Tracing Variation in Diagenesis in Concretions: Implications from a Raman Spectroscopic Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FWHM | Full width at half maximum |
References
- Grice, K.; Holman, A.I.; Plet, C.; Tripp, M. Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten. Minerals 2019, 9, 158. [Google Scholar] [CrossRef]
- Dhami, N.K.; Greenwood, P.F.; Poropat, S.F.; Tripp, M.; Elson, A.; Vijay, H.; Brosnan, L.; Holman, A.I.; Campbell, M.; Hoper, P.; et al. Microbially mediated fossil concretions and their characterization by the latest methodologies: A review. Front. Microbiol. 2023, 14, 1225411. [Google Scholar] [CrossRef]
- McCoy, V.E. Concretions as agents of soft-tissue preservation: A review. Paleontol. Soc. Pap. 2014, 20, 147–162. [Google Scholar] [CrossRef]
- Yoshida, H.; Ujihara, A.; Minami, M.; Asahara, Y.; Katsuta, N.; Yamamoto, K.; Sirono, S.; Maruyama, I.; Nishimoto, S.; Metcalfe, R. Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales. Sci. Rep. 2015, 5, 14123. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Yamamoto, K.; Minami, M.; Katsuta, N.; Sirono, S.; Metcalfe, R. Generalized conditions of spherical carbonate concretion formation around decaying organic matter in early diagenesis. Sci. Rep. 2018, 8, 6308. [Google Scholar] [CrossRef]
- Yoshida, H. Spherical Concretions on Earth and Mars—Understanding the Formation Process and Its Usage in the Future; Kinmiraisha: Nagoya, Japan, 2019; pp. 11–109. [Google Scholar]
- Muramiya, Y.; Yoshida, H.; Kubota, K.; Minami, M. Rapid formation of gigantic spherical dolomite concretion in marine sediments. Sediment. Geol. 2020, 404, 105664. [Google Scholar] [CrossRef]
- Kitanaka, R.; Tsuboi, M.; Ozaki, Y. Biogenic apatite in carbonate concretions with and without fossils investigated in situ by micro-Raman spectroscopy. Sci. Rep. 2023, 13, 9714. [Google Scholar] [CrossRef]
- Kitanaka, R.; Tsuboi, M.; Numata, Y.; Muramiya, Y.; Yoshida, H.; Ozaki, Y. Visualization and identification of components in a gigantic spherical dolomite concretion by Raman imaging in combination with MCR or CLS methods. Sci. Rep. 2024, 14, 749. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Fang, H.L. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy Fuel 2001, 15, 653–658. [Google Scholar] [CrossRef]
- Kouketsu, Y.; Mizukami, T.; Mori, H.; Endo, S.; Aoya, M.; Hara, H.; Nakamura, D.; Wallis, S. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc 2014, 23, 33–50. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth Sci. Rev. 2019, 198, 102936. [Google Scholar] [CrossRef]
- Spötl, C.; Houseknecht, D.W.; Jaques, R.C. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study. Org. Geochem. 1998, 28, 535–542. [Google Scholar] [CrossRef]
- Schito, A.; Muirhead, D.K.; Parnell, J. Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth Sci. Rev. 2023, 237, 104292. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman spectra of carbonaceous material in metasediments: A new geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Lai, P.; Huang, W. Normal Faults in Bitou and Longdong Areas, Northeastern Taiwan. Bull. Cent. Geol. Surv. 2023, 36, 43–78. [Google Scholar]
- Pan, T.; Lin, A.T.; Chi, W. Paleoenvironments of the evolving Pliocene to early Pleistocene foreland basin in northwestern Taiwan: An example from the Dahan River section. Isl. Arc 2015, 24, 317–341. [Google Scholar] [CrossRef]
- Vaucher, R.; Zeeden, C.; Hsieh, A.I.; Kaboth-Bahr, S.; Lin, A.T.; Horng, C.; Dashtgard, S.E. Hydroclimate dynamics during the Plio-Pleistocene transition in the northwest Pacific realm. Glob. Planet. Change 2023, 223, 104088. [Google Scholar] [CrossRef]
- Přikryl, T.; Lin, C.; Hsu, C.; Lee, S. New acropomatiform fossils from the upper Kueichulin Formation (lower Pliocene), northern Taiwan. Riv. Ital. Paleontol. Stratigr. 2024, 130, 211–229. [Google Scholar] [CrossRef]
- Lin, C.; Chen, W. Geologic Map of Taiwan; Geological Society of Taiwan: Taipei, Taiwan, 2016. [Google Scholar]
- de Faria, D.L.A.; Silvia, S.A.; de Oliveira, M.T. Microspectroscopy of Some Iron Oxides Raman and Oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.I.; Diaconu, V.; Buzatu, A. The composition and source of the raw material of two stone axes of Late Bronze Age from Neamț County (Romania)—A Raman study. Analele Stiinț. Univ. A. Cuza Iasi Ser. Geol. 2013, 59, 5. [Google Scholar]
- Marshall, C.P.; Dufresne, W.J.B.; Rufledt, C.J. Polarized Raman spectra of hematite and assignment of external modes. J. Raman Spectrosc. 2020, 51, 1522–1529. [Google Scholar] [CrossRef]
- Shebanova, O.N.; Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum. J. Solid State Chem 2003, 174, 424–430. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets. Phys. Chem. C 2012, 116, 7515–7519. [Google Scholar] [CrossRef]
- Sato, R.K.; McMillan, P.F. An Infrared and Raman Study of the Isotopic Species of α-Quartz. J. Phys. Chem. 1987, 91, 3494–3498. [Google Scholar] [CrossRef]
- Hong, H.; Ji, K.; Liu, C.; Algeo, T.J.; Yin, K.; Zhao, L.; Hochella, M.F.; Fang, Q.; Wang, C. Authigenic anatase nanoparticles as a proxy for sedimentary environment and porewater pH. Am. Min. 2022, 107, 2176–2187. [Google Scholar] [CrossRef]
- Han, Y.; Ozaki, Y.; Tsuboi, M. Non-destructive Analytical Study of Raman Spectra Variations and Mechanisms of Calcite and Aragonite in Modern and Fossilized Oysters. Appl. Spectrosc. 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and Infrared Spectra of Carbonates of Calcite Structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Petsch, S.T.; Smernik, R.J.; Eglinton, T.I.; Oades, J.M. A solid state 13C-NMR study of kerogen degradation during black shale weathering. Geochim. Cosmochim. Acta 2001, 65, 1867–1882. [Google Scholar] [CrossRef]
- Mirwald, P.W. The Electrical Conductivity of Calcite Between 300 and 1200 °C at a CO2 Pressure of 40 Bars. Phys. Chem. Miner. 1979, 4, 291–297. [Google Scholar] [CrossRef]
- Ukita, M.; Toyoura, K.; Nakamura, A.; Matsunaga, K. Pressure-induced phase transition of calcite and aragonite: A first principles study. J. Appl. Phys. 2016, 120, 142118. [Google Scholar] [CrossRef]
- Hashim, M.S.; Kaczmarek, S.E. The Transformation of Aragonite to Calcite in the Presence of Magnesium: Implications for Marine Diagenesis. Earth Planet. Sci. Lett. 2021, 574, 117166. [Google Scholar] [CrossRef]
- Strenzel, H.B. Aragonite and Calcite as Constituents of Adult Oyster Shells. Science 1963, 30, 232–233. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Shimooka, K.; Yeh, M.-W.; Tsuboi, M. Tracing Variation in Diagenesis in Concretions: Implications from a Raman Spectroscopic Study. Minerals 2025, 15, 502. https://doi.org/10.3390/min15050502
Han Y, Shimooka K, Yeh M-W, Tsuboi M. Tracing Variation in Diagenesis in Concretions: Implications from a Raman Spectroscopic Study. Minerals. 2025; 15(5):502. https://doi.org/10.3390/min15050502
Chicago/Turabian StyleHan, Yaxuan, Kazuya Shimooka, Meng-Wan Yeh, and Motohiro Tsuboi. 2025. "Tracing Variation in Diagenesis in Concretions: Implications from a Raman Spectroscopic Study" Minerals 15, no. 5: 502. https://doi.org/10.3390/min15050502
APA StyleHan, Y., Shimooka, K., Yeh, M.-W., & Tsuboi, M. (2025). Tracing Variation in Diagenesis in Concretions: Implications from a Raman Spectroscopic Study. Minerals, 15(5), 502. https://doi.org/10.3390/min15050502