 0.105194 | 0.002451 | 0.029661 | 0.000323 | 0.00 | 1076 | 41 | 645 | 14 | 591 | 6 |
KK-216-21 | 3.10 | 6165 | 84.6 | 72.9 | 0.100861 | 0.011417 | 1.581792 | 0.123554 | 0.097540 | 0.002907 | 0.029881 | 0.000266 | 0.01 | 963 | 49 | 600 | 17 | 595 | 5 |
KK-216-22 | 3.18 | 3599 | 96.9 | 37.1 | 0.084971 | 0.008983 | 1.458720 | 0.082849 | 0.106212 | 0.003480 | 0.029640 | 0.000312 | 0.12 | 913 | 34 | 651 | 20 | 590 | 6 |
KK-216-23 | 4.38 | 3616 | 114 | 31.6 | 0.090582 | 0.008071 | 1.523742 | 0.083445 | 0.107253 | 0.002406 | 0.029692 | 0.000313 | 0.21 | 940 | 34 | 657 | 14 | 591 | 6 |
KK-216-24 | 6.10 | 2993 | 108 | 27.7 | 0.131296 | 0.010413 | 1.992732 | 0.114806 | 0.110217 | 0.003290 | 0.029782 | 0.000318 | 0.13 | 1113 | 39 | 674 | 19 | 593 | 6 |
KK-216-25 | 2.68 | 3115 | 79.0 | 39.4 | 0.087548 | 0.010941 | 1.526527 | 0.133448 | 0.100838 | 0.003325 | 0.029772 | 0.000385 | 0.27 | 941 | 54 | 619 | 19 | 593 | 8 |
No. | La2O3 | Ce2O3 | Pr2O3 | Nd2O3 | Sm2O3 | Gd2O3 | Y2O3 | CaO | ThO2 | P2O5 | Total | XYmz | Te (°C) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KK-216-01 | 14.26 | 30.54 | 3.88 | 17.04 | 3.71 | 2.25 | 1.61 | 0.22 | 0.43 | 24.45 | 98.39 | 0.03 | 316.34 |
KK-216-02 | 13.20 | 28.72 | 3.67 | 16.07 | 3.50 | 2.10 | 1.38 | 0.27 | 0.50 | 23.97 | 93.40 | 0.03 | 274.77 |
KK-216-04 | 13.91 | 30.25 | 3.90 | 17.16 | 3.75 | 2.33 | 1.60 | 0.28 | 0.44 | 25.32 | 98.93 | 0.03 | 315.59 |
KK-216-05 | 13.68 | 30.18 | 3.90 | 17.13 | 3.77 | 2.35 | 1.70 | 0.47 | 0.42 | 25.89 | 99.50 | 0.03 | 339.87 |
KK-216-06 | 13.68 | 29.53 | 3.74 | 16.51 | 3.55 | 2.13 | 1.47 | 0.45 | 0.49 | 26.43 | 97.97 | 0.03 | 289.73 |
KK-216-07 | 13.65 | 29.75 | 3.80 | 16.56 | 3.57 | 2.16 | 1.45 | 0.64 | 0.46 | 26.09 | 98.13 | 0.03 | 278.64 |
KK-216-08 | 13.05 | 28.78 | 3.69 | 16.25 | 3.53 | 2.16 | 1.48 | 0.48 | 0.38 | 25.35 | 95.14 | 0.03 | 302.19 |
KK-216-09 | 13.06 | 28.52 | 3.58 | 15.69 | 3.38 | 2.00 | 1.34 | 0.47 | 0.47 | 26.21 | 94.72 | 0.03 | 267.45 |
KK-216-10 | 13.65 | 29.43 | 3.79 | 16.43 | 3.59 | 2.18 | 1.51 | 0.30 | 0.39 | 27.08 | 98.32 | 0.03 | 302.45 |
KK-216-11 | 13.16 | 29.03 | 3.72 | 16.54 | 3.59 | 2.26 | 1.57 | 0.11 | 0.51 | 26.94 | 97.43 | 0.03 | 326.02 |
KK-216-12 | 13.44 | 29.56 | 3.81 | 16.68 | 3.64 | 2.18 | 1.42 | 0.34 | 0.68 | 28.04 | 99.80 | 0.03 | 273.29 |
KK-216-13 | 13.28 | 28.19 | 3.57 | 15.19 | 3.20 | 1.90 | 1.21 | 0.94 | 0.45 | 26.65 | 94.58 | 0.03 | 225.46 |
KK-216-14 | 13.29 | 28.83 | 3.72 | 15.82 | 3.49 | 2.15 | 1.56 | 0.36 | 0.44 | 28.77 | 98.41 | 0.03 | 326.03 |
KK-216-15 | 13.11 | 28.54 | 3.68 | 16.14 | 3.55 | 2.17 | 1.53 | 0.37 | 0.47 | 28.26 | 97.81 | 0.03 | 320.38 |
KK-216-16 | 13.05 | 28.59 | 3.65 | 16.04 | 3.51 | 2.11 | 1.40 | 0.37 | 0.42 | 28.37 | 97.51 | 0.03 | 283.54 |
KK-216-17 | 13.40 | 28.52 | 3.63 | 15.86 | 3.60 | 2.18 | 1.31 | 0.31 | 0.64 | 28.50 | 97.95 | 0.03 | 252.28 |
KK-216-18 | 13.27 | 28.72 | 3.68 | 16.11 | 3.52 | 2.15 | 1.47 | 0.65 | 0.44 | 29.06 | 99.08 | 0.03 | 296.53 |
KK-216-20 | 13.42 | 28.41 | 3.61 | 15.64 | 3.43 | 2.17 | 1.63 | 0.66 | 0.37 | 28.47 | 97.80 | 0.03 | 345.43 |
KK-216-21 | 13.29 | 28.24 | 3.63 | 15.85 | 3.56 | 2.22 | 1.43 | 0.35 | 0.70 | 29.51 | 98.77 | 0.03 | 293.71 |
KK-216-22 | 12.72 | 27.67 | 3.56 | 15.35 | 3.35 | 2.11 | 1.51 | 0.61 | 0.41 | 29.26 | 96.54 | 0.03 | 325.73 |
KK-216-23 | 12.65 | 27.12 | 3.51 | 15.04 | 3.28 | 2.07 | 1.65 | 0.52 | 0.41 | 29.09 | 95.36 | 0.04 | 372.52 |
KK-216-24 | 13.43 | 28.00 | 3.47 | 14.63 | 3.16 | 2.03 | 2.00 | 0.90 | 0.34 | 29.42 | 97.39 | 0.04 | 442.34 |
KK-216-25 | 12.96 | 27.80 | 3.53 | 15.44 | 3.36 | 2.07 | 1.47 | 0.00 | 0.35 | 29.72 | 96.70 | 0.03 | 318.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, S.; Jiang, X.; Lei, X.; Wan, B.; Quan, Z.; Li, Y. Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea. Minerals 2025, 15, 851. https://doi.org/10.3390/min15080851
Ouyang S, Jiang X, Lei X, Wan B, Quan Z, Li Y. Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea. Minerals. 2025; 15(8):851. https://doi.org/10.3390/min15080851
Chicago/Turabian StyleOuyang, Song, Xiaojia Jiang, Xianquan Lei, Baoquan Wan, Zhenlong Quan, and Yizhao Li. 2025. "Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea" Minerals 15, no. 8: 851. https://doi.org/10.3390/min15080851
APA StyleOuyang, S., Jiang, X., Lei, X., Wan, B., Quan, Z., & Li, Y. (2025). Hydrothermal Monazite Geochemistry and Petrochronology Signatures: Metallogenic Age and Tectonic Evolution Model of the Koka Gold Deposit, Eritrea. Minerals, 15(8), 851. https://doi.org/10.3390/min15080851