Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Physical Characterization—Granulometric Analysis
2.4. Mineralogical Characterizaction
2.4.1. Optical Microscopy
2.4.2. Scanning Electron Microscopy
2.4.3. Energy Dispersive X-Ray Spectroscopy (SEM-EDS)
2.5. Chemical Characterizaction
2.6. Toxicological Characterizaction
3. Results and Discussion
3.1. Surface Features
3.2. Particle Size Distribution of Samples
3.3. Mineralogical Characteristics
3.3.1. Optical Microscope Analysis
3.3.2. Scanning Electron Microscopy (SEM)
3.3.3. Energy Dispersive X-Ray Spectroscopy (EDS) Analysis
3.4. Chemical and Toxicological Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soncco, Y.E.A. Optimización y evaluacion del circuito molienda—clasificacion de la planta de beneficio de Century Mining Peru S.A.C. 2018. Repositorio Institucional Universidad Nacional de San Agustín de Arequipa. Available online: https://repositorioslatinoamericanos.uchile.cl/handle/2250/3265859?show=full (accessed on 14 March 2025).
- Eppers, O. Human Health and Environmental Risk Assessment of Impacts Caused by Contaminated Land in Mollehuaca, Peru; Autoridad Regional Ambiental—ARMA: Arequipa, Peru, 2014; (In Spanish). [Google Scholar] [CrossRef]
- Li, W.; Deng, Y.; Wang, H.; Hu, Y.; Cheng, H. Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain. Chemosphere 2024, 350, 140995. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Kumari, A.; Sahu, S.K.; Munshi, B. Extraction of metal values from iron-rich mine tailings via chloridized roasting and water leaching. Waste Manag. Bull. 2024, 2, 113–121. [Google Scholar] [CrossRef]
- Calderón, J.F.J.; Morillo, D.S.B.; Romero, J.A.N. Desarrollo de adoquines a partir de los relaves de mina. Perfiles 2022, 1, 69–75. [Google Scholar] [CrossRef]
- Yıldız, T.D.; Güner, M.O.; Kural, O. Effects of EU-Compliant mining waste regulation on Turkish mining sector: A review of characterization, classification, storage, management, recovery of mineral wastes. Resour. Policy 2024, 90, 104836. [Google Scholar] [CrossRef]
- Julca, D. La Economía Circular en la Minería Peruana; CEPAL: Santiago, Chile, 2022; Available online: https://www.cepal.org/es/publicaciones/47895-la-economia-circular-la-mineria-peruana (accessed on 18 March 2025).
- Mensah, A.K.; Addai, P. Cadmium, Cu, Hg, Sb, Se and Ti contamination in abandoned and active mining sites in Ghana shows concerns for soil and human health risks. Environ. Adv. 2024, 15, 100500. [Google Scholar] [CrossRef]
- Chen, T.; Wen, X.C.; Zhang, L.J.; Tu, S.C.; Zhang, J.H.; Sun, R.N.; Yan, B. The geochemical and mineralogical controls on the release characteristics of potentially toxic elements from lead/zinc (Pb/Zn) mine tailings. Environ. Pollut. 2022, 315, 120328. [Google Scholar] [CrossRef]
- Gitari, M.W.; Akinyemi, S.A.; Thobakgale, R.; Ngoejana, P.C.; Ramugondo, L.; Matidza, M.; Mhlongo, S.E.; Dacosta, F.A.; Nemapate, N. Physicochemical and mineralogical characterization of Musina mine copper and New Union gold mine tailings: Implications for fabrication of beneficial geopolymeric construction materials. J. Afr. Earth Sci. 2018, 137, 218–228. [Google Scholar] [CrossRef]
- Cahuana, L.; Aduvire, O. Bioacumulación de metales pesados en tejidos de vegetación acuática y terrestre evaluados en áreas donde existen pasivos ambientales mineros en el Perú. Rev. De Medio Ambiente Y Mineria 2019, 4, 19–36. Available online: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2519-53522019000200002&lng=es&nrm=iso&tlng=es (accessed on 23 April 2025).
- Ladera, H.F.L.; Sánchez, P.L.C. Hongos Filamentos de Relave Minero Contaminado con Plomo y Zinc Filamentary Fungi of Mining Relay Contaminated with Lead and Zinc. Rev. Del Inst. De Investig. FIgMMg-unMsM 2020, 23, 37–42. [Google Scholar] [CrossRef]
- de Souza, J.P.R.; Garnier, J.; Quintarelli, J.M.; de Sousa Tonhá, M.; Roig, H.L.; Seyler, P.; de Souza, J.R. Adapted Sequential Extraction Protocol to Study Mercury Speciation in Gold Mining Tailings: Implications for Environmental Contamination in the Amazon. Toxics 2024, 12, 326. [Google Scholar] [CrossRef]
- Dinis, M.D.L.; Fiúza, A.; Futuro, A.; Leite, A.; Martins, D.; Figueiredo, J.; Góis, J.; Vila, M.C. Characterization of a mine legacy site: An approach for environmental management and metals recovery. Environ. Sci. Pollut. Res. 2020, 27, 10103–10114. [Google Scholar] [CrossRef] [PubMed]
- Petrean, I.A.; Micle, V.; Sur, I.M.; Șenilă, M. Characterization of Sterile Mining Dumps by the ICP-OES Analytical Method: A Case Study from Baia Mare Mining Area (Maramures, Romania). Sustainability 2023, 15, 1158. [Google Scholar] [CrossRef]
- Li, D.; Ramos, A.O.; Bah, A.; Li, F. Valorization of lead-zinc mine tailing waste through geopolymerization: Synthesis, mechanical, and microstructural properties. J. Environ. Manage 2024, 349, 119501. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xiong, X.; Li, X.; Wang, M.; Xu, D.; Pan, A.; Zhou, W. Characterization and utilization potential of typical molybdenum tailings in Shaanxi Province, China. Environ. Geochem. Health 2024, 46, 265. [Google Scholar] [CrossRef] [PubMed]
- Bessa, S.; Duarte, M.; Lage, G.; Mendonça, I.; Galery, R.; Lago, R.; Paula Texeira, A.; Lameiras, F.; Teresa Aguilar, M. Characterization and Analysis of Iron Ore Tailings Sediments and Their Possible Applications in Earthen Construction. Buildings 2024, 14, 362. [Google Scholar] [CrossRef]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil). Minerals 2020, 11, 39. [Google Scholar] [CrossRef]
- García, S.; Camus, L.; Gonzalez-Diaz, E.; Collao, R.; Townley, B.; Parviainen, A.; Caraballo, M.A. The importance of geochemical and mineralogical characterization of fresh Cu-Porphyry mine tailings in mineral processing plants to optimize their revalorization potential. J. Geochem. Explor. 2024, 259, 107439. [Google Scholar] [CrossRef]
- Alarcón, F.A.; Choque, E.L.; Cossio, C.A.C. Actividad Minera Artesanal en la Región Arequipa—[Boletín E 17]. Repositorio Institucional INGEMMET. 2022. Available online: https://repositorio.ingemmet.gob.pe/handle/20.500.12544/3600 (accessed on 23 April 2025).
- Flores, E. Ampliación de la Producción en la Minera Paraíso S.A.C. 2023, Repositorio Institucional Universidad Nacional de San Agustín de Arequipa.
- Guillen, W.C.; Portocarrero, H.D.V. Profundización de la Mina San Juan, Mediante el Inclinado 8707, Para Incremento de Reservas de la Empresa Minera Century Mining Perú SAC-2018. Repositorio Institucional—UNAMBA. October 2020. Available online: http://repositorio.unamba.edu.pe/handle/UNAMBA/884 (accessed on 27 March 2025).
- Aquino, R.Q.; Zúñiga, F.F.G.; Malone, A. Soil and Urine Mercury Levels in Secocha: A Case Study of Artisanal and Small-Scale Gold Mining in Peru. Mining 2024, 4, 389–400. [Google Scholar] [CrossRef]
- de Energia y Minas, M. Resolución Ministerial N. 224-2018-MEM/DM—Actualizan el Inventario Inicial de Pasivos Ambientales Mineros. Plataforma del Estado Peruano. Available online: https://www.gob.pe/institucion/minem/normas-legales/4654899-224-2018-mem-dm (accessed on 28 March 2025).
- del Ambiente, M. Decreto Supremo N. 009-2023-MINAM—Aprueban el Reglamento del Decreto de Urgencia No 022-2020, Decreto de Urgencia Para el Fortalecimiento de la Identificación y Gestión de Pasivos Ambientales. Plataforma del Estado Peruano. Available online: https://www.gob.pe/institucion/minam/normas-legales/4515862-009-2023-minam (accessed on 28 March 2025).
- del Ambiente, M. Resolución Ministerial N° 085-2014-MINAM—Aprobar la Guía para el Muestreo de Suelos y la Guía para la Elaboración de Planes de Descontaminación de Suelos. Plataforma del Estado Peruano. Available online: https://www.minam.gob.pe/disposiciones/resolucion-ministerial-n-085-2014-minam/ (accessed on 29 March 2025).
- El Aallaoui, A.; El Ghorfi, M.; Elghali, A.; Taha, Y.; Zine, H.; Benzaazoua, M.; Hakkou, R. Investigating the reprocessing potential of abandoned zinc-lead tailings ponds: A comprehensive study using physicochemical, mineralogical, and 3D geometallurgical assessments. Miner. Eng. 2024, 209, 108634. [Google Scholar] [CrossRef]
- Markets, A.S.T. E1508 Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy. Available online: https://store.astm.org/e1508-12ar19.html (accessed on 23 March 2025).
- Palma, G.; Bolaños, H.; Huamani, R.; Clements, C.; Hedayat, A. Optimization of Geopolymers for Sustainable Management of Mine Tailings: Impact on Mechanical, Microstructural, and Toxicological Properties. Minerals 2024, 14, 997. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Método 3050B de la EPA: Digestión Ácida de Sedimentos, Lodos y Suelos. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf (accessed on 23 March 2025).
- U.S. Environmental Protection Agency. SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-1311-toxicity-characteristic-leaching-procedure (accessed on 23 March 2025).
- U.S. Environmental Protection Agency. Método 6020B (SW-846) de la EPA: Plasma Acoplado Inductivamente—Espectrometría de Masas. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/6020b.pdf (accessed on 22 March 2025).
- Akhavan, A.; Golchin, A. Estimation of arsenic leaching from Zn–Pb mine tailings under environmental conditions. J. Clean Prod. 2021, 295, 126477. [Google Scholar] [CrossRef]
- Ba, N.B.; Souissi, R.; Manai, F.; Taviche, I.K.; Bejaoui, B.; Bagga, M.A.; Souissi, F. Mineralurgical and Environmental Characterization of the Mine Tailings of the IOCG Mine of Guelb Moghrein, Akjoujt, Mauritania. Appl. Sci. 2024, 14, 1591. [Google Scholar] [CrossRef]
- Ilieva, D.; Angelova, L.; Radoykova, T.; Surleva, A.; Chernev, G.; Vizureanu, P.; Burduhos-Nergis, D.D.; Sandu, A.V. Characterization of Bulgarian Copper Mine Tailing as a Precursor for Obtaining Geopolymers. Materials 2024, 17, 542. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. D2487—Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Available online: https://store.astm.org/d2487-17.html (accessed on 16 March 2025).
- Montoya, L.F.P.; Lara, H.M.Q. Comportamiento Físico Mecánico de la Subrasante del Camino Vecinal de Cotaparaco al Adicionar Relave Minero, Recuay—2023. Repositorio Institucional—Universidad Nacional del Santa. November 2024. Available online: http://repositorio.uns.edu.pe/handle/20.500.14278/4853 (accessed on 10 June 2025).
- Ramos, J.A.Q. Diseño de Obras de Cierre en Depósitos de Relaves Propiedad de Minera Poderosa, Distrito y Provincia de Pataz, La Libertad. Repositorio Institucional Universidad Nacional Agraria La Molina. 2020. Available online: https://hdl.handle.net/20.500.12996/4652 (accessed on 10 June 2025).
- Rodríguez, W.Á.G. Ensayo granulométrico de los suelos mediante el método del tamizado. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 6908–6927. [Google Scholar] [CrossRef]
- Muravyov, M.; Radchenko, D.; Tsupkina, M.; Babenko, V.; Panyushkina, A. Old Sulfidic Ore Tailing Dump: Ground Features, Mineralogy, Biodiversity—A Case Study from Sibay, Russia. Minerals 2023, 14, 23. [Google Scholar] [CrossRef]
- Benaiges, R.; Palau, J.; Urmeneta, J.; Cama, J.; Soler, J.; Dold, B. Vista de Estudio comparativo de la movilización de hierro y elementos traza durante la biorreducción de óxido de Fe en relaves mineros: Un estudio de caso de Ensenada Chapaco (Chile) y Bahía Portman (España). Geol. Acta 2025, 23, 1–12. [Google Scholar] [CrossRef]
- Xu, D.M.; Fu, R.B. A comparative assessment of metal bioavailability using various universal extractants for smelter contaminated soils: Novel insights from mineralogy analysis. J. Clean Prod. 2022, 367, 132936. [Google Scholar] [CrossRef]
- Akeed, M.H. Mine Tailings-Based Geopolymers: Physical and Mechanical Properties; SciELO: São Paulo, Brazil, 2022. [Google Scholar] [CrossRef]
- Shao, D.; Du, X.; Deng, Y.; Yan, Z.; Duan, W.; Yu, H.; Qi, T. The Process Mineralogical Characterization of Bayan Obo Rare-Earth Tailings and Density Functional Theory Study of the Occurrence State of Sc. Minerals 2023, 13, 1287. [Google Scholar] [CrossRef]
- Sedda, L.; De Giudici, G.; Fancello, D.; Podda, F.; Naitza, S. Unlocking Strategic and Critical Raw Materials: Assessment of Zinc and REEs Enrichment in Tailings and Zn-Carbonate in a Historical Mining Area (Montevecchio, SW Sardinia). Minerals 2023, 14, 3. [Google Scholar] [CrossRef]
- del Ambiente, M. Decreto Supremo N° 011-2017-MINAM—Aprueban Estándares de Calidad Ambiental (ECA) para Suelo. Plataforma del Estado Peruano. Available online: https://www.minam.gob.pe/disposiciones/decreto-supremo-n-011-2017-minam/ (accessed on 1 April 2025).
- Environment Canada. National Guidelines and Standards Office. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. September 2007. Available online: https://ccme.ca/en/resources/soil-and-groundwater (accessed on 16 March 2025).
- del Ambiente, M. Decreto Supremo N° 004-2017-MINAM—Aprueban Estándares de Calidad Ambiental (ECA) para Agua y Establecen Disposiciones Complementarias. Plataforma del Estado Peruano. Available online: https://www.minam.gob.pe/disposiciones/decreto-supremo-n-004-2017-minam/ (accessed on 1 April 2025).
- Wang, P.; Sun, Z.; Hu, Y.; Cheng, H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 2019, 695, 133893. [Google Scholar] [CrossRef]
No | Sample | Name | Province | District | UTM | Área (m2) | ||
---|---|---|---|---|---|---|---|---|
Passive | Zone | East | Noth | |||||
1 | K1 | Kiowa Au | Arequipa | Quequeña | 19 L | 236165 | 8170408 | 2367.00 |
2 | K2 | Kiowa Cu | Arequipa | Quequeña | 19 L | 236084 | 8170516 | 2201.00 |
3 | C1 | Coriminas | Caylloma | Caylloma | 19 L | 202458 | 8320549 | 5240.00 |
4 | T1 | Topacio | Caylloma | San Antonio de Chuca | 19 L | 266383 | 8262312 | 4481.00 |
5 | M1 | Madrigal | Caylloma | Madrigal | 19 L | 195607 | 8274718 | 215,193.00 |
6 | O1 | Otapara | Caraveli | Acarí | 18 L | 545146 | 8307768 | 43,180.00 |
Active | ||||||||
7 | P1 | Paraiso | Caraveli | Chala | 18 L | 577790 | 8249477 | 108,128.00 |
8 | C2 | Century | Condesuyos | Rio Grande | 18 L | 708186 | 8239870 | 45,447.00 |
9 | M2 | Mollehuaca | Huanuhuanu | Mollehuaca | 18 L | 604128 | 8272345 | 43.04 |
10 | S1 | Secocha | Camaná | Nicolas Valcárcel | 18 L | 695192 | 8232649 | 272.00 |
No | Sample | #12 | #16 | #25 | #35 | #48 | #65 | #100 | #170 | #200 | #−200 | Soil Type * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | K1 | 0.00 | 0.49 | 0.49 | 1.47 | 12.25 | 7.35 | 29.41 | 5.39 | 21.08 | 22.06 | SC-Clayey Sand |
2 | K2 | 0.00 | 0.05 | 0.10 | 0.43 | 4.34 | 1.93 | 10.62 | 11.58 | 23.17 | 47.78 | SM-Silty Sand |
3 | C1 | 0.00 | 0.00 | 0.00 | 0.10 | 2.39 | 2.87 | 19.60 | 12.43 | 13.86 | 48.76 | SM-Silty Sand |
4 | T1 | 0.48 | 4.31 | 5.74 | 4.78 | 20.57 | 5.74 | 16.27 | 15.79 | 9.57 | 16.75 | SC-Clayey Sand |
5 | M1 | 0.00 | 0.15 | 0.00 | 0.99 | 8.40 | 7.41 | 21.75 | 18.78 | 14.34 | 28.18 | SC-Clayey Sand |
6 | O1 | 0.10 | 0.45 | 0.10 | 1.00 | 5.52 | 4.01 | 14.55 | 7.02 | 17.56 | 49.67 | SM-Silty Sand |
7 | P1 | 0.14 | 0.38 | 0.43 | 1.20 | 4.07 | 5.27 | 32.69 | 24.98 | 10.64 | 20.18 | SC-Clayey Sand |
8 | C2 | 0.25 | 0.99 | 0.79 | 1.92 | 3.80 | 3.35 | 26.30 | 27.08 | 10.16 | 25.36 | SC-Clayey Sand |
9 | M2 | 0.00 | 0.00 | 0.00 | 0.33 | 0.52 | 2.57 | 20.69 | 21.46 | 17.03 | 37.39 | SC-Clayey Sand |
10 | S1 | 0.95 | 1.43 | 0.00 | 0.29 | 0.48 | 0.10 | 4.77 | 0.48 | 22.40 | 69.11 | ML-Silty Loam |
No | Sample | Ga | Hm | Gt | Mt | Py | Ru | Cp | Au | Gn | Sp | Cv | Gc | Ak | Wt | Apy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | K1 | 90 | 2.82 | 2.58 | 1.9 | 0.93 | 0.78 | T | T | - | - | - | - | - | - | - |
2 | K2 | 91.72 | T | T | 3.82 | 1.88 | 1.58 | T | - | T | - | - | - | - | - | - |
3 | C1 | 94.15 | T | 2.82 | T | 2.03 | - | T | - | T | - | - | - | - | - | - |
4 | T1 | 95.79 | T | 1.32 | - | 1.9 | - | T | - | - | - | T | - | - | - | - |
5 | M1 | 97.08 | T | T | T | 1.92 | - | T | - | - | - | - | - | - | - | - |
6 | O1 | 87.95 | T | T | 7.41 | 3.63 | - | T | - | - | - | - | - | - | - | - |
7 | P1 | 60.07 | - | 4.27 | - | 15.39 | 1.3 | 6.4 | - | 2.29 | T | T | T | - | - | 9.3 |
8 | C2 | 91.86 | T | 1.25 | T | 3.62 | 1.52 | 0.75 | - | - | T | - | - | - | - | - |
9 | M2 | 89.43 | - | 1.25 | - | 5.4 | 0.76 | 0.75 | - | T | - | - | - | - | - | 2.17 |
10 | S1 | 86.93 | T | T | - | 10.6 | - | 1.47 | - | T | T | T | T | T | T | - |
Sample | Identified Minerals | Hg | As | Pb | Cd | Zn | Au | Ag | Cu | U |
---|---|---|---|---|---|---|---|---|---|---|
K1 | Gn, Au, Bar, Cp, Cv, Gt | - | - | 14.22 | - | - | 16.53 | 0.14 | 10.94 | - |
K2 | Php1, Cp, Wolf, Bar, Php2, Gn | - | - | 14.36 | - | - | - | - | 5.14 | - |
C1 | Gt, Py, Gn, Ac, Apy, Cp | - | 6.62 | 14.20 | - | - | - | 14.00 | 5.34 | - |
T1 | Cv, Gn, Bar, Py | - | - | 20.01 | - | - | - | - | 16.08 | - |
M1 | Py, Gt, Bar, Cp | - | - | - | - | - | - | - | 9.46 | - |
O1 | Cp, Urt, Gt, Py, Mt, Hm, Bar | - | - | - | - | - | - | - | 4.83 | 12.77 |
P1 | Apy, Py, Gt, Ttd, Cp, Gn | - | 7.41 | 14.43 | - | 0.59 | - | - | 12.44 | - |
C2 | Gt, Py, Bar, Cp, Sch, Php, AlSi | - | - | - | - | - | - | - | 4.70 | - |
M2 | Gn, Py, Apy, Gt, Cnn | 17.32 | 9.21 | 17.27 | - | - | - | - | - | - |
S1 | Py, AgCu_cos, Ak, Wtc, (Ag,Au), Sulf_AgCu, Gt, Bor, Cp, Cv, Sp, Gn, Ttd | - | - | 11.17 | - | 5.31 | 4.21 | 6.90 | 20.34 | - |
No | Sample | Name | As | Cd | Hg | Pb | Zn |
---|---|---|---|---|---|---|---|
Normative reference values | 50 * | 1.4 * | 6.6 * | 70 * | 250 ** | ||
1 | K1 | Kiowa de Au | 49.9 | 1.47 | <0.1 | 168.22 | 21 |
2 | K2 | Kiowa de Cu | 291.9 | 2.42 | 0.2 | 1585.8 | 161.90 |
3 | C1 | Coriminas | 145.0 | 4.17 | 0.6 | 191.47 | 205.20 |
4 | T1 | Topacio | 609.6 | 29.75 | 8.1 | 828.72 | 1221.00 |
5 | M1 | Madrigal | 195.0 | 6.03 | 0.4 | 2290.49 | 323.30 |
6 | O1 | Otapara | 26.3 | 9.29 | 0.8 | 12.71 | 23.4 |
7 | P1 | Paraiso | >6000 | 32.54 | 35 | 2081.87 | 2309 |
8 | C2 | Century | 28 | 2.25 | <0.1 | 21.27 | 21.1 |
9 | M2 | Mollehuaca | 2052.2 | 7.96 | 193.1 | 875.74 | 41.3 |
10 | S1 | Secocha | 160.1 | 21.95 | >275 | 1028.8 | 375.3 |
No | Sample | Name | As | Cd | Hg | Pb | Zn |
---|---|---|---|---|---|---|---|
Normative reference values | D1: 0.1 D2: 0.2 | D1: 0.01 D2: 0.05 | D1: 0.001 D2: 0.01 | D1: 0.05 D2: 0.05 | D1: 2 D2: 24 | ||
1 | K1 | Kiowa de Au | 0.011 | <0.004 | <0.003 | 0.237 | 0.051 |
2 | K2 | Kiowa de Cu | 0.023 | 0.063 | <0.003 | 0.010 | 9.286 |
3 | C1 | Coriminas | 0.051 | 0.005 | <0.003 | <0.005 | 0.317 |
4 | T1 | Topacio | 0.587 | 0.201 | <0.003 | 0.34 | 2.612 |
5 | M1 | Madrigal | <0.006 | 0.072 | <0.003 | 0.020 | 6.162 |
6 | O1 | Otapara | <0.006 | <0.004 | <0.003 | 0.006 | 0.105 |
7 | P1 | Paraiso | 0.393 | 0.046 | 0.401 | 0.590 | 1.828 |
8 | C2 | Century | <0.006 | <0.004 | <0.003 | 0.008 | 0.093 |
9 | M2 | Mollehuaca | 0.020 | 0.004 | <0.003 | 0.071 | 0.071 |
10 | S1 | Secocha | <0.006 | 0.005 | 0.026 | 0.403 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, D.; Palma, K.; Santander, L.; Bolaños, H.; Palma, G.; Navarro, P. Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru. Minerals 2025, 15, 830. https://doi.org/10.3390/min15080830
Castillo D, Palma K, Santander L, Bolaños H, Palma G, Navarro P. Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru. Minerals. 2025; 15(8):830. https://doi.org/10.3390/min15080830
Chicago/Turabian StyleCastillo, Dery, Karol Palma, Lizbeth Santander, Héctor Bolaños, Gregorio Palma, and Patricio Navarro. 2025. "Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru" Minerals 15, no. 8: 830. https://doi.org/10.3390/min15080830
APA StyleCastillo, D., Palma, K., Santander, L., Bolaños, H., Palma, G., & Navarro, P. (2025). Physical, Chemical, Mineralogical, and Toxicological Characterization of Active and Inactive Tailings in the Arequipa Region, Peru. Minerals, 15(8), 830. https://doi.org/10.3390/min15080830