The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Method
2.2. Theoretical Method
2.3. Analytical Methods
3. Results
Ilmenite–Olivine Assemblage Due to Open System Reaction
4. Discussion
4.1. Kinetic Experiments
4.2. Kinetic Control of Ilmenite Crystal Growth on Olivine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPMA | electron probe microanalysis |
HR-TEM | high-resolution transmission electron microscopy |
References
- Borisova, A.Y.; Zagrtdenov, N.R.; Toplis, M.J.; Ceuleneer, G.; Safonov, O.G.; Pokrovski, G.S.; Jochum, K.P.; Stoll, B.; Weis, U.; Shcheka, S.; et al. Hydrated peridotite–basaltic melt interaction Part II: Fast assimilation of serpentinized mantle by basaltic magma. Front. Earth Sci. 2020, 8, 84. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Zagrtdenov, N.R.; Toplis, M.J.; Bohrson, W.A.; Nédélec, A.; Safonov, O.G.; Pokrovski, G.S.; Ceuleneer, G.; Bindeman, I.N.; Melnik, O.E.; et al. Hydrated peridotite–basaltic melt interaction Part I: Planetary felsic crust formation at shallow depth. Front. Earth Sci. 2021, 9, 640464. [Google Scholar] [CrossRef]
- Borisova, A.Y.; Ceuleneer, G.; Zagrtdenov, N.R.; Safonov, O.G.; Toplis, M.J. Experimental diopsidite: Implications for natural diopsidite genesis through fluid-melt-mantle peridotite reaction. Mineral. Petrol. 2021, 115, 489–495. [Google Scholar] [CrossRef]
- Borisova, A.Y. Silica-rich melts originating from melt-hydrated peridotite reactions. Lithos 2022, 434, 106926. [Google Scholar] [CrossRef]
- Dawson, J.B.; Smith, J.V. The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 1977, 41, 309–323. [Google Scholar] [CrossRef]
- Haggerty, S.E. Upper mantle mineralogy. J. Geodyn. 1995, 20, 331–364. [Google Scholar] [CrossRef]
- Choukroun, M.; O’Reilly, S.Y.; Griffin, W.L.; Pearson, N.J.; Dawson, J.B. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 2005, 33, 45–48. [Google Scholar] [CrossRef]
- Moore, R.O.; Griffin, W.L.; Gurney, J.J.; Ryan, C.G.; Cousens, D.R.; Sie, S.H.; Suter, G.F. Trace element geochemistry of ilmenite megacrysts from the Monastery kimberlite, South Africa. Lithos 1992, 29, 1–18. [Google Scholar] [CrossRef]
- Giuliani, A.; Kamenetsky, V.S.; Kendrick, M.A.; Phillips, D.; Wyatt, B.A.; Maas, R. Oxide, sulphide and carbonate minerals in a mantle polymict breccia: Metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chem. Geol. 2013, 353, 4–18. [Google Scholar] [CrossRef]
- Moseley, D. Ilmenite exsolution in olivine. Am. Mineral. 1981, 66, 976–979. Available online: https://pubs.geoscienceworld.org/msa/ammin/article-abstract/66/9-10/976/41324/Ilmenite-exsolution-in-olivine (accessed on 18 March 2025).
- Massonne, H.J.; Neuser, R.D. Ilmenite exsolution in olivine from the serpentinite body at Zöblitz, Saxonian Erzgebirge–microstructural evidence using EBSD. Mineral. Mag. 2005, 69, 119–124. [Google Scholar] [CrossRef]
- Snetsinger, K.G.; Keil, K. Ilmenite in ordinary chondrites. Am. Mineral. J. Earth Planet. Mater. 1969, 54, 780–786. Available online: https://pubs.geoscienceworld.org/msa/ammin/article-abstract/54/5-6/780/540487/Ilmenite-in-ordinary-Chondrites (accessed on 18 March 2025).
- Dobrzhinetskaya, L.; Green, H.W.; Wang, S. Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science 1996, 271, 1841–1845. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.; Bozhilov, K.N.; Green, H.W., II. The solubility of TiO2 in olivine: Implications for the mantle wedge environment. Chem. Geol. 1999, 160, 357–370. [Google Scholar] [CrossRef]
- Andersen, D.J.; Lindsley, D.H. The olivine-ilmenite thermometer. Lunar Planet. Sci. Conf. Proc. 1979, 10, 493–507. Available online: https://adsabs.harvard.edu/full/1979LPI....10...33A (accessed on 18 March 2025).
- Hermann, J.; O’Neill, H.S.C.; Berry, A.J. Titanium solubility in olivine in the system TiO2–MgO–SiO2: No evidence for an ultra-deep origin of Ti-bearing olivine. Contrib. Mineral. Petrol. 2005, 148, 746–760. [Google Scholar] [CrossRef]
- Sun, W.; Dai, L.; Hu, H.; Wang, M.; Hu, Z.; Jing, C. Experimental research on electrical conductivity of the olivine-ilmenite system at high temperatures and high pressures. Front. Earth Sci. 2022, 10, 861003. [Google Scholar] [CrossRef]
- Tian, H.C.; Zhang, C.; Teng, F.Z.; Long, Y.J.; Li, S.G.; He, Y.; Ke, S.; Chen, X.Y.; Yang, W. Diffusion-driven extreme Mg and Fe isotope fractionation in Panzhihua ilmenite: Implications for the origin of mafic intrusion. Geochim. Cosmochim. Acta 2020, 278, 361–375. [Google Scholar] [CrossRef]
- Kitamura, M.; Kondoh, S.; Morimoto, N.; Miller, G.H.; Rossman, G.R.; Putnis, A. Planar OH-bearing defects in mantle olivine. Nature 1987, 328, 143–145. [Google Scholar] [CrossRef]
- Demouchy, S.; Alard, O. Hydrogen, trace, and ultra-trace element distribution in natural olivines. Contrib. Mineral. Petrol. 2021, 176, 26. [Google Scholar] [CrossRef]
- Jollands, M.C.; Dohmen, R.; Padrón-Navarta, J.A. Hide and seek—Trace element incorporation and diffusion in olivine. Elements 2023, 19, 144–150. [Google Scholar] [CrossRef]
- Trommsdorff, V.; Hermann, J.; Müntener, O.; Pfiffner, M.; Risold, A.C. Geodynamic cycles of subcontinental lithosphere in the Central Alps and the Arami enigma. J. Geodyn. 2000, 30, 77–92. [Google Scholar] [CrossRef]
- Risold, A.C.; Trommsdorff, V.; Grobéty, B. Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami. Contrib. Mineral. Petrol. 2001, 140, 619–628. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Nucleation Theory and Growth of Nanostructures; Springer: Berlin/Heidelberg, Germany, 2014; 601p, Available online: https://link.springer.com/book/10.1007/978-3-642-39660-1 (accessed on 18 March 2025).
- Lozovoy, K.A.; Kokhanenko, A.P.; Dirko, V.V.; Akimenko, N.Y.; Voitsekhovskii, A.V. Evolution of epitaxial quantum dots formed by Volmer−Weber growth mechanism. Cryst. Growth Des. 2019, 19, 7015–7021. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Korotaev, A.G.; Kokhanenko, A.P.; Dirko, V.V.; Voitsekhovskii, A.V. Kinetics of epitaxial formation of nanostructures by Frank–van der Merwe, Volmer–Weber and Stranski–Krastanow growth modes. Surf. Coat. Technol. 2020, 384, 125289. [Google Scholar] [CrossRef]
- Prieto, J.E.; Markov, I. Stranski–Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation. Surf. Sci. 2017, 664, 172–184. [Google Scholar] [CrossRef]
- Kargin, A.; Bussweiler, Y.; Nosova, A.; Sazonova, L.; Berndt, J.; Klemme, S. Titanium-rich metasomatism in the lithospheric mantle beneath the Arkhangelsk Diamond Province, Russia: Insights from ilmenite-bearing xenoliths and HP–HT reaction experiments. Contrib. Mineral. Petrol. 2021, 176, 1–25. [Google Scholar] [CrossRef]
- Wechsler, B.A.; Prewitt, C.T. Crystal structure of ilmenite (FeTiO3) at high temperature and high pressure. Am. Mineral. 1984, 69, 176–185. Available online: https://pubs.geoscienceworld.org/msa/ammin/article-abstract/69/1-2/176/41567/ (accessed on 18 March 2025).
- Wu, X.; Qin, S.; Dubrovinsky, L. Structural characterization of the FeTiO3–MnTiO3 solid solution. J. Solid State Chem. 2010, 183, 2483–2489. [Google Scholar] [CrossRef]
- Yamazaki, S.; Toraya, H. Rietveld refinement of site-occupancy parameters of Mg2−xMnxSiO4 using a new weight function in least-squares fitting. J. Appl. Cryst. 1999, 32, 51–59. [Google Scholar] [CrossRef]
- Nord, A.G.; Annersten, H.; Filippidis, A. The cation distribution in synthetic Mg-Fe-Ni olivines. Am. Mineral. 1982, 67, 1206–1211. Available online: https://pubs.geoscienceworld.org/msa/ammin/article-abstract/67/11-12/1206/41339/The-cation-distribution-in-synthetic-Mg-Fe-Ni (accessed on 18 March 2025).
- Cliff, G.; Lorimer, G.W. The quantitative analysis of thin specimens. J. Microsc. 1975, 103, 203–207. [Google Scholar] [CrossRef]
- CaRIne Cristallographie—UTeam. Available online: https://uteam.fr/offres/carine-cristallographie (accessed on 16 July 2023).
- Shklyaev, A.A. Formation of submicron- and micron-sized SiGe and Ge particles on Si substrates using dewetting. J. Phys. Conf. Ser. 2020, 1461, 012160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisova, A.Y.; Lozovoy, K.; Pugliara, A.; Hungria, T.; Josse, C.; de Parseval, P. The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage. Minerals 2025, 15, 569. https://doi.org/10.3390/min15060569
Borisova AY, Lozovoy K, Pugliara A, Hungria T, Josse C, de Parseval P. The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage. Minerals. 2025; 15(6):569. https://doi.org/10.3390/min15060569
Chicago/Turabian StyleBorisova, Anastassia Y., Kirill Lozovoy, Alessandro Pugliara, Teresa Hungria, Claudie Josse, and Philippe de Parseval. 2025. "The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage" Minerals 15, no. 6: 569. https://doi.org/10.3390/min15060569
APA StyleBorisova, A. Y., Lozovoy, K., Pugliara, A., Hungria, T., Josse, C., & de Parseval, P. (2025). The Kinetic Control of Crystal Growth in Geological Reactions: An Example of Olivine–Ilmenite Assemblage. Minerals, 15(6), 569. https://doi.org/10.3390/min15060569