Knowledge Structure and Frontier Evolution of Research on Nickel Deposits
Abstract
1. Introduction
2. Data and Analytical Methods
2.1. Data Sources
2.2. Analytical Methods
3. Results and Discussion
3.1. Annual Publishing Trends
3.2. Quantitative Analysis of WoS Knowledge Mapping Results
3.2.1. Institutions Cooperation Network
3.2.2. Countries/Regions Cooperation Network
3.2.3. Journal Citation Relationship from References
3.3. Burstiness Analysis of Keywords
3.4. The Research Frontier for Nickel Deposit
3.4.1. Platinum-Group Minerals
3.4.2. Ore-Forming Fluids
3.4.3. Isotopic Analysis
3.4.4. Eastern Tianshan
3.4.5. Organic Matter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudd, G.M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol. Rev. 2010, 38, 9–26. [Google Scholar] [CrossRef]
- Gulley, A.L.; Nassar, N.T.; Xun, S. China, the United States, and competition for resources that enable emerging technologies. Proc. Natl. Acad. Sci. USA 2018, 115, 4111–4115. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.J.; Ma, X.H. Metallogenic regularity and main research progress of cobalt and nickel deposits in China. J. Geochem. Explor. 2024, 266, 107574. [Google Scholar] [CrossRef]
- National Minerals Information Center. Nickel Statistics and Information. Available online: https://www.usgs.gov/centers/national-minerals-information-center/nickel-statistics-and-information (accessed on 12 December 2024).
- Mossali, E.; Picone, N.; Gentilini, L.; Rodrìguez, O.; Pérez, J.M.; Colledani, M. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. J. Environ. Manag. 2020, 264, 110500. [Google Scholar] [CrossRef]
- Liu, Y.G.; Cai, C.; Zhu, S.C.; Zheng, Z.; Li, G.W.; Chen, H.Y.; Li, C.; Sun, H.Y.; Chou, I.-M.; Yu, Y.N.; et al. Enhanced hydrogen evolution catalysis of pentlandite due to the increases in coordination number and sulfur vacancy during cubic-hexagonal phase transition. Small 2024, 13, 2311161. [Google Scholar] [CrossRef]
- Vance, T.C.; Huang, T.; Butler, K.A. Big data in Earth science: Emerging practice and promise. Science 2024, 383, 6688. [Google Scholar] [CrossRef]
- Smith, J.; Kast, A.; Geraschenko, A.; Morton, Y.J.; Brenner, M.P.; van Diggelen, F.; Williams, B.P. Mapping the ionosphere with millions of phones. Nature 2024, 635, 365–369. [Google Scholar] [CrossRef]
- Guo, H.D. Big data drives the development of Earth science. Big Earth Data 2017, 1, 1–3. [Google Scholar] [CrossRef]
- Guo, H.D. Big Earth data: A new frontier in Earth and information sciences. Big Earth Data 2017, 1, 4–20. [Google Scholar] [CrossRef]
- Guo, H.D.; Wang, L.; Chen, F.; Liang, D. Scientific big data and Digital Earth. Chin. Sci. Bull. 2014, 59, 5066–5073. [Google Scholar] [CrossRef]
- Tolle, K.M.; Tansley, D.S.W.; Hey, A.J.G. The Fourth Paradigm: Data-Intensive Scientific Discovery. IEEE 2011, 99, 1334–1337. [Google Scholar] [CrossRef]
- Gettelman, A.; GeeR, A.J.; Forbes, R.M.; Carmichael, G.R.; Feingold, G.; Posselt, D.J.; Stephens, G.L.; Van Den Heever, S.C.; Varble, A.C.; Zuidema, P. The future of Earth system prediction: Advances in model-data fusion. Sci. Adv. 2022, 8, eabn3488. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Yu, M.Z.; Li, Y.; Hu, F.; Jiang, Y.Y.; Liu, Q.; Sha, D.X.; Xu, M.C.; Gu, J. Big Earth data analytics: A survey. Big Earth Data 2019, 3, 83–107. [Google Scholar] [CrossRef]
- Zhu, Y. Geospatial semantics, ontology and knowledge graphs for big Earth data. Big Earth Data 2019, 3, 187–190. [Google Scholar] [CrossRef]
- Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth data: Disruptive changes in Earth observation data management and analysis? Int. J. Digit. Earth 2020, 13, 832–850. [Google Scholar] [CrossRef]
- Cai, P.J.; Yang, J.S.; Lian, D.Y.; Wu, W.W.; Yang, Y.; Rui, H.C. Knowledge Structure and Frontier Evolution of Research on Chromitite: A Scientometric Review. Minerals 2022, 12, 1211. [Google Scholar] [CrossRef]
- Singhal, A. Introducing the Knowledge Graph: Things, not strings. Off. Google Blog 2012, 5, 3. [Google Scholar]
- Li, Z.J.; Zhao, H.; Liu, J.N.; Zhang, J.Q.; Shao, Z.G. Evaluation and promotion strategy of resilience of urban water supply system under flood and drought disasters. Sci. Rep. 2022, 12, 7404. [Google Scholar] [CrossRef]
- Tian, Y.M.; Liu, J.Y.; Xu, X.; Wu, X.S. Knowledge mapping of vocational education and training research (2004–2020): A visual analysis based on CiteSpace. Sci. Rep. 2023, 13, 22348. [Google Scholar] [CrossRef]
- Colther, C.; Pezoa-Fuentes, C.; Doussoulin, J.P. How important is the scientific knowledge gap between leading research and producing countries of lithium? Heliyon 2024, 10, e37653. [Google Scholar] [CrossRef]
- Swanson, D.; Goel, L.; Francisco, K.; Stock, J. Understanding the Relationship between General and Middle-Range Theorizing. Int. J. Logist. Manag. 2020, 31, 401–421. [Google Scholar] [CrossRef]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.L.; Chen, J.H.; Guo, H.X.; Li, Y.L. Knowledge mapping of research on strategic mineral resource security: A visual analysis using CiteSpace. Resour. Policy 2021, 74, 102372. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis. Front. Res. Metr. Anal. 2021, 6, 742311. [Google Scholar] [CrossRef]
- Cotrina-Teatino, M.A.; Marquina-Araujo, J.J.; Avalos-Murga, J.A.; Carrion-Villacorta, F.L. Flotation of mine tailings: A bibliometric analysis and systematic literature review. J. Environ. Chem. Eng. 2025, 13, 116136. [Google Scholar] [CrossRef]
- Cotrina-Teatino, M.A.; Marquina-Araujo, J.J.; Carrion-Villacorta, F.L.; Valdivieso-Saavedra, M.A. Nanobubbles and the flotation process in mineral recovery: A bibliometric and systematic literature analysis covering the period 2005–2024. Miner. Eng. 2025, 227, 109310. [Google Scholar] [CrossRef]
- Cotrina-Teatino, M.A.; Marquina-Araujo, J.J. Circular economy in the mining industry: A bibliometric and systematic literature review. Resour. Policy 2025, 102, 105513. [Google Scholar] [CrossRef]
- Cotrina-Teatino, M.A.; Marquina-Araujo, J.J. Hotelling rule in non-renewable resources: A bibliometric and systematic literature review analysis. Resour. Policy 2024, 98, 105342. [Google Scholar] [CrossRef]
- Lian, D.Y.; Liu, F.; Cai, P.J.; Wu, W.W.; Li, J.; Majka, J.; Xu, Z.Q.; Yang, J.S. Osmium and zinc isotope constraints on the origin of chromitites from the Yarlung-Zangbo ophiolites, Tibet, China. Miner. Depos. 2024, 59, 1089–1107. [Google Scholar] [CrossRef]
- Cai, P.J.; Lian, D.Y.; Aitchison, J.C.; Cluzel, D.; Zhou, R.J.; Rui, H.C.; Bo, R.Z.; Ma, H.T.; Yang, J.S.; Masoud, A.E. Geochemical constraints on subduction-related mantle metasomatism of the Tiébaghi ophiolitic lherzolite in New Caledonia. Lithos 2025, 496–497, 107948. [Google Scholar] [CrossRef]
- Song, X.Y.; Keays, R.R.; Xiao, L.; Qi, H.W.; Ihlenfeld, C. Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chem. Geol. 2009, 262, 246–261. [Google Scholar] [CrossRef]
- Song, X.Y.; Yi, J.N.; Chen, L.M.; She, Y.W.; Liu, C.Z.; Dang, X.Y.; Yang, Q.A.; Wu, S.K. The Giant Xiarihamu Ni-Co Sulfide Deposit in the East Kunlun Orogenic Belt, Northern Tibet Plateau, China. Econ. Geol. 2016, 111, 29–55. [Google Scholar] [CrossRef]
- Song, X.Y.; Keays, R.R.; Zhou, M.F.; Qi, L.; Ihlenfeld, C.; Xiao, J.F. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochim. Cosmochim. Acta 2009, 73, 404–424. [Google Scholar] [CrossRef]
- Qi, L.; Gao, J.; Huang, X.; Hu, J.; Zhou, M.F.; Zhong, H. An improved digestion technique for determination of platinum group elements in geological samples. J. Anal. At. Spectrom. 2011, 26, 1900–1904. [Google Scholar] [CrossRef]
- Qi, L.; Wang, C.Y.; Zhou, M.F. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China. Lithos 2008, 106, 222–236. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, M.F. Platinum-group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chem. Geol. 2008, 248, 83–103. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, M.F.; Wang, C.Y.; Sun, M. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion. Geochem. J. 2007, 41, 407–414. [Google Scholar] [CrossRef]
- Wei, B.; Wang, C.Y.; Li, C.; Sun, Y. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian orogenic belt, northeastern China. Econ. Geol. 2013, 108, 1813–1831. [Google Scholar] [CrossRef]
- Maier, W.D. Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. J. Afr. Earth Sci. 2005, 41, 165–191. [Google Scholar] [CrossRef]
- Mungall, J.E.; Brenan, J.M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements. Geochim. Cosmochim. Acta 2014, 125, 265–289. [Google Scholar] [CrossRef]
- Barnes, S.J.; Fisher, L.A.; Godel, B.; Pearce, M.A.; Maier, W.D.; Paterson, D.; Howard, D.L.; Ryan, C.G.; Laird, J.S. Primary cumulus platinum minerals in the Monts de Cristal Complex, Gabon: Magmatic microenvironments inferred from high-definition X-ray fluorescence microscopy. Contrib. Mineral. Petrol. 2016, 171, 23. [Google Scholar] [CrossRef]
- Knight, R.D.; Prichard, H.M.; Ferreira, C.F. Evidence for As Contamination and the Partitioning of Pd into Pentlandite and Co plus Platinum Group Elements into Pyrite in the Fazenda Mirabela Intrusion, Brazil. Econ. Geol. 2017, 112, 1889–1912. [Google Scholar] [CrossRef]
- Mansur, E.; Barnes, S.J.; Janasi, V.; Henrique-Pinto, R.; Alves, A.; Marteleto, N.S. The distribution of platinum-group elements and Te, As, Bi, Sb and Se (TABS plus) in the Parana Magmatic Province: Effects of crystal fractionation, sulfide segregation and magma degassing. Lithos 2021, 400–401, 106374. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S.; Ikenne, M. Mineralogy and Paragenesis of the Co-Ni Arsenide Ores of Bou Azzer, Anti-Atlas, Morocco. Econ. Geol. 2009, 104, 249–266. [Google Scholar] [CrossRef]
- Burisch, M.; Gerdes, A.; Walter, B.F.; Neumann, U.; Fettel, M.; Markl, G. Methane and the origin of five-element veins: Mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol. Rev. 2017, 81, 42–61. [Google Scholar] [CrossRef]
- Román, N.; Reich, M.; Leisen, M.; Morata, D.; Barra, F.; Deditius, A.P. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim. Cosmochim. Acta 2019, 246, 60–85. [Google Scholar] [CrossRef]
- Barnes, S.J.; Cruden, A.R.; Arndt, N.; Saumur, B.M. The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geol. Rev. 2016, 76, 296–316. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Klemd, R.; Krumm, S.; Strauss, H. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem. Geol. 2016, 423, 7–18. [Google Scholar] [CrossRef]
- Pirajno, F.; Mao, J.W.; Zhang, Z.C.; Zhang, Z.H.; Chai, F.M. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. J. Asian Earth Sci. 2008, 32, 165–183. [Google Scholar] [CrossRef]
- Naldrett, A.J. Key factors in the genesis of Noril’sk, Sudbury, Jinchuan, Voisey’s bay and other world-class Ni-Cu-PGE deposits: Implications for exploration. Aust. J. Earth Sci. 1997, 44, 283–315. [Google Scholar] [CrossRef]
- Lesher, C.M.; Burnham, O.M. Multicomponent elemental and isotopic mixing in Ni-Cu-(PGE) ores at Kambalda, Western Australia. Can. Mineral. 2001, 39, 421–446. [Google Scholar] [CrossRef]
- Liu, Y.G.; Lü, X.B.; Wu, C.M.; Hu, X.G.; Duan, Z.P.; Deng, G.; Wang, H.; Zhu, X.; Zeng, H.D.; Wang, P.; et al. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE-Cu-Ni magmatic sulfide deposits in Xinjiang, NW China: As suggested by Sr-Nd-Hf isotopes, sedimentology and geophysical data. Ore Geol. Rev. 2016, 72, 538–545. [Google Scholar] [CrossRef]
- Jiang, X.J.; Chen, X.; Jiang, S.Y.; Hoare, L.; Zhang, W.; Lian, D.Y.; Cai, P.J.; Xu, Y.M.; Liu, H. Immiscibility of carbonatitic and alkaline silicate melts from an evolved ultramafic magma: Titanite geochronology and in-situ Ti-Nd isotope insights. Chem. Geol. 2024, 670, 122433. [Google Scholar] [CrossRef]
- Grinenko, L.N. Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform. Int. Geol. Rev. 1985, 27, 695–708. [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, W.Y.; Lü, X.B.; Liu, Y.R.; Ruan, B.X.; Liu, X. Sulfide saturation mechanism of the Poyi magmatic Cu-Ni sulfide deposit in Beishan, Xinjiang, Northwest China. Ore Geol. Rev. 2017, 91, 419–431. [Google Scholar] [CrossRef]
- Fiorentini, M.; Beresford, S.; Barley, M.; Duuring, P.; Bekker, A.; Rosengren, N.; Cas, R.; Hronsky, J. District to Camp Controls on the Genesis of Komatiite-Hosted Nickel Sulfide Deposits, Agnew-Wiluna Greenstone Belt, Western Australia: Insights from the Multiple Sulfur Isotopes. Econ. Geol. 2012, 107, 781–796. [Google Scholar] [CrossRef]
- Bekkey, A.; Barley, M.E.; Fiorentini, M.L.; Rouxel, O.J.; Rumble, D.; Beresford, S.W. Atmospheric Sulfur in Archean Komatiite-Hosted Nickel Deposits. Science 2009, 326, 5956. [Google Scholar]
- Iacono-Marziano, G.; Ferraina, C.; Gaillard, F.; Carlo, I.D.; Arndt, N.T. Assimilation of sulfate and carbonaceous rocks: Experimental study, thermodynamic modeling and application to the Noril’sk-Talnakh region (Russia). Ore Geol. Rev. 2017, 90, 399–413. [Google Scholar] [CrossRef]
- Liu, Y.G.; Li, W.Y.; Jia, Q.Z.; Zhang, Z.W.; Wang, Z.A.; Zhang, Z.B.; Zhang, J.W.; Qian, B. The Dynamic Sulfide Saturation Process and a Possible Slab Break-off Model for the Giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau, China. Econ. Geol. 2018, 113, 1383–1417. [Google Scholar] [CrossRef]
- Li, C.S.; Zhang, Z.W.; Li, W.Y.; Wang, Y.L.; Sun, T.; Ripley, E.M. Geochronology, petrology and Hf–S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China. Lithos 2015, 216, 224–240. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, Y.L.; Qian, B.; Liu, Y.G.; Zhang, D.Y.; Lü, P.R.; Dong, J. Metallogeny and tectonomagmatic setting of Ni-Cu magmatic sulfide mineralization, number I Shitoukengde mafic-ultramafic complex, East Kunlun Orogenic Belt, NW China. Ore Geol. Rev. 2018, 96, 236–246. [Google Scholar] [CrossRef]
- Zhang, Z.; Xue, S.C.; Tang, D.M.; Wang, L.Y.; Wang, X.M.; Tian, H.Q.; Zhang, R.L. Research progress of nickel isotope in high-temperature magmatic system and its implications to ore deposit. Acta Geol. Sin. 2024, 40, 1959–1971. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.A.; Worner, G.; Yu, H.M.; Xiao, Y.L. Copper isotope behavior during extreme magma differentiation and degassing: Acase study on Laacher See phonolite tephra (East Eifel Germany). Contrib. Mineral. Petrol. 2016, 171, 76. [Google Scholar] [CrossRef]
- Liu, S.A.; Rudnick, R.L.; Liu, W.R.; Teng, F.Z.; Wu, T.H.; Wang, Z.Z. Copper isotope evidence for sulfide fractionation and lower crustal foundering in making continental crust. Sci. Adv. 2023, 9, eadg6995. [Google Scholar] [CrossRef]
- Malitch, K.K.; Latypov, R.M.; Badanina, I.Y.; Sluzhenikin, S.F. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk province (Russia): Evidence from copper and sulfur istopes. Lithos 2014, 204, 172–187. [Google Scholar] [CrossRef]
- Tang, D.M.; Qin, K.Z.; Su, B.X.; Mao, J.W.; Evans, N.J.; Niu, Y.J.; Kang, Z. Sulfur and copper isotopic signatures of chalcopyrite at Kalatongke and Baishiquan: Insights into the origin of magmatic Ni-Cu sulfide deposit. Geochim. Cosmochim. Acta 2020, 275, 209–228. [Google Scholar] [CrossRef]
- Chen, Z.X.; Chen, J.B.; Tamehe, L.S.; Zhang, Y.X.; Zeng, Z.G.; Xia, X.P.; Cui, Z.X.; Zhang, T.; Guo, K. Heavy copper isotopes in arc-related lavas from cold subduction zones uncover a sub-arc mantle metasonatized by serpentinite-derived sulfate-rich fluids. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024910. [Google Scholar] [CrossRef]
- Han, C.M.; Xiao, W.J.; Zhao, G.C.; Ao, S.J.; Zhang, J.E.; Qu, W.J.; Du, A.D. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt Constraints on the timing and genesis of the mineralization. Lithos 2010, 120, 547–562. [Google Scholar] [CrossRef]
- Song, X.Y.; Xie, W.; Deng, Y.F.; Crawford, A.J.; Zheng, W.Q.; Zhou, G.F.; Deng, G.; Cheng, S.L.; Li, J. Slab break-off and the formation of Permian mafic–ultramafic intrusions in southern margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos 2011, 127, 128–143. [Google Scholar] [CrossRef]
- Wei, S.; Bai, Z.J.; Li, C.S.; Deng, Y.F.; Song, X.Y.; Zhu, W.G.; Ji, W.B. Reduction-Induced Sulfide Saturation in the Huangshandong and Huangshanxi Magmatic Ni-Cu Deposits in the Central Asian Orogenic Belt of China. Econ. Geol. 2025, 120, 29–41. [Google Scholar] [CrossRef]
- You, M.; Li, W.; Li, H.; Zhang, Z.; Li, X. Petrogenesis and Tectonic Significance of the ~276 Ma Baixintan Ni-Cu Ore-Bearing Mafic-Ultramafic Intrusion in the Eastern Tianshan Orogenic Belt, NW China. Minerals 2021, 11, 348. [Google Scholar] [CrossRef]
- Gao, J.F.; Zhou, M.F. Generation and evolution of siliceous high magnesium basaltic magmas in the formation of the Permian Huangshandong intrusion (Xinjiang, NW China). Lithos 2013, 162, 128–139. [Google Scholar] [CrossRef]
- Mao, J.W.; Yang, J.M.; Qu, W.J.; Du, A.D.; Wang, Z.L.; Han, C.M. Re-Os Dating of Cu-Ni Sulfide Ores from Huangshandong Deposit in Xinjiang and Its Geodynamic Significance. Miner. Depos. 2002, 21, 323–330. [Google Scholar]
- Mao, J.; Yang, J.; Qu, W.; Du, A.; Wang, Z.; Han, C. Re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geol. Sin. Engl. Ed. 2003, 77, 220–226. [Google Scholar]
- Mao, Q.G.; Zhang, J.E. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultramafic complex in the Eastern Tianshan, Xinjiang province: Constraints on the closure of the Paleo-Asian Ocean. Acta Petrol. Sin. 2006, 22, 153–162. [Google Scholar]
- Mao, Y.J.; Qin, K.Z.; Li, C.; Tang, D.M. A modified genetic model for the Huangshandong magmatic sulfide deposit in the Central Asian Orogenic Belt, Xinjiang, western China. Miner. Depos. 2015, 50, 65–82. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Mao, J.W.; Du, A.D.; Pirajno, F.; Wang, Z.L.; Chai, F.M.; Zhang, Z.C.; Yang, J.M. Re–Os dating of two Cu–Ni sulfide deposits in northern Xinjiang, NW China and its geological significance. J. Asian Earth Sci. 2008, 32, 204–217. [Google Scholar] [CrossRef]
- Mao, J.W.; Pirajno, F.; Zhang, Z.H.; Chai, F.M.; Wu, H.; Chen, S.P.; Yang, J.M.; Zhang, C.Q. A review of the Cu–Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. J. Asian Earth Sci. 2008, 32, 184–203. [Google Scholar] [CrossRef]
- Mao, Y.J.; Qin, K.Z.; Li, C.S.; Xue, S.C.; Ripley, E.M. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China. Lithos 2014, 200, 111–125. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Evans-Lamswood, D. Structural controls on the primary distribution of mafic–ultramafic intrusions containing Ni–Cu–Co–(PGE) sulfide mineralization in the roots of large igneous provinces. Ore Geol. Rev. 2014, 64, 354–386. [Google Scholar] [CrossRef]
- Piper, D.Z.; Perkins, P.B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition. Chem. Geol. 2004, 206, 177–197. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Yang, J.H.; Ling, H.F.; Chen, Y.Q.; Feng, H.Z.; Zhao, K.D.; Ni, P. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in lower Cambrian black shales of South China: An Os isotope and PGE geochernical investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 217–228. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chem. Geol. 2009, 260, 1–19. [Google Scholar] [CrossRef]
- Wei, B.; Yan Wang, C.; Lahaye, Y.; Xie, L.; Cao, Y. S and C Isotope Constraints for Mantle-Derived Sulfur Source and Organic Carbon-Induced Sulfide Saturation of Magmatic Ni-Cu Sulfide Deposits in the Central Asian Orogenic Belt, North China. Econ. Geol. 2019, 114, 787–806. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Cluzel, D. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace Element Content of Sedimentary Pyrite in Black Shale. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V. A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits. Econ. Geol. 2009, 106, 331–358. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Cai, P.; Chen, X. Knowledge Structure and Frontier Evolution of Research on Nickel Deposits. Minerals 2025, 15, 464. https://doi.org/10.3390/min15050464
Liu R, Cai P, Chen X. Knowledge Structure and Frontier Evolution of Research on Nickel Deposits. Minerals. 2025; 15(5):464. https://doi.org/10.3390/min15050464
Chicago/Turabian StyleLiu, Ran, Pengjie Cai, and Xin Chen. 2025. "Knowledge Structure and Frontier Evolution of Research on Nickel Deposits" Minerals 15, no. 5: 464. https://doi.org/10.3390/min15050464
APA StyleLiu, R., Cai, P., & Chen, X. (2025). Knowledge Structure and Frontier Evolution of Research on Nickel Deposits. Minerals, 15(5), 464. https://doi.org/10.3390/min15050464