Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Field Features
5. Petrography
6. Mineral Chemistry
7. Results: Retrieval of Physicochemical Environment
7.1. Mineral Thermobarometry
Sample No. | D1-5i (n = 7) | D2-4i (n = 1) | D2-7 (n = 6) | D4-3 (n = 11) | D2-5 (n = 8) | D2-12i (n = 11) | D6-16B (n = 29) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P–T Values | |||||||||||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | ||
P1 (±3 kbar) | 0.83 | 3.81 | 0.97 | - | 4.95 | 5.18 | 1.51 | 3.78 | 1.25 | 2.87 | 1.87 | 4.16 | 0.47 | 5.57 | |
P2 (±0.5 kbar) | 0.56 | 3.91 | 0.72 | - | 5.19 | 5.45 | 1.33 | 3.88 | 1.04 | 2.86 | 1.74 | 4.29 | 0.16 | 5.88 | |
P3 (±1 kbar) | 0.53 | 3.04 | 0.65 | - | 4 | 4.2 | 1.11 | 3.02 | 0.89 | 2.25 | 1.41 | 3.33 | 0.23 | 4.52 | |
P4 (±0.6 kbar) | 1.48 | 4.31 | 1.61 | - | 5.38 | 5.61 | 2.13 | 4.28 | 1.89 | 3.42 | 2.47 | 4.63 | 1.14 | 5.97 | |
P5 (±1.5 to ±2.3 kbar; expressed at 1 s) | 0.61 | - | 1.82 | 3.17 | 4.77 | 6.05 | 0.96 | 2.69 | 1.97 | 3.84 | 3.6 | - | 1.17 | - | |
Plagioclase–Hornblende Thermometer | |||||||||||||||
T1(°C) | 536 | 651 | - | - | 666 | 712 | 628 | 686 | 524 | 553 | 659 | 672 | - | - | |
T2 (°C) | - | - | - | - | - | - | 674 | 686 | - | - | - | - | - | - | |
Titanium in Hornblende Thermometer | |||||||||||||||
T3 (°C) | 582.3 | 727 | 592 | 669 | 647 | 724 | 583 | 727 | 577 | 635 | 620 | 623 | 581 | 690 | |
T4 (°C) | 516 | 751 | 549 | 695 | 644 | 751 | 516 | 738 | 472 | 808 | 577 | 751 | 516 | 710 |
7.2. Oxygen Fugacity
7.3. Volatiles in the BG
7.3.1. Water Content
7.3.2. Halogen Content
8. Late-Stage Fluid Characteristics in the BG
8.1. Fluid Inclusion Petrography
Types of Inclusions
- Type I: Aqueous Biphase (L + V)
- Type II: Pure Carbonic
- Type III: Mixed-Pure Carbonic
- Type IV: Aqueous Carbonic
- Type V: Aqueous Polyphase
- Type VI: Unusual Inclusions
8.2. Fluid Inclusion Microthermometry
8.3. Laser Raman Microspectrometry
8.4. Fluid Evolution
8.5. Significance of Type V and VI Inclusions
9. Discussion
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dey, S.; Moyen, J.F. Archean Granitoids of India: Windows into Early Earth Tectonics–An Introduction; Geological Society Special Publications: London, UK, 2020; Volume 489, pp. 1–13. [Google Scholar]
- Vigneresse, J.L. Control of granite emplacement by regional deformation. Tectonophysics 1995, 249, 173–186. [Google Scholar] [CrossRef]
- Petford, N.; Cruden, A.R.; McCaffrey, K.J.W.; Vigneresse, J.L. Granite magma formation, transport and emplacement in the Earth’s crust. Nature 2000, 408, 669–673. [Google Scholar] [CrossRef]
- Rout, D.; Panigrahi, M.K.; Mernagh, T.P.; Pati, J.K. Origin of the Paleoproterozoic “Giant Quartz Reef” System in the Bundelkhand Craton, India: Constraints from Fluid Inclusion Microthermometry, Raman Spectroscopy, and Geochemical Modelling. Lithosphere 2022, 2022, 3899542. [Google Scholar] [CrossRef]
- Rahman, A.; Zainuddin, S.M. Bundelkhand granites: An example of collisionrelated Precambrian magmatism and its relevance to the evolution of the Central Indian Shield. J. Geol. 1993, 101, 413–419. [Google Scholar] [CrossRef]
- Mondal, M.E.A.; Goswami, J.N.; Deomurari, M.P.; Sharma, K.K. Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Res. 2002, 117, 85–100. [Google Scholar] [CrossRef]
- Menon, R.; Kumar, P.S.; Reddy, G.K.; Srinivasan, R. Radiogenic heat production of Late Archaean Bundelkhand granite and some Proterozoic gneisses and granitoids of central India. Curr. Sci.-Banglore 2003, 85, 634–638. [Google Scholar]
- Mohan, M.R.; Singh, S.P.; Santosh, M.; Siddiqui, M.A.; Balaram, V. TTG suite from the Bundelkhand Craton, Central India: Geochemistry, petrogenesis and implications for Archean crustal evolution. J. Asian Earth Sci. 2012, 58, 38–50. [Google Scholar] [CrossRef]
- Pati, J.K.; Panigrahi, M.K.; Chakarborty, M. Granite-hosted molybdenite mineralization from Archean Bundelkhand Craton-molybdenite characterization, host rock mineralogy, petrology, and fluid inclusion characteristics of MO-bearing quartz. J. Earth Syst. Sci. 2014, 123, 943–958. [Google Scholar] [CrossRef]
- Kaur, P.; Zeh, A.; Chaudhri, N.; Eliyas, N. Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, northern India using U–Pb zircon–monazite ages, Lu–Hf isotope systematics, and whole-rock geochemistry of granitoids. Precambrian Res. 2016, 281, 384–413. [Google Scholar] [CrossRef]
- Joshi, K.B.; Bhattacharjee, J.; Rai, G.; Halla, J.; Ahmad, T.; Kurhila, M.; Heilimo, E.; Choudhary, A.K. The diversification of granitoids and plate tectonic implications at the archaean-Proterozoic boundary in the bundelkhand Craton, Central India. In Crust–Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons; Geological Society, London, Special Publications: London, UK, 2017; Volume 449, pp. 123–157. [Google Scholar]
- Chauhan, H.; Saikia, A.; Ahmad, T. Episodic crustal growth in the Bundelkhand Craton of central India shield: Constraints from petrogenesis of the tonalite–trondhjemite–granodiorite gneisses and K-rich granites of Bundelkhand tectonic zone. J. Earth Syst. Sci. 2018, 127, 44. [Google Scholar] [CrossRef]
- Sensarma, S.; Matin, A.; Paul, D.; Madhesiya, A.K.; Sarkar, G. Evolution of a crustal-scale silicic to intermediate tectono-magmatic system: The ~2600–2300 Ma Bundelkhand granitoid, India. Precambrian Res. 2021, 352, 105951. [Google Scholar] [CrossRef]
- Verma, S.K.; Verma, S.P.; Oliveira, E.P.; Singh, V.K.; Moreno, J.A. LA-FICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand Craton, India. J. Asian Earth Sci. 2016, 118, 125–137. [Google Scholar] [CrossRef]
- Roday, P.P.; Diwan, P.; Singh, S. A kinematic model of emplacement of quartz reefs and subsequent deformation patterns in the central Indian Bundelkhand batholith. Proc. Indian Acad. Sci.—Earth Planet. Sci. 1995, 104, 465–488. [Google Scholar] [CrossRef]
- Mondal, M.E.A.; Sharma, K.K.; Rahman, A.; Goswami, J.N. Ion microprobe 207Pb/206Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: Evidence for Archaean components. Curr. Sci. 1998, 74, 70–75. [Google Scholar]
- Pati, J.K. Study of granitoid mylonites and reef/vein quartz in parts of Bundelkhand Granitoid Complex (BGC). Rec. Geol. Surv. India 1999, 131, 95–96. [Google Scholar]
- Slabunov, A.I.; Singh, V.K. Giant quartz veins of the Bundelkhand craton, Indian shield: New geological data and U-Th-Pb age. Minerals 2022, 12, 168. [Google Scholar] [CrossRef]
- Pati, J.K.; Patel, S.C.; Pruseth, K.L.; Malviya, V.P.; Arima, M.; Raju, S.; Pati, P.; Prakash, K. Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, central India and their implications. J. Earth Syst. Sci. 2007, 116, 497–510. [Google Scholar] [CrossRef]
- Deb, T.; Bhattacharyya, T. The evolution of the fracture system under progressive sinistral shear in the Bundelkhand Craton, Central India: A review and new insights. Earth Sci. Rev. 2022, 235, 104238. [Google Scholar] [CrossRef]
- Panigrahi, M.K.; Acharya, S.S. A Microsoft EXCEL 2007 and MS Visual BASIC Macro Based Software Package for Computation of Density and Isochores of Fluid Inclusions. In Proceedings of the Proceedings ACROFI-III and TBG-XIV, Novosibirsk, Russia, 15–20 September 2010; pp. 160–161. [Google Scholar]
- Basu, A.K. Role of the Bundelkhand Granite Massif and the Son-Narmada megafault in Precambrian crustal evolution and tectonism in Central and Western India. J. Geol. Soc. India 2007, 70, 745–770. [Google Scholar]
- Pati, J.K. Evolution of Bundelkhand Craton. Epis. J. Int. Geosci. 2020, 43, 69–87. [Google Scholar] [CrossRef]
- Worden, R.H.; Walker, F.D.L.; Parsons, I.; Brown, W.L. Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contrib. Miner. Pet. 1990, 104, 507–515. [Google Scholar] [CrossRef]
- Kroll, H.; Evangelakakis, C.; Voll, G. Two-feldspar geothermometry: A review and revision for slowly cooled rocks. Contrib. Mineral. Petrol. 1993, 114, 510–518. [Google Scholar] [CrossRef]
- Otten, M.T. The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib. Mineral. Petrol. 1984, 86, 189–199. [Google Scholar] [CrossRef]
- Fleet, M.E.; Barnett, R.L. Al iv/Al vi partitioning in calciferous amphiboles from the Frood Mine, Sudbury, Ontario. Can. Mineral. 1978, 16, 527–532. [Google Scholar]
- Yavuz, F. WinAmphcal: A Windows program for the IMA-04 amphibole classification. Geochem. Geophys. Geosystems 2007, 8, 1–12. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction of the Rock-Forming Minerals; Longman Group Limited: London, UK, 1979. [Google Scholar]
- Yavuz, F. Evaluating micas in petrologic and metallogenic aspect: Part II Applications using the computer program Mica+. Comput. Geosci. 2003, 29, 1215–1228. [Google Scholar] [CrossRef]
- Speer, J.A. Micas in igneous rocks. In Reviews in Mineralogy, Micas. Mineralogical Society of America; Bailey, S.W., Ed.; GeoScienceWorld: McLean, VA, USA, 1984; pp. 229–356. [Google Scholar]
- Nachit, H.; Razafimahefa, N.; Stussi, J.M.; Carron, J.P. Composition chimique des biotites et typologie magmatique des granitoids. Comtes Rendus Hebd. I’ Acad. Des Sci. 1985, 301, 813–818. [Google Scholar]
- de Alquerque, C.A.R. Geochemistry of biotite from granitic rocks, northern Portugal. Geochim. Cosmochim. Acta 1973, 37, 1779–1802. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.F.M. Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Verdecchia, S.O.; Collo, G.; Zandomeni, P.S.; Wunderlin, C.; Fehrmann, M. Crystallochemical indexes and geothermobarometric calculations as a multiproxy approach to P-T condition of the low-grade metamorphism: The case of the San Luis Formation, Eastern Sierras Pampeanas of Argentina. Lithos 2019, 324–325, 385–401. [Google Scholar] [CrossRef]
- Ketcham, R.A. Technical Note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. Am. Mineral. 2015, 100, 1620–1623. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in Igneous Systems. In: Phosphates- Geochemical, Geobiological and Materials Importance. Rev. Min. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Oberti, R.; Smith, D.C.; Rossi, G.; Caucia, F. The crystal-chemistry of high-aluminum titanites. Eur. J. Mineral. 1981, 3, 777–792. [Google Scholar] [CrossRef]
- Yavuz, F.; Kumral, M.; Karakaya, N.; Karakaya, M.T.; Yildirim, D.K. A Windows program for chlorite calculation and classification. Comput. Geosci. 2015, 81, 101–113. [Google Scholar] [CrossRef]
- Ciesielczuk, J.M. Chlorite of hydrothermal origin formed in the Strzelin and Borów granites (Fore-Sudetic Block, Poland). Geol. Q. 2012, 56, 333–344. [Google Scholar] [CrossRef]
- Tulloch, A.J. Secondary Ca–Al silicates as low-grade alteration products of granitoid biotite. Contrib. Mineral. Petrol. 1979, 69, 105–117. [Google Scholar] [CrossRef]
- Evans, B.W.; Vance, J.A. Epidote phenocrysts in dacitic dikes, Boulder county, Colorado. Contrib. Mineral. Petrol. 1987, 96, 178–185. [Google Scholar] [CrossRef]
- Sial, A.N.; Toselli, A.J.; Saavedra, J.; Parada, M.A.; Ferreira, V.P. Emplacement, petrological and magnetic susceptibility characteristics of diverse magmatic epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos 1999, 46, 367–392. [Google Scholar] [CrossRef]
- Galindo, A.C.; Dall’Agnol, R.; Lafon, J.M.; Teixeira, N.P. Evolution of Brasiliano-age granitoid types in a shear-zone environment, Umarizal–Caraubas region, Rio Grande do Norte, northeast Brazil. J. S. Am. Earth Sci. 1995, 8, 79–95. [Google Scholar] [CrossRef]
- Sial, A.N.; Vasconcelos, P.M.; Ferreira, V.P.; Pessoa, R.R.; Brasilino, R.G.; MoraisNeto, J.M. Geochronological and mineralogical constraints on depth of emplacement and ascencion rates of epidote-bearing magmas from northeastern Brazil. Lithos 2008, 105, 225–238. [Google Scholar] [CrossRef]
- Zen, E.-A.; Hammarstrom, J.M. Magmatic epidote and its petrologic significance. Geology 1984, 12, 515–518. [Google Scholar] [CrossRef]
- Brasilino, R.G.; Sial, A.N.; Ferreira, V.P.; Pimentel, M.M. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil. Lithos 2011, 127, 441–454. [Google Scholar] [CrossRef]
- Wright, W.I. The composition and occurrence of garnets. Am. Mineral. J. Earth Planet. Mater. 1938, 23, 436–449. [Google Scholar]
- Smith, D.J. From Slab to Sinter: The Magmatic-Hydrothermal System of Savo Volcano, Solomon Islands. Ph.D. Thesis, University of Leicester, Leicester, UK, 2008; 261p. (unpublished). [Google Scholar]
- Haggerty, S.E. Oxidation of opaque mineral oxides in basalts. In Oxide Minerals Reviews in Mineralogy; Rumble, D., III, Ed.; De Gruyter Brill: Berlin, Germany, 1976. [Google Scholar]
- Benisek, A.; Kroll, H.; Cemic, L. New developments in two-feldspar thermometry. Am. Mineral. 2004, 89, 1496–1504. [Google Scholar] [CrossRef]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Johnson, M.C.; Rutherford, M.J. Experimental calibration of the aluminum-inhornblende geobarometer with application of Long Valley caldera (California) volcanic rocks. Geology 1989, 17, 837–841. [Google Scholar] [CrossRef]
- Molina, J.F.; Moreno, J.A.; Castro, A.; Rodríguez, C.; Fershtater, G.B. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 2015, 232, 286–305. [Google Scholar] [CrossRef]
- Ague, J.J. Thermodynamic calculation of emplacement pressures for batholithic rocks, California: Implications for the aluminum-in-hornblende barometer. Geology 1997, 25, 563–566. [Google Scholar] [CrossRef]
- Anderson, J.L.; Smith, D.R. The effects of temperature and fO2 on the Al-inhornblende barometer. Am. Mineral. 1995, 80, 549–559. [Google Scholar] [CrossRef]
- Putirka, K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 2016, 101, 841–858. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C. Machine learning thermobarometry for biotite-bearing magmas. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024137. [Google Scholar] [CrossRef]
- Liao, Y.; Wei, C.; Rehman, H.U. Titanium in calcium amphibole: Behavior and thermometry. American Mineralogist 2021, 106, 180–191. [Google Scholar] [CrossRef]
- Blundy, J.D.; Holland, T.J.B. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib. Mineral. Petrol. 1990, 104, 208–224. [Google Scholar] [CrossRef]
- Holland, T.; Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Anderson, J.L.; Barth, A.P.; Wooden, J.L.; Mazdab, F. Thermometers and thermobarometers in granitic systems. Rev. Mineral. Geochem. 2008, 69, 121–142. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Zen, E. Aluminum in hornblende: An empirical igneous geobarometer. Am. Mineral. 1986, 71, 1297–1313. [Google Scholar]
- Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H.; Sisson, V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 1987, 72, 231–239. [Google Scholar]
- Henry, D.J.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low to- medium pressure metapelitic biotites: Implications for geothermometry and Tisubstitution mechanisms. Am. Mineral. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Zhu, C.; Sverjensky, D.A. F-Cl-OH partitioning between biotite and apatite. Geochim. Cosmochim. Acta 1992, 56, 3435–3467. [Google Scholar] [CrossRef]
- Bath, A.B.; Walshe, J.L.; Cloutier, J.; Verrall, M.; Cleverley, J.S.; Pownceby, M.I.; Macrae, C.M.; Wilson, N.C.; Tunjic, J.; Nortje, G.S.; et al. Biotite and apatite as tools for tracking pathways of oxidized fluids in the Archean East Repulse gold deposit, Australia. Econ. Geol. 2013, 108, 667–690. [Google Scholar] [CrossRef]
- Bird, D.K.; Helgeson, H.C. Chemical interaction of aqueous solutions with epidote—Feldspar mineral assemblages in geologic systems. I: Thermodynamic analysis of phase relations in the system CaO-FeO-Fe2O3-Al2O3-SiO2-H2O-CO2. Am. J. Sci. 1980, 280, 907–941. [Google Scholar] [CrossRef]
- Jowett, E.C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, ON, Canada, 27–29 May 1991. Program with Abstracts 16. [Google Scholar]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Xie, X.; Byerly, G.R.; Ferrell, R.E. IIb trioctahedral chlorite from the Barberton greenstone belt: Crystal structure and rock composition constraints with implications to geothermometry. Contrib. Mineral. Petrol. 1997, 126, 275–291. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Beyssac, O.; Chopin, C.; Vidal, O. Clay minerals as geothermometer: A comparative study based on high spatial resolution analyses of illite and chlorite in Gulf Coast sandstones (Texas, U.S.A.). Am. Mineral. 2013, 98, 914–926. [Google Scholar] [CrossRef]
- Lanari, P.; Wagner, T.; Vidal, O. A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO-FeO-Al2O3-SiO2-H2O: Applications to P-T sections and geothermometry. Contrib. Mineral. Petrol. 2014, 167, 1–19. [Google Scholar] [CrossRef]
- Inoue, A.; Inoué, S.; Utada, M. Application of chlorite thermometry to estimation of formation temperature and redox conditions. Clay Miner. 2018, 53, 143–158. [Google Scholar] [CrossRef]
- Wones, D.R.; Eugster, H.P. Stability of biotite: Experiment, theory, and application. Am. Mineral. J. Earth Planet. Mater. 1965, 50, 1228–1272. [Google Scholar]
- Miles, A.J.; Graham, C.M.; Hawkesworth, C.J.; Gillespie, M.R.; Hinton, R.W.; Bromiley, G.D. Apatite: A new redox proxy for silicic magmas? Geochim. Cosmochim. Acta 2014, 132, 101–119. [Google Scholar] [CrossRef]
- Wones, D.R. Significance of the assemblage titanite+magneite+quartz in granitic rocks. Am. Mineral. 1989, 74, 744–749. [Google Scholar]
- Holtz, F.; Johannes, W.; Tamic, N.; Behrens, H. Maximum and minimum water contents of granitic melts generated in the crust: A reevaluation and implications. Lithos 2001, 56, 1–14. [Google Scholar] [CrossRef]
- Boudreau, A.E. PELE-a version of the MELTS software program for the PC platform. Comput. Geosci. 1999, 25, 201–203. [Google Scholar] [CrossRef]
- Puziewicz, J.; Johannes, W. Experimental study of a biotite-bearing granitic system under water-saturated and water-undersaturated conditions. Contrib. Mineral. Petrol. 1990, 104, 397–406. [Google Scholar] [CrossRef]
- Teiber, H.; Marks, M.A.W.; Wenzel, T.; Siebel, W.; Altherr, R.; Markl, G. The distribution of halogens (F, Cl, Br) in granitoid rocks. Chem. Geol. 2014, 374–375, 92–109. [Google Scholar] [CrossRef]
- Słaby, E.; Domańska-Siuda, J. Origin and evolution of volatiles in the Central Europe late Variscan granitoids, using the example of the Strzegom-Sobótka Massif, SW Poland. Mineral. Petrol. 2019, 113, 119–134. [Google Scholar]
- Munoz, J.L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Rev. Mineral. Geochem. 1984, 13, 469–493. [Google Scholar]
- Zhu, C.; Sverjensky, D.A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochim. Cosmochim. Acta 1991, 55, 1837–1858. [Google Scholar] [CrossRef]
- Loferski, P.J.; Ayuso, R.A. Petrography and mineral chemistry of the composite Deboullie pluton, northern Maine, U.S.A.: Implications for the genesis of Cu-Mo mineralization. Chem. Geol. 1995, 123, 89–105. [Google Scholar] [CrossRef]
- Parsapoor, A.; Khalili, M.; Tepley, F.; Maghami, M. Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran). Ore Geol. Rev. 2015, 66, 200–218. [Google Scholar] [CrossRef]
- Munoz, J.L. Calculation of HF and HCl fugacities from biotite compositions: Revised equations. Geol. Soc. Am. Abstr. Programs 1992, 26, 221. [Google Scholar]
- Tarantola, A.; Diamond, L.W.; Stunitz, H. Modification of fluid inclusions in quartz by deviatoric stress I: Experimentally induced changes in inclusion shapes and microstructures. Contrib. Miner. Petrol. 2010, 160, 825–843. [Google Scholar] [CrossRef]
- Chi, G.; Lu, H. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage (FIA) concept. Acta Petrol. Sin. 2008, 9, 1945–1953. [Google Scholar]
- Chi, G.; Diamond, L.W.L.H.; Lai, J.; Chu, H. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Shepherd, T.J.; Rankin, A.H.; Alderton, D.H.M. A Practical Guide to Fluid Inclusion Studies; Blackie: Glasgow, Scotland, 1985; 239p. [Google Scholar]
- Bowers, T.S. Pressure-volume-temperature properties of H2O-CO2 fluids. In Rock Physics and Phase Relations: A Handbook of Physical Constants; AGU Reference Shelf; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 3, pp. 45–72. [Google Scholar]
- Parry, W.T. Estimation of XCO2, P, and fluid inclusion volume from fluid inclusion temperature measurements in the system NaCl-CO2 H2O. Econ. Geol. 1986, 81, 1009–1013. [Google Scholar] [CrossRef]
- Panigrahi, M.K.; Mookherjee, A. The Malanjkhand copper (+ molybdenum) deposit, India: Mineralization from a low-temperature ore-fluid of granitoid affiliation. Miner. Depos. 1997, 32, 133–148. [Google Scholar] [CrossRef]
- Mernagh, T.P.; Wilde, A.R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions. Geochim. Cosmochim. Acta 1989, 53, 765–771. [Google Scholar] [CrossRef]
- Dubessy, J.; Lhomme, T.; Boiron, M.-C.; Rull, F. Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: Application to fluid inclusions. Appl. Spectrosc. 2002, 56, 99–106. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Roedder, E.; Bodnar, R.J. Geologic pressure determination from fluid inclusion studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Nolan, J.; Rankin, A.H. Silicothermal fluid: A novel medium for mass transport in the lithosphere. Geology 1996, 24, 1059–1062. [Google Scholar] [CrossRef]
- Morey, G.W.; Fleischer, M. Equilibrium between vapor and liquid phases in the system CO2-H2O-K2O-SiO2. Geol. Soc. Am. Bull. 1940, 51, 1035–1058. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P. Evidence of a water-rich silica gel state during the formation of a simple pegmatite. Mineral. Mag. 2012, 76, 2785–2801. [Google Scholar] [CrossRef]
- Naney, M.T. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am. J. Sci. 1983, 283, 993–1033. [Google Scholar] [CrossRef]
- Webster, J.D.; Tappen, C.M.; Mandeville, C.W. Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Geochim. Cosmochim. Acta 2009, 73, 559–581. [Google Scholar] [CrossRef]
- Słaby, E.; Martin, H.; Hamada, M.; Śmigielski, M.; Domonik, A.; Götze, J.; Hoefs, J.; Hałas, S.; Simon, K.; Devidal, J.L.; et al. Evidence in Archaean alkali feldspar megacrysts for high-temperature interaction with mantle fluids. J. Petrol. 2012, 53, 67–98. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Magmatic epidote. Rev. Mineral. Geochem. 2004, 56, 399–430. [Google Scholar] [CrossRef]
- Brandon, A.D.; Creaser, R.A.; Chacko, T. Constraints on rates of granitic magma transport from epidote dissolution kinetics. Science 1996, 271, 1845–1848. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Thompson, A.B. Epidote in calc-alkaline magmas: An experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. Am. Mineral. 1996, 81, 462–474. [Google Scholar] [CrossRef]
- Sensarma, S.; Matin, A.; Paul, D.; Patra, A.; Madhesiya, A.K.; Sarkar, G. Reddening of ~2.5 Ga granitoid by high-temperature fluid linked to mafic dyke swarm in the Bundelkhand Craton, north central India. Geol. J. 2018, 53, 1338–1353. [Google Scholar] [CrossRef]
- Bhattacharya, S. Granitic Magmatism Late-Stage Fluid Activity vis-à-vis Gold Mineralization in Schist Belts in Parts of the Eastern Dharwar Craton India. Ph.D. Thesis, Indian Institute of Technology, Kharagpur, India, 2014; 197p. (unpublished). [Google Scholar]
- Putnis, A.; Hinrichs, R.; Putnis, C.V.; Golla-Schindler, U.; Collins, L.G. Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid-rock interaction. Lithos 2007, 95, 10–18. [Google Scholar] [CrossRef]
- Plümper, O.; Putnis, A. The complex hydrothermal history of granitic rocks: Multiple feldspar replacement reactions under subsolidus conditions. J. Petrol. 2009, 50, 967–987. [Google Scholar] [CrossRef]
- Colleps, C.L.; McKenzie, N.R.; Guenthner, W.R.; Sharma, M.; Stockli, D.F. Low-temperature thermochronometric insight into the long-term burial and erosional evolution of the Bundelkhand Craton of central India. In Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, 7–12 April 2019; Volume 21, p. 12108. [Google Scholar]
- Bhattacharya, S.; Panigrahi, M.K. Heterogeneity in fluid characteristics in the Ramagiri–Penakacherla sector of the Eastern Dharwar Craton: Implications to gold metallogeny. Russ. Geol. Geophys. 2011, 52, 1436–1447. [Google Scholar] [CrossRef]
- Allan, M.M.; Yardley, B.W.D. Tracking meteoric infiltration into a magmatic hydrothermal system: A cathodoluminescence, oxygen isotope and trace element study of quartz from Mt. Leyshon, Australia. Chem. Geol. 2007, 240, 343–360. [Google Scholar] [CrossRef]
- Reed, M.; Rusk, B.; Palandri, J. The Butte magmatic-hydrothermal system: One fluid yields all alteration and veins. Econ. Geol. 2013, 108, 1379–1396. [Google Scholar] [CrossRef]
Epidote + Mineral Assemblage | Texture of Epidote | Pistacite Content | Temperature (°C) | Remark |
---|---|---|---|---|
Biotite | Fully enclosed grains (n = 13) | 0.26–0.33 | 450.2–573.6 (one 334.1) | Ps = 0.26 → T = 334.1 °C Ps = 0.27–0.29 → T = 450.2–547.7 °C Ps = 0.29–0.33 → T = 471.6–573.6 °C |
Partially enclosed grains (n = 3) | 0.26–0.27 (one Ps = 0.20) | 441.7–497.9 (one 286.9) | Ps = 0.20 → T = 287 °C Ps = 0.26–0.27→T = 441.7 °C–497.9 °C | |
Plagioclase | Subhedral and resorbed outline (n = 2) | 0.19 and 0.29 | 455 and 603.8 | Ps = 0.29 → T = 603.8 °C is outside the calibration value |
Irregular type (n = 7) | 0.23–0.27 | 328.4- 456.2 | ||
Quartz | Elongated prismatic crystals (n = 4) | 0.26–0.29 | 355.8–416.8 | |
Opaque | Fe sulfide (n = 14) | 0.21–0.30 (one Ps = 0.12) | 332.4–474 (one T = 208.7) | Ps = 0.12 → T = 208.7 °C Ps = 0.21 → T = 211.9 °C Ps = 0.23–0.25 → T = 297.6–337 °C Ps = 0.26–0.30 → T = 365.1–441.4 °C |
Plagioclase or quartz-feldspar | Solution channel or fracture-filling material (n = 9) | 0.19–0.27 | 161.8 to 366 | Ps <0.25 (0.19–0.24) → T = 161.8 –303.5 °C (n = 7) Ps = 0.25–0.29 → T = 317–366 °C (n = 2) |
Sample No. | Semi Empirical Thermometry (FeTotal = FeO) | T1 FeTotal = Feo (Valid for <350 °C, May Be <400 °C) | T2 FeTotal = Feo (Valid for 100–500 °C) | T3 FeTotal = Feo (Valid for <350 °C) | Empirical Thermometry (FeTotal = FeO) | T4 (Valid for <350 °C) | T5 For Si < 3.3,Ca < 0.07 apfu, Fe/(Fe + Mg) < 0.6; valid for T < 325 °C) | |
D1-5 | Av | 261.5 (n = 2) | - | - | 302 (n = 2) | 308.5 (n = 2) | ||
±1σ | 2.12 | - | - | 2.82 | 3.53 | |||
D2-4 | Av | 307 (n = 1) | - | - | ||||
±1σ | - | - | - | - | - | |||
D2-12 | Av | 268.7 (n = 8) | 225.6 (n = 3) | 306.7(n = 7) | 281.7 (n = 8) | 281.6 (n = 7) | ||
±1σ | 18.09 | 47.75 | 21.23 | 26.1 | 20.95 | |||
D4-1 | Av | 264.4 (n = 7) | 217.0 (n = 1) | 285.5 (n = 2) | 275.7 (n = 7) | 280.2 (n = 7) | ||
±1σ | 19.51 | - | 38.89 | 14.56 | 15.3 | |||
D4-3 | Av | 235.0 (n = 1) | 253.0 (n = 1) | 292.0 (n = 1) | 300.0 (n = 1) | 302.0 (n = 1) | ||
±1σ | - | - | - | - | - | |||
D5-7 | Av | 250.0 (n = 3) | 251.5 (n = 2) | 267.0 (n = 2) | 328.0 (n = 2) | - | ||
±1σ | 33.15 | 19.09 | 12.72 | - | - | |||
BQ-D2-5 | Av | 252.3 (n = 3) | - | 312.0 (n = 2) | 281.0 (n = 3) | 287.0 (n = 3) | ||
±1σ | 49.54 | - | 42.43 | 19.28 | 19.29 | |||
D6-16B | Av | 257.3 (n = 13) | 258.0 (n = 1) | 245.0 (n = 4) | 268.0 (n = 13) | 273.6 (n = 13) | ||
±1σ | 44.22 | - | 46.23 | 15.43 | 15.74 | |||
D6-13 | Av | 289.2 (n = 4) | 305.3 (n = 3) | 340.5 (n = 2) | 337.0 (n = 1) | - | ||
±1σ | 9.87 | 20.59 | 2.12 | - | - | |||
D6-16A | Av | 281.8 (n = 14) | 295.5 (n = 9) | 300.67 (n = 6) | 325 (n = 5) | 311.0 (n = 2) - | ||
±1σ | 26.4 | 62.12 | 33.88 | 20.78 | 7.07 | |||
D6-14 | Av | 279.2 (n = 5) | 232.5 (n = 2) | - | 300.0 (n = 2) | 313.0 (n = 2) | ||
±1σ | 45.55 | 13.43 | - | 8.48 | 8.48 | |||
BAMH-G1 | Av | 172 (n = 1) | 143.0 (n = 1) | 171 (n = 1) | 295 (n = 1) | 307 (n = 1) | ||
±1 σ | - | - | ||||||
D1-1 | Av | 293.1 (n = 7) | 236.0 (n = 3) | 317.6 (n = 3) | 296.0 (n = 7) | 299.5 (n = 6) | ||
±1σ | 26.76 | 17.69 | 21.93 | 17.34 | 11.94 | |||
D1-3 | Av | 253.8 (n = 7) | 249.7 (n = 4) | 280.5 (n = 3) | 309.0 (n = 7) | 300.8 (n = 4) | ||
±1σ | 27.3 | 41.59 | 38.54 | 26.19 | 15.53 |
Statistical Parameters | Salinity | Temperature | ||||||
---|---|---|---|---|---|---|---|---|
Quartz Reef | BG Domain | Quartz Reef | BG Domain | |||||
3D Array | Trail | 3D Array | Trail | 3D Array | Trail | 3D Array | Trail | |
Min | 0 | 0.18 | 0 | 0 | 53.4 | 58.6 | 94.8 | 73.2 |
Max | 28.9 | 24.39 | 26.85 | 29.22 | 385.9 | 326.4 | 399.8 | 357.3 |
Mean | 6.50 | 9.16 | 5.50 | 6.51 | 191.56 | 182.20 | 211.63 | 203.42 |
Median | 0.18 | 0.18 | 0.18 | 2.89 | 200.8 | 157.9 | 150.2 | 175 |
Mode | 1.39 | 9.25 | 3.53 | 3.53 | 187.05 | 177.35 | 202.65 | 195.4 |
Standard Deviation | 8.18 | 8.27 | 5.69 | 6.89 | 50.48 | 62.77 | 59.74 | 53.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rout, D.; Pati, J.K.; Mernagh, T.P.; Panigrahi, M.K. Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton. Minerals 2025, 15, 579. https://doi.org/10.3390/min15060579
Rout D, Pati JK, Mernagh TP, Panigrahi MK. Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton. Minerals. 2025; 15(6):579. https://doi.org/10.3390/min15060579
Chicago/Turabian StyleRout, Duttanjali, Jayanta K. Pati, Terrence P. Mernagh, and Mruganka K. Panigrahi. 2025. "Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton" Minerals 15, no. 6: 579. https://doi.org/10.3390/min15060579
APA StyleRout, D., Pati, J. K., Mernagh, T. P., & Panigrahi, M. K. (2025). Fluid Evolution in the Bundelkhand Granite, North Central India: Implications for Hydrothermal Activities in the Bundelkhand Craton. Minerals, 15(6), 579. https://doi.org/10.3390/min15060579