Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block
Abstract
1. Introduction
2. Geological Setting and Petrographic Characteristics
3. Analytical Procedures
4. Results
4.1. Zircon Morphological Characteristics
4.2. Zircon U–Pb Geochronological Characteristics
4.3. Zircon Age Spectra
5. Discussion
6. Conclusions
7. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and Metamorphic petrogenesis. In Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Washington, DC, USA, 2003; Volume 53, pp. 27–62. [Google Scholar]
- Siebel, W.; Schmitt, A.K.; Danišík, M.; Chen, F.; Meier, S.; Wei, S.; Eroǧlu, S. Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat. Geosci. 2009, 2, 886–890. [Google Scholar] [CrossRef]
- Tange, Y.; Takahashi, E. Stability of the high–pressure polymorph of zircon (ZrSiO4) in the deep mantle. Phys. Earth Planet. Inter. 2004, 143, 223–229. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Yang, J.S.; Wooden, J.L.; Liou, J.G.; Li, T.F. U–Pb SHRIMP geochronology of zircon in garnet peridotite from the Sulu UHP terrane, China: Implications for mantle metasomatism and subduction-zone UHP metamorphism. Earth Planet. Sci. Lett. 2005, 237, 729–743. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhao, Z.F.; Chen, Y.X. Continental subduction channel processes: Plate interface interaction during continental collision. Chin. Sci. Bull. 2013, 58, 2233–2239. [Google Scholar] [CrossRef]
- Batumike, J.M.; Griffin, W.L.; Belousova, E.A.; Pearson, N.J.; O’Reilly, S.Y.; Shee, S.R. LAM–ICPMS U–Pb dating of kimberlitic perovskite: Eocene–Oligocene kimberlites from the Kundelungu Plateau, D.R. congo. Earth Planet. Sci. Lett. 2008, 267, 609–619. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; Pearson, N.J. Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral. Mag. 1998, 62, 355–366. [Google Scholar] [CrossRef]
- Page, F.Z.; Fu, B.; Kita, N.T.; Fournelle, J.; Spicuzza, M.J.; Schulze, D.J. Zircons from kimberlite: New insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim. Cosmochim. Acta 2007, 71, 3887–3903. [Google Scholar] [CrossRef]
- Valley, J.W.; Kinny, P.D.; Schulze, D.J.; Spicuzza, M.J. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 1998, 133, 1–11. [Google Scholar] [CrossRef]
- Zartman, R.E.; Richardson, S.H. Evidence from kimberlitic zircon for a decreasing mantle Th/U since the Archean. Chem. Geol. 2005, 220, 263–283. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling–induced Melt–Peridotite Interactions in the Trans–North China Orogen: U–Pb Dating, Hf isotopes and Trace Elements in zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wang, A.D.; Li, S.G.; Rolfo, F.; Li, Y.; Groppo, C.; Gu, X.F.; Hou, Z.H. Composition and geochronology of the deep–seated xenoliths from the southeastern margin of the North China Craton. Gondwana Res. 2013, 23, 1021–1039. [Google Scholar] [CrossRef]
- Zheng, J.P.; Griffin, W.; O’Reilly, S.Y.; Zhang, M.; Pearson, N.; Pan, Y.M. Widespread Archean basement beneath the Yangtze Craton. Geology 2006, 34, 417–420. [Google Scholar] [CrossRef]
- Badanina, I.Y.; Lord, R.A.; Malitch, K.N.; Meisel, T.C. Origin of platinum-group mineral assemblages in a mantle tectonite at Unst deduced from mineral chemistry and osmium isotopes. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Belousova, E.A.; Gonzalez Jimenez, J.M.; Graham, I.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N. The enigma of crustal zircons in upper-mantle rocks: Clues from the Tumut ophiolite, Southeast Australia. Geology 2015, 43, 119–122. [Google Scholar] [CrossRef]
- Grieco, G.; Ferrario, A.; Quadt, A.V.; Koeppel, V.; Mathez, E.A. The Zircon–Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps): Evidence and Geochronology of a Metasomatized Mantle Slab. J. Petrol. 2001, 42, 89–101. [Google Scholar] [CrossRef]
- Mattinson, J.M. Early Paleozoic ophiolite complexes of Newfoundland: Isotopic ages of zircon. Geology 1976, 3, 181–183. [Google Scholar] [CrossRef]
- Mukasa, S.B.; Ludden, J.N. Uranium-lead isotopic ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance. Geology 1987, 15, 825–828. [Google Scholar] [CrossRef]
- Pilot, J.; Werner, C.D.; Haubrich, F.; Baumann, N. Paleozoic and Proterozoic zircons from the Mid-Atlantic Ridge. Nature 1998, 393, 676–679. [Google Scholar] [CrossRef]
- Savelieva, G.N.; Suslov, P.V.; Larionov, A.N.; Berezhnaya, N.G. Age of zircons from chromites in the residual ophiolitic rocks as a reflection of upper mantle magmatic events. Dokl. Earth Sci. 2006, 411, 1401–1406. [Google Scholar] [CrossRef]
- Stern, R.J.; Ali, K.A.; Liegeois, J.P.; Johnson, P.R.; Kozdroj, W.; Kattan, F.H. Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian–Nubian Shield. Am. J. Sci. 2010, 310, 791–811. [Google Scholar] [CrossRef]
- Ashwal, L.; Torsvik, T.; Horváth, P.; Harris, C.; Webb, S.; Werner, S. A Mantle-derived Origin for Mauritian Trachytes. J. Petrol. 2016, 57, 1645–1676. [Google Scholar] [CrossRef]
- Schaltegger, U.; Amundsen, H.; Jamtveit, B.; Frank, M.; Grffin, W.; Gronvold, K.; Tronnes, R.; Torsvik, T. Contamination of OIB by underlying ancient continental lithosphere: U–Pb and Hf isotopes in zircons question EM1 and EM2 mantle components. Geochem. Cosmochim. Acta 2002, 66, A673. [Google Scholar]
- Amelin, Y.; Lee, D.C.; Halliday, A.N. Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 2000, 64, 4205–4225. [Google Scholar] [CrossRef]
- Zheng, J.P.; Griffin, W.L.; O’Reilly, S.Y.; Ming, Z.; Pearson, N. Zircons in mantle xenoliths record the Triassic Yangtze–North China continental collision. Earth Planet. Sci. Lett. 2006, 247, 130–142. [Google Scholar] [CrossRef]
- Zheng, J.P.; Tang, H.Y.; Zhang, Z.H. Zircon U–Pb ages and Hf isotopes of the Bixiling peridotite in the Dabie orogenic belt. Acta Petrol. Sin. 2007, 23, 343–350. [Google Scholar]
- Dewey, J.F.; Bird, J.M. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res. Atmos. 1971, 76, 3179–3206. [Google Scholar] [CrossRef]
- Nicolas, A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989; 367p. [Google Scholar]
- Coleman, R.G. Ophiolites; Springer: New York City, NY, USA, 1977. [Google Scholar]
- Shu, L.S.; Shi, Y.S.; Guo, L.Z. Plate-Terrane Tectonics and Collisional Orogenic Kinematics in the Central Jiangnan Orogen; Nanjing University Press: Nanjing, China, 1995. [Google Scholar]
- Shu, L.S.; Zhou, W.Q.; Shi, Y.S.; Yin, J. High-pressure metamorphic blueschists in the eastern Jiangnan Orogen and their geological age. Chin. Sci. Bull. 1993, 20, 1879–1882. [Google Scholar]
- Charvet, J.; Shu, L.; Shi, Y.; Guo, L.; Faure, M. The building of south China: Collision of Yangzi and Cathaysia blocks, problems and tentative answers. J. Asian Earth Sci. 1996, 13, 223–235. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Griffin, W.L.; Wang, R.C.; Qiu, J.S.; O’Reilly, S.Y.; Xu, X.S.; Liu, X.M.; Zhang, G.L. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Res. 2007, 159, 117–131. [Google Scholar] [CrossRef]
- Wang, X.L.; Shu, L.S.; Xing, G.F.; Zhou, J.C.; Tang, M.; Shu, X.J.; Qi, L.; Hu, Y.H. Post–orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800–760 Ma volcanic rocks. Precambrian Res. 2012, 222–223, 404–423. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Wilde, S.A.; Sun, M. Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Sci. Rev. 2002, 59, 125–162. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A. Tectonothermal evolution of the Mayuan Assemblage in the Cathaysia Block; implications for Neoproterozoic collision–related assembly of the South China Craton. Am. J. Sci. 1999, 299, 309–339. [Google Scholar] [CrossRef]
- Zhang, C.L.; Santosh, M.; Zou, H.B.; Li, H.K.; Huang, W.C. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry, zircon U–Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China. Lithos 2013, 179, 263–274. [Google Scholar] [CrossRef]
- Zhou, X.M.; Zou, H.B.; Yang, J.D.; Wang, Y.X. Sm–Nd isochron age and geological implications of the Fuchuan ophiolite suite in Shexian County, Anhui Province. Chin. Sci. Bull. 1989, 35, 1243–1245. [Google Scholar]
- Wang, C.Z.; Jiang, Y.; Xing, G.F. Current research status of ophiolites and issues related to South China ophiolites. East China Geol. 2011, 32, 235–246. [Google Scholar]
- Wang, X.L.; Zhou, J.C.; Chen, X.; Zhang, F.F.; Sun, Z.M. Formation and evolution of the Jiangnan Orogen. Bull. Mineral. Petrol. Geochem. 2017, 36, 22–43. [Google Scholar]
- Sun, Z.M.; Wang, X.L.; Qi, L.; Zhang, F.F.; Wang, D.; Li, J.Y.; Yu, M.G.; Shu, X.J. Formation of the Neoproterozoic ophiolites in southern China, new constraints from trace element and PGE geochemistry and Os isotopes. Precambrian Res. 2018, 309, 88–101. [Google Scholar] [CrossRef]
- Zhao, J.X. Genesis and tectonic implications of ophiolites in South Anhui and Northeast Jiangxi: Constraints from elemental and Sm–Nd isotopic data. Geochimica 1995, 4, 311–326. [Google Scholar]
- Zhou, J.T. Study on petrological and mineralogical types of the South Anhui ophiolite suite. Sci. Technol. Inf. 2013, 24, 468–469. [Google Scholar]
- Wang, X.L.; Zhou, J.C.; Griffin, W.L.; Zhao, G.C.; Yu, J.H.; Qiu, J.S.; Zhang, Y.J.; Xing, G.F. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Res. 2014, 242, 154–171. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation–inductively coupled plasma–mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Black, L.P.; Gulson, B.L. The age of the Mud Tank carbonatite, Strangways range, Northern Territory. Bmr J. Aust. Geol. Geophys. 1978, 3, 227–232. [Google Scholar]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. Mineral. Assoc. Can. 2008, 40, 204–207. [Google Scholar]
- Ludwig, K.R. Using Isoplot/EX, Version 2, a Geolocronolgical Toolkit for Microsoft Excel; Berkeley Geochronological Center Special Publication: Berkeley, CA, USA, 1999; Volume 1a, pp. 1–47. [Google Scholar]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Xiong, D.Y.; Wang, X.L.; Xing, G.F. A supercontinental cycle’s perspective for the formation of Precambrian pegmatitic lithium deposits. East China Geol. 2023, 44, 1–12. [Google Scholar]
- Greentree, M.R.; Li, Z.X.; Li, X.H.; Wu, H. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res. 2006, 151, 79–100. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhao, Z.F.; Wu, Y.B.; Zhang, S.B.; Liu, X.; Wu, F.Y. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol. 2006, 231, 135–158. [Google Scholar] [CrossRef]
- Belousova, E.A.; Kostitsyn, Y.A.; Griffin, W.L.; Begg, G.C.; O’Reilly, S.Y.; Pearson, N.J. The growth of the continental crust: Constraints from zircon Hf–isotope data. Lithos 2010, 119, 457–466. [Google Scholar] [CrossRef]
- Bleeker, W. The late Archean record: A puzzle in ca. 35 pieces. Lithos 2003, 71, 99–134. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Dhuime, B.; Pietranik, A.B.; Cawood, P.A.; Kemp, A.I.S.; Storey, C.D. The generation and evolution of the continental crust. J. Geol. Soc. 2010, 167, 229–248. [Google Scholar] [CrossRef]
- Mclennan, S.M.; Taylor, S.R. Geochemical Constraints on the Growth of the Continental Crust. J. Geol. 1982, 90, 347–361. [Google Scholar] [CrossRef]
- Kusky, T.M.; Santosh, M. The Columbia connection in North China. Geol. Soc. Lond. Spec. Publ. 2009, 323, 49–71. [Google Scholar] [CrossRef]
- Meert, J.G. Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Res. 2002, 5, 207–215. [Google Scholar] [CrossRef]
- Rogers, J.J.W.; Santosh, M. Tectonics and surface effects of the supercontinent Columbia. Gondwana Res. 2009, 15, 373–380. [Google Scholar] [CrossRef]
- Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res. 2010, 178, 149–167. [Google Scholar] [CrossRef]
- Condie, K.C. Rodinia and continental growth. Gondwana Res. 2001, 4, 154–155. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snowball earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; Vernikovsky, V. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 2003, 375, 261–288. [Google Scholar] [CrossRef]
- Wang, X.L.; Coble, M.A.; Valley, J.W.; Shu, X.J.; Kitajima, K.; Spicuzza, M.J.; Sun, T. Influence of radiation damage on late Jurassic zircons from southern China: Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chem. Geol. 2014, 389, 122–136. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, X.L.; Wang, D.; Yu, J.H.; Zhou, X.H.; Sun, Z.M. Neoproterozoic backarc basin on the southeastern margin of the Yangtze block during Rodinia assembly: New evidence from provenance of detrital zircons and geochemistry of mafic rocks. GSA Bull. 2017, 129, 904–919. [Google Scholar] [CrossRef]
- Meert, J.G. What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res. 2012, 21, 987–993. [Google Scholar] [CrossRef]
- Chen, R.X.; Li, H.Y.; Zheng, Y.F.; Zhang, L.; Gong, B.; Hu, Z. Crust–mantle interaction in a continental subduction channel: Evidence from orogenic peridotites in north qaidam, northern tibet. J. Petrol. 2018, 58, 191–226. [Google Scholar] [CrossRef]
- Hermann, J.; Rubatto, D.; Trommsdorff, V. Sub-solidus Oligocene zircon formation in garnet peridotite during fast decompression and fluid infiltration (Duria, Central Alps). Mineral. Petrol. 2006, 88, 181–206. [Google Scholar] [CrossRef]
- Li, H.Y.; Chen, R.X.; Zheng, Y.F.; Hu, Z.C. The crust-mantle interaction in continental subduction channels: Zircon evidence from orogenic peridotite in the Sulu orogen. J. Geophys. Res.-Solid Earth 2016, 121, 687–712. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Zhao, Z.F.; Wu, Y.B.; Gong, B. Protolith nature of deeply subducted continent: Zircon U-Pb age, Hf and O isotope constraints from UHP eclogite and gneiss in the Dabie orogen. Geochim. Cosmochim. Acta 2006, 70, A745. [Google Scholar] [CrossRef]
- Yamamoto, S.; Komiya, T.; Yamamoto, H.; Terabayashi, M.; Katayama, I.; Iizuka, T. Recycled crustal zircons from podiform chromitites in the luobusa ophiolite, southern Tibet. Isl. Arc 2013, 22, 89–103. [Google Scholar] [CrossRef]
- Robinson, P.T.; Trumbull, R.B.; Schmitt, A.; Yang, J.S.; Li, J.W.; Zhou, M.F. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 2015, 27, 486–506. [Google Scholar] [CrossRef]
- Wu, R.X.; Zheng, Y.F.; Wu, Y.B. Zircon U-Pb Dating and Element and Oxygen Isotope Geochemistry of Gabbro from Ophiolites in South Anhui. Acta Geosci. Sin. 2005, 26, 70–73. [Google Scholar]
- Li, X.H.; Li, Z.X.; Li, W.X. Detrital zircon U-pb age and hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia block, South China: A synthesis. Gondwana Res. 2014, 25, 1202–1215. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, X.L.; Wang, D.; Du, D.H.; Li, L.S. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction–accretion. Precambrian Res. 2021, 355, 106081. [Google Scholar] [CrossRef]
- Reid, A.F.; Ringwood, A.E. Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4. Earth Planet. Sci. Lett. 1969, 6, 205–208. [Google Scholar] [CrossRef]
- Glass, B.P.; Liu, S. Discovery of high-pressure ZrSiO4 polymorph in naturally occurring shock–metamorphosed zircons. Geology 2001, 29, 371. [Google Scholar] [CrossRef]
- Liu, L.G. High–pressure phase transformations in baddeleyite and zircon, with geophysical implications. Earth Planet. Sci. Lett. 1979, 44, 390–396. [Google Scholar] [CrossRef]
- Grand, S.P. Mantle shear structure beneath the Americas and surrounding oceans. J. Geophys. Res. Solid Earth 1994, 99, 11591–11621. [Google Scholar] [CrossRef]
- Hilst, V.D.R. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 1995, 374, 154–157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Li, J.; Wang, X. Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block. Minerals 2025, 15, 563. https://doi.org/10.3390/min15060563
Sun Z, Li J, Wang X. Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block. Minerals. 2025; 15(6):563. https://doi.org/10.3390/min15060563
Chicago/Turabian StyleSun, Ziming, Junyong Li, and Xiaolei Wang. 2025. "Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block" Minerals 15, no. 6: 563. https://doi.org/10.3390/min15060563
APA StyleSun, Z., Li, J., & Wang, X. (2025). Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block. Minerals, 15(6), 563. https://doi.org/10.3390/min15060563