Relationship Between the Chemical Composition and Radioactive Content of Fly Ash and Bottom Ash from Thermoelectric Power Plants
Abstract
:1. Introduction
2. Materials, Equipment, and Methods
2.1. Materials
2.2. Equipment
2.2.1. X-Ray Fluorescence
2.2.2. Gamma Spectrometry
2.3. Statistical Methods Used
2.3.1. Principal Component Analysis
2.3.2. Comparison Between FA and BA
2.4. Determination of the Weight of the Different Oxides
2.5. Assessment of the Effective Doses of the FA and BA for Workers
3. Results
3.1. Chemical and Radiological Composition of the FA
3.1.1. Chemical Composition
3.1.2. Activity Concentrations of Natural Radionuclides
3.2. Correlation Between Chemical Composition and Radioactive Content
3.3. Evaluation of the Influence of Chemical Composition on the Radioactive Content of FAs
3.4. Comparison Between the Chemical and Radiological Composition of FA and BA
3.5. Assessment of the Effective Doses of the FA and BA for Workers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vilakazi, A.Q.; Ndlovu, S.; Chipise, L.; Shemi, A. The Recycling of Coal Fly Ash: A Review on Sustainable Developments and Economic Considerations. Sustainability 2022, 14, 1958. [Google Scholar] [CrossRef]
- Paul, K.T.; Satpathy, S.K.; Manna, I.; Chakraborty, K.K.; Nando, G.B. Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling. Nanoscale Res. Lett. 2007, 2, 397. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size. Fuel 2018, 228, 263–271. [Google Scholar] [CrossRef]
- Arditsoglou, A.; Petaloti, C.; Terzi, E.; Sofoniou, M.; Samara, C. Size distribution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants. Sci. Total Environ. 2004, 323, 153–167. [Google Scholar] [CrossRef]
- Sarkar, A.; Rano, R.; Mishra, K.K.; Sinha, I.N. Particle size distribution profile of some Indian fly ash—A comparative study to assess their possible uses. Fuel Process. Technol. 2005, 86, 1221–1238. [Google Scholar] [CrossRef]
- Ramjan, S.; Tangchirapat, W.; Jaturapitakkul, C.; Chee Ban, C.; Jitsangiam, P.; Suwan, T. Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar. Materials 2021, 14, 1528. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.H.; Thomas, M.D.A. The effect of fly ash composition on the expansion of concrete due to alkali–silica reaction. Cem. Concr. Res. 2000, 30, 1063–1072. [Google Scholar] [CrossRef]
- Sarkar, A.; Vishwakarma, S.; Banichul, H.; Mishra, K.K.; Roy, S.S. A Comprehensive Analysis of the Particle Size and Shape of Fly Ash from Different Fields of ESP of a Super Thermal Power Plant. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 385–395. [Google Scholar] [CrossRef]
- Fidanchevski, E.; Angjusheva, B.; Jovanov, V.; Murtanovski, P.; Vladiceska, L.; Aluloska, N.S.; Nikolic, J.K.; Ipavec, A.; Šter, K.; Mrak, M.; et al. Technical and radiological characterisation of fly ash and bottom ash from thermal power plant. J. Radioanal. Nucl. Chem. 2021, 330, 685–694. [Google Scholar] [CrossRef]
- Khoshnoud, P. Polymer Foam/Fly Ash Composites: Evaluation of Mechanical, Interfacial, Thermal, Viscoelastic and Microstructural Properties; The University of Wisconsin-Milwaukee: Milwaukee, WI, USA, 2017. [Google Scholar]
- Mishra, J.; Nanda, B.; Patro, S.K.; Krishna, R.S. Sustainable Fly Ash Based Geopolymer Binders: A Review on Compressive Strength and Microstructure Properties. Sustainability 2022, 14, 15062. [Google Scholar] [CrossRef]
- ASTM C618; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM: West Conshohocken, PA, USA, 2023.
- Kizhakkumodom Venkatanarayanan, H.; Rangaraju, P.R. Decoupling the effects of chemical composition and fineness of fly ash in mitigating alkali-silica reaction. Cem. Concr. Compos. 2013, 43, 54–68. [Google Scholar] [CrossRef]
- Alahmari, T.S.; Abdalla, T.A.; Rihan, M.A.M. Review of Recent Developments Regarding the Durability Performance of Eco-Friendly Geopolymer Concrete. Buildings 2023, 13, 3033. [Google Scholar] [CrossRef]
- Saad, A.H.; Nahazanan, H.; Yusuf, B.; Toha, S.F.; Alnuaim, A.; El-Mouchi, A.; Elseknidy, M.; Mohammed, A.A. A Systematic Review of Machine Learning Techniques and Applications in Soil Improvement Using Green Materials. Sustainability 2023, 15, 9738. [Google Scholar] [CrossRef]
- Nukah, P.D.; Abbey, S.J.; Booth, C.A.; Nounu, G. Mapping and synthesizing the viability of cement replacement materials via a systematic review and meta-analysis. Constr. Build. Mater. 2023, 405, 133290. [Google Scholar] [CrossRef]
- Raj, A.; Sharma, T.; Singh, S.; Sharma, U.; Sharma, P.; Singh, R.; Sharma, S.; Kaur, J.; Kaur, H.; Salah, B.; et al. Building a Sustainable Future from Theory to Practice: A Comprehensive PRISMA-Guided Assessment of Compressed Stabilized Earth Blocks (CSEB) for Construction Applications. Sustainability 2023, 15, 9374. [Google Scholar] [CrossRef]
- de Rubeis, T.; Ciccozzi, A.; Giusti, L.; Ambrosini, D. On the use of 3D printing to enhance the thermal performance of building envelope—A review. J. Build. Eng. 2024, 95, 110284. [Google Scholar] [CrossRef]
- Aydın, S.; Karatay, Ç.; Baradan, B. The effect of grinding process on mechanical properties and alkali–silica reaction resistance of fly ash incorporated cement mortars. Powder Technol. 2010, 197, 68–72. [Google Scholar] [CrossRef]
- Eker, H.; Demir Şahin, D.; Çullu, M. Effect of Reduced Fineness of Fly Ash Used on the Alkali–Silica Reaction (ASR) of Concrete. Iran. J. Sci. Technol. Trans. Civil Eng. 2023, 47, 2203–2217. [Google Scholar] [CrossRef]
- Velandia Silva, C.A. Libro de Abstracts-Book of Abstracts. In Proceedings of the I International Conference Sustainable Construction and Demolition; Universitat Politecnica de Valencia: Valencia, Spain, 2022; p. 130. [Google Scholar]
- Cevik, U.; Damla, N.; Koz, B.; Kaya, S. Radiological Characterization around the Afsin-Elbistan Coal-Fired Power Plant in Turkey. Energy Fuels 2008, 22, 428–432. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P.; Yao, D.; Huang, W.; Tang, S.; Wang, K.; Liu, W.; Hu, Y.; Zhang, B.; Sha, J. Abundance, Distribution, and Modes of Occurrence of Uranium in Chinese Coals. Minerals 2017, 7, 239. [Google Scholar] [CrossRef]
- Karangelos, D.J.; Petropoulos, N.P.; Anagnostakis, M.J.; Hinis, E.P.; Simopoulos, S.E. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants. J. Environ. Radioact. 2004, 77, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Peppas, T.K.; Karfopoulos, K.L.; Karangelos, D.J.; Rouni, P.K.; Anagnostakis, M.J.; Simopoulos, S.E. Radiological and instrumental neutron activation analysis determined characteristics of size-fractionated fly ash. J. Hazard. Mater. 2010, 181, 255–262. [Google Scholar] [CrossRef]
- Cano, A.; Suarez-Navarro, J.A.; Puertas, F.; Fernandez-Jimenez, A.; Alonso, M.D.M. New Approach to Determine the Activity Concentration Index in Cements, Fly Ashes, and Slags on the Basis of Their Chemical Composition. Materials 2023, 16, 2677. [Google Scholar] [CrossRef] [PubMed]
- Bhangare, R.C.; Tiwari, M.; Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G. Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J. Radioanal. Nucl. Chem. 2014, 300, 17–22. [Google Scholar] [CrossRef]
- Krylov, D.A.; Sidorova, G.P. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants. Therm. Eng. 2013, 60, 239–243. [Google Scholar] [CrossRef]
- Temuujin, J.; Surenjav, E.; Ruescher, C.H.; Vahlbruch, J. Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 2019, 216, 866–882. [Google Scholar] [CrossRef]
- Font, J.; Casas, M.; Forteza, R.; Cerda, V.; Garcias, F. Natural radioactive elements and heavy metals in coal, fly ash and bottom ash from a thermal power plant. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1993, 28, 2061–2073. [Google Scholar] [CrossRef]
- Ahmed, I.K.; Khalaf, H.N.B.; Ambrosino, F.; Mostafa, M.Y.A. Fly ash radiological characterization from thermal power plants in Iraq. J. Radioanal. Nucl. Chem. 2021, 329, 1237–1245. [Google Scholar] [CrossRef]
- Khan, I.U.; Sun, W.; Lewis, E. Estimation of various radiological parameters associated with radioactive contents emanating with fly ash from Sahiwal coal–fuelled power plant, Pakistan. Environ. Monit. Assess. 2020, 192, 715. [Google Scholar] [CrossRef]
- DNV. Energy Transition Outlook 2024. In A Global and Regional Forecast to 2050; DNV AS: Høvik, Norway, 2024; p. 261. [Google Scholar]
- European Standard EN 196-2; Method of Testing Cement. Part 2: Chemical Analysis of Cement. European Committee for Standardization: Brussels, Belgium, 2014.
- Barba-Lobo, A.; Expósito-Suárez, V.M.; Suárez-Navarro, J.A.; Bolívar, J.P. Robustness of LabSOCS calculating Ge detector efficiency for the measurement of radionuclides. Radiat. Phys. Chem. 2023, 205, 110734. [Google Scholar] [CrossRef]
- Canberra. Genie 2000 Operations Manual; Canberra Industries: Meriden, CT, USA, 2012. [Google Scholar]
- Suárez-Navarro, J.A.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Lanzon, M.; Puertas, F. Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl. Radiat. Isot. 2018, 142, 1–7. [Google Scholar] [CrossRef]
- Canberra. Coincidence Summing Library (Nuclides and Lines); Canberra Industries, Inc.: Meriden, CT, USA, 2008. [Google Scholar]
- UNE-EN ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. UNE, I.E.: Madrid, Spain, 2017.
- Be, M.; Chisté, V.; Dulieu, C.; Kellett, M.; Mougeot, X.; Arinc, A.; Chechev, V.; Kuzmenko, N.; Kibédi, T.; Luca, A. Table of Radionuclides (Vol. 8-A= 41 to 198); Bureau International Des Poids et Mesures (BIPM): Sèvres, France, 2016. [Google Scholar]
- Kassambara, A. Practical Guide to Principal Component Methods in R: PCA, M (CA), FAMD, MFA, HCPC, Factoextra, 2017; Volume 2.
- Expósito-Suárez, V.M.; Suárez-Navarro, J.A.; Caro, A.; Sanz, M.B.; Hernaiz, G.; González-Sanabria, A.; Suárez-Navarro, M.J.; Jordá-Bordehore, L.; Chamorro-Villanueva, H.; Arlandi, M.; et al. Radiological characterization of the tailings of an abandoned copper mine using a neural network and geostatistical analysis through the Co-Kriging method. Environ. Geochem. Health 2024, 46, 297. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Radiation protection 122. In Practical Use of the Concepts of Clearance and Exemption Part II: Application of the Concepts of Exemption and Clearance to Natural Radiation Sources; Radiation Protection; European Commission: Brussels, Belgium, 2001. [Google Scholar]
- Iwaoka, K.; Tabe, H.; Yonehara, H. Natural radioactivity of bedrock bath instruments and hot spring instruments in Japan. J. Radioanal. Nucl. Chem. 2013, 295, 817–821. [Google Scholar] [CrossRef]
- BOE. Real Decreto 1029/2022, de 20 de Diciembre, por el que se Aprueba el Reglamento Sobre Protección de la Salud Contra Los Riesgos Derivados de la Exposición a las Radiaciones Ionizantes; BOE: Madrid, Spain, 2022. [Google Scholar]
- Wang, Y.; Acarturk, B.C.; Burris, L.; Hooton, R.D.; Shearer, C.R.; Suraneni, P. Physicochemical characterization of unconventional fly ashes. Fuel 2022, 316, 123318. [Google Scholar] [CrossRef]
- Zielinski, R.A. Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance. In U.S. Geological Survey Fact Sheet FS-163-97; USGS Publications Warehouse: Reston, VA, USA, 1997. [Google Scholar]
- Gupta, V.; Pathak, D.K.; Siddique, S.; Kumar, R.; Chaudhary, S. Study on the mineral phase characteristics of various Indian biomass and coal fly ash for its use in masonry construction products. Constr. Build. Mater. 2020, 235, 117413. [Google Scholar] [CrossRef]
- Greenpeace. Las trampas del carbón. In Informe Sobre las Centrales Térmicas de Carbón en España (in Spanish); Greenpeace: Madrid, Spain, 2015. [Google Scholar]
- Elmehdi, H.M.; Ramachandran, K.; Al-Khalaileh, S.T.; El-Sayed Ahmed, S.; Daoudi, K.; Gaidi, M. Distribution of naturally occurring radioactive materials (NORMs) in Sharjah: Geological drivers and public health implications. Case Stud. Chem. Environ. Eng. 2025, 11, 101150. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Tou, F.; Yan, X.; Dai, S.; Hower, J.C.; Saikia, B.K.; Kersten, M.; Hochella, M.F. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. J. Hazard. Mater. 2023, 445, 130482. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel 2007, 86, 1490–1512. [Google Scholar] [CrossRef]
- Kuzmanović, P.; Petrović, L.F.; Hansman, J.; Forkapić, S.; Mrđa, D.; Radić, J.K. Radioactivity of phosphate rocks and products used in Serbia and assessment of radiation risk for workers. J. Radioanal. Nucl. Chem. 2023, 332, 699–712. [Google Scholar] [CrossRef]
- Wen, H.; Pan, Z.; Giammar, D.; Li, L. Enhanced Uranium Immobilization by Phosphate Amendment under Variable Geochemical and Flow Conditions: Insights from Reactive Transport Modeling. Environ. Sci. Technol. 2018, 52, 5841–5850. [Google Scholar] [CrossRef]
- Koshy, N.; Singh, D.N. Fly ash zeolites for water treatment applications. J. Environ. Chem. Eng. 2016, 4, 1460–1472. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, C.; Xing, L.; He, H.-T.; Zhao, Y.; Xin, Y.; Xu, Y.; Zhao, C.; Sun, P. Mineralogy and geochemistry of the coal seam of Shanxi Formation in Guotun Mine, Juye Coalfield, North China. Energy Explor. Exploit. 2019, 37, 1779–1803. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, M.; Wang, J.; Yao, J.; Cao, Y.; Romero, C.E.; Pan, W.-p. Occurrence of uranium in Chinese coals and its emissions from coal-fired power plants. Fuel 2016, 166, 404–409. [Google Scholar] [CrossRef]
- Levandowski, J.; Kalkreuth, W. Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. Int. J. Coal Geol. 2009, 77, 269–281. [Google Scholar] [CrossRef]
- Jones, K.B.; Ruppert, L.F.; Swanson, S.M. Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. Int. J. Coal Geol. 2012, 94, 337–348. [Google Scholar] [CrossRef]
Serie | Radionuclide | Energy (keV) | Photons/100 Disintegrations |
---|---|---|---|
Uranium | 63.20 (2) | 3.75 (8) | |
186.211 (13) | 3.555 (19) | ||
351.932 (2) | 35.60 (7) | ||
609.312 (7) | 45.49 (19) | ||
1120.287 | 14.91 (3) | ||
1764.494 (14) | 15.31 (5) | ||
46.539 (1) | 4.252 (40) | ||
Thorium | 911.196 (6) | 26.2 (8) | |
238.632 (2) | 43.6 (5) | ||
583.187 (2) | 85.0 (3) | ||
Potassium | 1460.822 (6) | 10.55 (11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Navarro, J.A.; Sanjuán, M.Á.; Expósito-Suárez, V.M.; Hernáiz, G.; Benavente, J.F.; Argiz, C. Relationship Between the Chemical Composition and Radioactive Content of Fly Ash and Bottom Ash from Thermoelectric Power Plants. Minerals 2025, 15, 471. https://doi.org/10.3390/min15050471
Suárez-Navarro JA, Sanjuán MÁ, Expósito-Suárez VM, Hernáiz G, Benavente JF, Argiz C. Relationship Between the Chemical Composition and Radioactive Content of Fly Ash and Bottom Ash from Thermoelectric Power Plants. Minerals. 2025; 15(5):471. https://doi.org/10.3390/min15050471
Chicago/Turabian StyleSuárez-Navarro, José Antonio, Miguel Ángel Sanjuán, Víctor Manuel Expósito-Suárez, Guillermo Hernáiz, José Francisco Benavente, and Cristina Argiz. 2025. "Relationship Between the Chemical Composition and Radioactive Content of Fly Ash and Bottom Ash from Thermoelectric Power Plants" Minerals 15, no. 5: 471. https://doi.org/10.3390/min15050471
APA StyleSuárez-Navarro, J. A., Sanjuán, M. Á., Expósito-Suárez, V. M., Hernáiz, G., Benavente, J. F., & Argiz, C. (2025). Relationship Between the Chemical Composition and Radioactive Content of Fly Ash and Bottom Ash from Thermoelectric Power Plants. Minerals, 15(5), 471. https://doi.org/10.3390/min15050471