Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis
Abstract
:1. Introduction
2. Geological Setting of the Investigated Pegmatite Fields
2.1. St. Radegund Pegmatite Field (RPF)
2.2. Millstatt Pegmatite Field (MPF)
2.3. Polinik Pegmatite Field
3. Analytical Methods
3.1. Electron Microprobe
3.2. Fluid Inclusion Microthermometry
3.3. Micro-Raman Spectrometry
4. Results
4.1. Major Element Chemistry of Garnet Domains
4.1.1. Radegund Pegmatite Field
4.1.2. Millstatt Pegmatite Field
4.1.3. Polinik Pegmatite Field
4.2. Fluid Inclusion Studies
4.2.1. Radegund Pegmatite Field
- Fluid Inclusions in Garnet (type RG)
- Fluid Inclusions in Spodumene (type RS)
- Fluid Inclusions in Tourmaline (type RT)
4.2.2. Millstatt Pegmatite Field
- Fluid Inclusions in Garnet (type MG)
- Fluid Inclusions in Spodumene (type MS)
- Fluid Inclusions in Tourmaline (type MT)
4.2.3. Polinik Pegmatite Field
- Fluid Inclusion in Garnet (type PG)
- Fluid Inclusions in Beryl (type PB)
- Fluid Inclusions in Tourmaline (type PT)
5. Discussion
5.1. Compositional Variations
5.1.1. The Aqueous System
5.1.2. The Carbonic System
5.2. P-T Conditions During Fluid Trapping and Host Mineral Crystallization
5.2.1. Radegund Pegmatite Field
5.2.2. Millstatt Pegmatite Field
5.2.3. Polinik Pegmatite Field
5.3. Do the Calculated Pressures from Isochores Reflect Host Mineral Crystallization?—A Heterogeneously Trapped Variable XCO2-Rich Fluid in the MPF and PPF
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PE05 | PE23a | |||||
---|---|---|---|---|---|---|
Analysis [wt.%] | Core 1 | Core 2 | Core 3 | Rim | Core | Rim |
n | 8 | 8 | 8 | 5 | 6 | 6 |
SiO2 | 36.68 ± 0.26 | 36.71 ± 0.31 | 36.57 ± 0.43 | 37.76 ± 0.37 | 36.54 ± 0.48 | 37.03 ± 0.73 |
TiO2 | 0.06 ± 0.06 | 0.07 ± 0.07 | 0.04 ± 0.04 | 0.02 ± 0.06 | 0.01 ± 0.02 | 0.03 ± 0.03 |
Al2O3 | 21.14 ± 0.14 | 21.31 ± 0.59 | 21.14 ± 0.53 | 21.61 ± 0.18 | 20.43 ± 0.21 | 20.65 ± 0.55 |
Cr2O3 | 0.02 ± 0.02 | 0.04 ± 0.04 | 0.04 ± 0.04 | 0.02 ± 0.06 | 0.01 ± 0.01 | 0.01 ± 0.02 |
FeOtot | 19.90 ± 1.72 | 24.54 ± 1.22 | 29.74 ± 2.04 | 21.60 ± 4.63 | 28.44 ± 3.69 | 28.17 ± 4.16 |
FeO | 19.90 ± 1.72 | 24.54 ± 1.22 | 29.68 ± 1.99 | 21.60 ± 4.63 | 27.12 ± 0.92 | 27.38 ± 3.76 |
Fe2O3 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.14 ± 0.14 | 0.00 ± 0.00 | 1.79 ± 0.23 | 0.87 ± 0.72 |
MnO | 20.62 ± 1.88 | 16.46 ± 1.15 | 12.40 ± 1.93 | 10.60 ± 0.85 | 13.71 ± 3.92 | 10.62 ± 2.76 |
MgO | 0.08 ± 0.04 | 0.11 ± 0.03 | 0.16 ± 0.04 | 0.06 ± 0.03 | 0.52 ± 0.09 | 0.45 ± 0.17 |
CaO | 1.06 ± 0.13 | 1.39 ± 0.18 | 0.81 ± 0.31 | 9.34 ± 4.64 | 0.82 ± 0.14 | 4.02 ± 4.43 |
Na2O | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.02 | 0.01 ± 0.02 | 0.05 ± 0.05 |
Total | 99.64 ± 0.49 | 100.09 ± 0.49 | 100.52 ± 0.74 | 101.02 ± 0.59 | 99.73 ± 0.66 | 101.02 ± 0.32 |
End-members [wt.%] | ||||||
Spessartine | 49.59 ± 4.05 | 40.35 ± 1.18 | 29.05 ± 4.60 | 24.07 ± 1.96 | 28.80 ± 5.98 | 23.86 ± 5.87 |
Pyrope | 0.33 ± 0.14 | 0.44 ± 0.09 | 0.73 ± 0.18 | 0.28 ± 0.10 | 1.27 ± 1.25 | 1.12 ± 1.12 |
Almandine | 46.97 ± 4.16 | 57.00 ± 2.59 | 68.26 ± 3.95 | 51.95 ± 7.92 | 66.72 ± 5.95 | 62.05 ± 7.74 |
Grossular | 3.19 ± 0.35 | 4.05 ± 0.64 | 2.22 ± 0.83 | 23.58 ± 10.10 | 1.20 ± 0.67 | 12.01 ± 9.12 |
Andradite | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.21 ± 0.66 | 1.29 ± 1.29 |
Uvarovite | 0.06 ± 0.06 | 0.11 ± 0.11 | 0.13 ± 0.13 | 0.12 ± 0.12 | 0.03 ± 0.03 | 0.04 ± 0.04 |
MC02 | MC03 | |||
---|---|---|---|---|
Analysis [wt.%] | Core | Rim | Core | Rim |
n | 7 | 6 | 6 | 6 |
SiO2 | 36.63 ± 0.29 | 36.96 ± 0.57 | 36.02 ± 0.55 | 36.46 ± 0.19 |
TiO2 | 0.02 ± 0.04 | 0.01 ± 0.04 | 0.01 ± 0.01 | 0.01 ± 0.02 |
Al2O3 | 21.06 ± 0.18 | 21.48 ± 0.43 | 20.55 ± 0.22 | 20.65 ± 0.55 |
Cr2O3 | 0.02 ± 0.04 | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.00 ± 0.00 |
FeOtot | 29.30 ± 0.79 | 27.37 ± 1.93 | 28.73 ± 0.93 | 25.53 ± 0.59 |
FeO | 29.24 ± 0.85 | 27.37 ± 1.95 | 27.12 ± 0.92 | 24.32 ± 0.88 |
Fe2O3 | 0.07 ± 0.27 | 0.00 ± 0.01 | 1.79 ± 0.23 | 1.35 ± 0.62 |
MnO | 11.61 ± 0.92 | 9.69 ± 0.69 | 10.77 ± 1.73 | 11.46 ± 0.47 |
MgO | 0.82 ± 0.29 | 0.93 ± 0.13 | 1.04 ± 0.14 | 0.60 ± 0.06 |
CaO | 0.84 ± 0.07 | 3.83 ± 3.02 | 2.39 ± 1.57 | 5.07 ± 0.96 |
Na2O | 0.03 ± 0.02 | 0.02 ± 0.02 | 0.03 ± 0.02 | 0.02 ± 0.03 |
Total | 100.34 ± 0.64 | 100.31 ± 1.00 | 99.73 ± 0.66 | 99.92 ± 0.29 |
End-members [wt.%] | ||||
Spessartine | 27.19 ± 2.30 | 22.37 ± 2.22 | 23.95 ± 3.64 | 25.25 ± 1.89 |
Pyrope | 3.55 ± 0.96 | 3.79 ± 0.62 | 4.02 ± 0.74 | 1.93 ± 1.30 |
Almandine | 67.06 ± 1.55 | 62.52 ± 5.69 | 63.64 ± 3.36 | 56.85 ± 2.10 |
Grossular | 2.34 ± 0.27 | 11.30 ± 8.32 | 6.68 ± 3.99 | 15.65 ± 3.83 |
Andradite | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.29 ± 1.29 | 1.84 ± 1.55 |
Uvarovite | 0.09 ± 0.09 | 0.05 ± 0.05 | 0.06 ± 0.06 | 0.00 ± 0.00 |
PS10 | PS13 | PS17 | ||||
---|---|---|---|---|---|---|
Analysis [wt.%] | Inner Core | Outer Core | Inner Core | Outer Core | Inner Core | Outer Core |
n | 10 | 10 | 10 | 10 | 14 | 5 |
SiO2 | 35.48 ± 0.63 | 35.97 ± 0.26 | 36.39 ± 0.40 | 36.71 ± 0.85 | 36.32 ± 0.55 | 36.86 ± 0.30 |
TiO2 | 0.01 ± 0.03 | 0.02 ± 0.02 | 0.02 ± 0.04 | 0.01 ± 0.03 | 0.01 ± 0.03 | 0.01 ± 0.04 |
Al2O3 | 20.23 ± 0.25 | 20.53 ± 0.44 | 20.70 ± 0.22 | 21.04 ± 0.33 | 20.55 ± 0.82 | 20.55 ± 0.67 |
Cr2O3 | 0.00 ± 0.02 | 0.00 ± 0.02 | 0.02 ± 0.03 | 0.02 ± 0.04 | 0.00 ± 0.01 | 0.00 ± 0.01 |
FeOtot | 15.77 ± 3.28 | 24.79 ± 4.45 | 30.95 ± 2.45 | 27.44 ± 3.13 | 30.43 ± 3.59 | 34.6 ± 0.80 |
FeO | 14.69 ± 3.03 | 24.04 ± 3.92 | 30.14 ± 2.36 | 27.05 ± 3.48 | 29.17 ± 4.07 | 33.70 ± 0.65 |
Fe2O3 | 1.20 ± 1.20 | 0.83 ± 0.67 | 0.90 ± 0.67 | 0.44 ± 0.47 | 1.40 ± 0.75 | 1.10 ± 0.78 |
MnO | 26.52 ± 3.83 | 13.03 ± 5.45 | 10.65 ± 1.58 | 12.47 ± 3.65 | 8.72 ± 3.37 | 2.6 ± 1.21 |
MgO | 0.07 ± 0.29 | 1.09 ± 0.63 | 0.64 ± 0.14 | 0.45 ± 0.15 | 0.95 ± 0.25 | 2.54 ± 0.71 |
CaO | 0.16 ± 0.19 | 2.80 ± 0.52 | 1.02 ± 1.06 | 2.49 ± 0.85 | 2.86 ± 0.84 | 2.42 ± 0.29 |
Na2O | 0.11 ± 0.10 | 0.06 ± 0.07 | 0.04 ± 0.02 | 0.02 ± 0.02 | 0.02 ± 0.03 | 0.01 ± 0.01 |
Total | 98.48 ± 0.90 | 98.36 ± 0.38 | 100.51 ± 0.31 | 100.70 ± 1.39 | 100.00 ± 0.63 | 99.88 ± 0.58 |
End-members [wt.%] | ||||||
Spessartine | 61.12 ± 6.06 | 32.30 ± 11.35 | 25.01 ± 3.85 | 32.30 ± 5.89 | 19.38 ± 7.65 | 6.27 ± 1.81 |
Pyrope | 0.78 ± 0.78 | 4.80 ± 2.37 | 2.61 ± 0.77 | 1.67 ± 0.49 | 3.92 ± 1.36 | 8.40 ± 3.41 |
Almandine | 37.37 ± 5.07 | 55.95 ± 8.99 | 69.20 ± 5.58 | 59.99 ± 5.85 | 67.18 ± 8.31 | 77.19 ± 1.63 |
Grossular | 0.59 ± 0.35 | 8.09 ± 1.41 | 2.71 ± 2.64 | 7.30 ± 2.42 | 7.86 ± 2.99 | 6.27 ± 1.91 |
Andradite | 0.04 ± 0.04 | 0.24 ± 0.24 | 0.44 ± 0.44 | 0.20 ± 0.20 | 1.29 ± 1.29 | 1.48 ± 1.48 |
Uvarovite | 0.04 ± 0.04 | 0.04 ± 0.04 | 0.09 ± 0.09 | 0.09 ± 0.09 | 0.02 ± 0.02 | 0.02 ± 0.02 |
PS18a | PS19b | |||
---|---|---|---|---|
Analysis [wt.%] | Inner Core | Outer Core | Inner Core | Outer Core |
n | 11 | 6 | 13 | 6 |
SiO2 | 36.47 ± 0.70 | 36.16 ± 0.23 | 36.17 ± 0.27 | 36.34 ± 0.37 |
TiO2 | 0.01 ± 0.02 | 0.01 ± 0.01 | 0.03 ± 0.03 | 0.01 ± 0.01 |
Al2O3 | 20.82 ± 0.38 | 20.56 ± 0.14 | 20.52 ± 0.17 | 20.71 ± 0.18 |
Cr2O3 | 0.04 ± 0.05 | 0.02 ± 0.06 | 0.00 ± 0.01 | 0.00 ± 0.01 |
FeOtot | 28.47 ± 2.88 | 24.34 ± 0.96 | 32.14 ± 2.26 | 29.64 ± 1.28 |
FeO | 28.20 ± 2.62 | 24.31 ± 1.00 | 31.77 ± 2.19 | 29.09 ± 1.16 |
Fe2O3 | 0.57 ± 0.57 | 0.03 ± 0.08 | 0.82 ± 0.82 | 0.62 ± 0.62 |
MnO | 12.10 ± 2.49 | 14.52 ± 0.83 | 10.36 ± 2.25 | 10.96 ± 0.35 |
MgO | 0.93 ± 0.25 | 0.56 ± 0.11 | 0.32 ± 0.08 | 0.25 ± 0.05 |
CaO | 0.69 ± 0.36 | 2.21 ± 0.89 | 0.53 ± 0.26 | 2.14 ± 0.92 |
Na2O | 0.04 ± 0.02 | 0.02 ± 0.02 | 0.05 ± 0.02 | 0.02 ± 0.02 |
Total | 99.47 ± 0.46 | 98.39 ± 0.15 | 100.04 ± 0.34 | 100.14 ± 0.29 |
End-members [wt.%] | ||||
Spessartine | 28.72 ± 6.05 | 34.14 ± 1.93 | 24.21 ± 5.23 | 25.98 ± 1.03 |
Pyrope | 3.85 ± 1.00 | 2.24 ± 0.37 | 1.31 ± 0.34 | 1.08 ± 0.17 |
Almandine | 65.86 ± 5.66 | 57.42 ± 1.85 | 73.39 ± 5.09 | 67.87 ± 3.25 |
Grossular | 1.92 ± 1.09 | 6.24 ± 2.33 | 1.04 ± 0.77 | 5.18 ± 3.43 |
Andradite | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.40 ± 0.40 | 0.52 ± 0.52 |
Uvarovite | 0.15 ± 0.15 | 0.13 ± 0.13 | 0.02 ± 0.02 | 0.02 ± 0.02 |
References
- Schuster, R.; Stüwe, K. The Permian Metamorphic Event in the Alps. Geology 2008, 36, 603–606. [Google Scholar] [CrossRef]
- Schuster, R.; Knoll, T.; Mali, H.; Huet, B.; Griesmeier, G.E.U. Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria). Ber. Geol. Bund. 2019, 134, 1–4. [Google Scholar]
- Knoll, T.; Schuster, R.; Mali, H.; Huet, B. Die Genese der permischen Lithium-Pegmatite des Ostalpinen Kristallins. Berg Huettenmaenn. Monatsh. 2021, 166, 175–180. [Google Scholar] [CrossRef]
- Husar, M.; Krenn, K. High-Density Upper Amphibolite/Granulite Facies Fluid Inclusions in Magmatic Garnet from the Koralpe Mountains (Eastern Alps, Austria). Minerals 2022, 12, 873. [Google Scholar] [CrossRef]
- Wise, M.A.; Müller, A.; Simmons, W.B. A proposed new mineralogical classification system for granitic pegmatites. Can. Mineral. 2022, 60, 229–248. [Google Scholar] [CrossRef]
- Krenn, K.; Husar, M.; Mikulics, A. Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution During Pegmatite Formation. Minerals 2021, 11, 638. [Google Scholar] [CrossRef]
- Krenn, K.; Konzett, J.; Stalder, R. Anatectic granitic pegmatites from the eastern Alps: A case of variable rare metal enrichment during high-grade regional metamorphism. III: Fluid inclusions as potential indicators for anatectic pegmatite parent melt formation. Can. Mineral. 2022, 60, 155–169. [Google Scholar] [CrossRef]
- Müller, A.; Kearsley, A.; Spratt, J.; Seltmann, R. Petrogenetic implications of magmatic garnet in granitic pegmatites from Southern Norway. Can. Mineral. 2012, 50, 1095–1115. [Google Scholar] [CrossRef]
- Dahlquist, J.A.; Galindo, C.; Pankhurst, R.J.; Rapela, C.W.; Alasino, P.H.; Saavedra, J.; Fanning, C.M. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos 2007, 95, 177–207. [Google Scholar] [CrossRef]
- Yu, M.; Xia, M.Q.; Zheng, Y.F.; Zhao, Z.F.; Chen, Y.X.; Chen, R.X.; Luo, X.; Li, W.C.; Xu, H. The composition of garnet in granite and pegmatite from the Gangdese orogen in southeastern Tibet: Constraints on pegmatite petrogenesis. Am. Mineral. 2021, 106, 265–281. [Google Scholar] [CrossRef]
- Vityk, M.O.; Bodnar, R.J. Do fluid inclusions in high-grade metamorphic terranes preserve peak metamorphic density during retrograde decompression? Am. Mineral. 1995, 80, 641–644. [Google Scholar]
- Tarantola, A.; Diamond, L.; Stünitz, H. Modification of fluid inclusions in quartz by deviatoric stress I: Experimentally induced changes in inclusion shapes and microstructures. Contrib. Mineral. Petrol. 2010, 160, 825–843. [Google Scholar] [CrossRef]
- Chi, G.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Miller, C.; Thöni, M.; Konzett, J.; Kurz, W.; Schuster, R. Eclogites from the Koralpe and Saualpe type-localities, Eastern Alps, Austria. Mitt. Österr. Mineral. Ges. 2005, 150, 227–263. [Google Scholar]
- Tenczer, V.; Stüwe, K. The metamorphic field gradient in the eclogite type locality Koralpe region, Eastern Alps. J. Metam. Geol. 2003, 21, 377–393. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of fluid inclusions in diagenetic minerals. In SEPM Short Course; SEPM: Tulsa, OK, USA, 1994; Volume 31, 199p. [Google Scholar]
- Goldstein, R.H. Fluid Inclusions in sedimentary and diagenetic systems. Lithos 2001, 55, 159–193. [Google Scholar] [CrossRef]
- Konzett, J.; Schneider, T.; Nedyalkova, L.; Hauzenberger, C.; Melcher, F.; Gerdes, A.; Whitehouse, M. Anatectic Granitic Pegmatites from the Eastern Alps: A case of variable Rare-metal enrichment during high-grade regional metamorphism–I: Mineral assemblages, geochemical characteristics, and emplacement ages. Can. Mineral. 2018, 56, 555–602. [Google Scholar] [CrossRef]
- Konzett, J.; Hauzenberger, C.; Ludwig, T.; Stalder, R. Anatectic Granitic Pegmatites from the Eastern Alps: A case of variable Rare-metal enrichment during high-grade regional metamorphism–II: Pegmatite staurolite as an indicator of anatectic pegmatite parent melt formation—A field and experimental study. Can. Mineral. 2018, 56, 603–624. [Google Scholar] [CrossRef]
- Knoll, T.; Huet, B.; Schuster, R.; Mali, H.; Ntaflos, T.; Hauzenberger, C. Lithium pegmatite of anatectic origin—A case study from the Austroalpine Unit Pegmatite Province (Eastern European Alps): Geological data and geochemical modeling. Ore Geol. Rev. 2023, 154, 105298. [Google Scholar] [CrossRef]
- Hoinkes, G.; Koller, F.; Demény, A.; Schuster, R.; Miller, F.; Thöni, M.; Kurz, W.; Krenn, K.; Walter, F. Metamorphism in the Eastern Alps. Acta Mineral. Petrogr. Field Guide Series 2010, 1, 1–47. [Google Scholar]
- Hoinkes, G.; Koller, F.; Rantitsch, G.; Dachs, E.; Hoeck, V.; Neubauer, F.; Schuster, R. Alpine metamorphism in the Eastern Alps. Schweizer. Mineral. Petrogr. Mitt. 1999, 79, 155–181. [Google Scholar]
- Schuster, R.; Scharbert, S.; Abart, R.; Frank, W. Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine—Southalpine realm. Mitt. Ges. Geol. Bergbaustud. Österr. 2001, 45, 111–141. [Google Scholar]
- Thöni, M. Dating eclogite-facies metamorphism in the Eastern Alps—Approaches, results, interpretations: A review. Mineral. Petrol. 2006, 88, 123–148. [Google Scholar] [CrossRef]
- Kunz, B.E.; Manzotti, P.; von Niederhäusern, B.; Engi, M.; Darling, J.R.; Giuntoli, F.; Lanari, P. Permian high-temperature metamorphism in the Western Alps (NW Italy). Int. J. Earth Sci. 2018, 107, 203–229. [Google Scholar] [CrossRef]
- Schuster, R.; Tropper, P.; Krenn, E.; Finger, F.; Frank, W.; Philippitsch, R. Prograde Permo-Triassic metamorphic HT/LP assemblages from the Austroalpine Jenig Complex (Carinthia, Austria). Austrian J. Earth Sci. 2015, 108, 73–90. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclog. Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Neubauer, F.; Liu, Y.; Dong, Y.; Chang, R.; Genser, J.; Yuan, S. Pre-Alpine tectonic evolution of the Eastern Alps: From Prototethys to Paleotethys. Earth Sci. Rev. 2022, 226, 103923. [Google Scholar] [CrossRef]
- Puhr, B.; Hoinkes, G.; Proyer, A.; Schuster, R. Petrology of metacarbonate rocks of the Austroalpine basement east of the Tauern Window (Austria). Mitt. Österr. Mineral. Ges. 2009, 155, 134. [Google Scholar]
- Frank, N.; Kurz, W.; He, D.F.; Schuster, R.; Dong, Y.P.; Hauzenberger, C. Hints on provenance and protolith age of medium to high-grade metamorphic metasediments from the Eastern Alps–based on detrital U/Pb zircon age distributions. In Proceedings of the Arbeitstagung der Geologischen Bundesanstalt, Murau, Austria, 24–27 June 2019; p. 211. [Google Scholar]
- Gaidies, F.; Abart, R.; De Capitani, C.; Schuster, R.; Connolly, J.A.D.; Reusser, E. Characterization of polymetamorphism in the Austroalpine basement east of the Tauern Window using garnet isopleth thermobarometry. J. Metam. Geol. 2006, 24, 451–475. [Google Scholar] [CrossRef]
- Gotthardt, C. Pegmatitgenese des Rappold-Komplex um St. Radegund, des Millstatt-Komplex und des Prijakt-Polinik-Komplex. Master’s Thesis, Graz University of Technology, Graz, Austria, 2015; 155p. [Google Scholar]
- Eisenberg, J.; Hauzenberger, C. Geologisch-petrologische Geländebeobachtungen des nordwestlichen Radegunder Kristallins. Mitt. naturwiss. Ver. Steiermark 2001, 131, 5–7. [Google Scholar]
- Röggla, M. Petrographie und Petrologie des Anger Kristallins, Steiermark. Master’s Thesis, Karl-Franzens University Graz, Graz, Austria, 2007; 168p. [Google Scholar]
- Nowotny, A. Bericht 2006 über geologische Aufnahmen auf Blatt 164 Graz. Jb. Geol. BA 2007, 147, 664–665. [Google Scholar]
- Nowotny, A. Bericht 2007 über geologische Aufnahmen auf Blatt 164 Graz. Jb. Geol. BA 2008, 148, 266–267. [Google Scholar]
- Ahrer, S. Geowissenschaftliche und Aufbereitungstechnische Untersuchungen an Ausgewählten Pegmatiten und deren Nb-Ta-Vererzungen in den Ostalpen, Steiermark, Österreich. Master’s Thesis, Montanuniversity Leoben, Leoben, Austria, 2014; 105p. [Google Scholar]
- Koller, F.; Götzinger, M.A.; Neumayer, R.G. Beiträge zur Mineralogie und Geochemie der Pegmatite des St. Radegunder Kristallins und der Gleinalpe. Arch. Lagerstättenforschung Geol. B.A. 1983, 3, 47–65. [Google Scholar]
- Mali, H.; Schuster, R.; Knoll, T.; Huet, B. Zoning of pegmatite fields as a key for unraveling the internal structure of basement nappes: Examples of the Eastern Alps (Austria). Geophys. Res. Abstr. 2019, 21, EGU2019-14565. [Google Scholar]
- Teiml, X. Die Gesteine der Millstätter Serie: Petrologische und geothermobarometrische Untersuchungen. Master’s Thesis, University of Graz, Graz, Austria, 1996; 199p. [Google Scholar]
- Luecke, W.; Ucik, F.H. Die Zusammensetzung der Pegmatite von Edling und Wolfsberg bei Spittal/Drau (Kärnten) im Rahmen der Pegmatitvorkommen des Millstätter See-Rückens. Arch. Lagerstättenforschung Geol. B.A. 1986, 7, 173–187. [Google Scholar]
- Knoll, T.; Schuster, R.; Huet, B.; Mali, H.; Onuk, P.; Horschinegg, M.; Ertl, A.; Giester, G. Spodumene Pegmatite and Related Leucogranite from the Austroalpine Unit (Eastern Alps, Central Europe): Field Relations, Petrography, Geochemistry, and Geochronology. Can. Mineral. 2018, 56, 489–528. [Google Scholar] [CrossRef]
- Schuster, R.; Koller, F.; Hoeck, V.; Hoinkes, G.; Bousquet, R. Explanatory Notes of the Map: Metamorphic Structure of the Alps, Metamorphic Evolution of the Eastern Alps. Mitt. Österr. Mineral. Ges. 2004, 149, 175–199. [Google Scholar]
- Walter, F. Exkursion E4 am 27.9.1998 MINPET 98 (Pörtschach am Wörthersee/Kärnten) Die Pegmatite des Misstätter See-Rückens. Mitt. Österr. Mineral. Ges. 1998, 143, 437–450. [Google Scholar]
- Walter, F. 1573) Spodumen und Holmquistit in einem Pegmatit von Lug-ins-Land. In Neue Mineralfunde aus Österreich LVIII; Naturwissenschaftlicher Verein für Kärnten: Klagenfurt am Wörthersee, Austria, 2009; pp. 195–196. [Google Scholar]
- Hoke, L. The Altkristallin of the Kreuzeck Mountains, SE Tauern Window, Eastern Alps—Basement Crust in a Convergent Plate Boundary Zone. Jb. Geol. BA 1990, 133, 5–87. [Google Scholar]
- Linner, M.; Richter, W.; Thöni, M. Frühalpidische Metamorphose- und Abkühlgeschichte der Eklogite im ostalpinen Kristallin südlich vom Tauernfenster (Schobergruppe). Mitt. Österr. Mineral. Ges. 1998, 143, 334–335. [Google Scholar]
- Schulz, B.; Finger, F.; Krenn, E. Auflösung variskischer, permischer und alpidischer Ereignisse im polymetamorphen ostalpinen Kristallin südlich der Tauern mit EMS-Datierung von Monazit. Arbeitstagung Geol. B.A. Österreich 2005, 141–153. [Google Scholar]
- Hauke, M.; Froitzheim, N.; Nagel, T.J.; Miladinova, I.; Fassmer, K.; Fonseca, R.O.C.; Sprung, P.; Münker, C. Two high-pressure metamorphic events, Variscan and Alpine, dated by Lu–Hf in an eclogite complex of the Austroalpine nappes (Schobergruppe, Austria). Int. J. Earth Sci. 2019, 108, 1317–1331. [Google Scholar] [CrossRef]
- Schuster, R.; Thöni, M. Permian Garnets: Indication for a regional Permian metamorphism in the southern part of the Austroalpine Basement Units. Mitt. Österr. Mineral. Ges. 1996, 141, 219–221. [Google Scholar]
- Habler, G.; Thöni, M. Preservation of Permo ± Triassic low-pressure assemblagesin the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria). J. Metam. Geol. 2001, 19, 679–697. [Google Scholar] [CrossRef]
- Thöni, M.; Miller, C. The “Permian event” in the Eastern European Alps: Sm–Nd and P–T data recorded by multi-stage garnet from the Plankogel unit. Chem. Geol. 2009, 260, 20–36. [Google Scholar] [CrossRef]
- Konzett, J.; Krenn, K.; Hauzenberger, C.; Whitehouse, M.; Hoinkes, G. High-Pressure Tourmaline Formation and Fluid Activity in Fe^Ti-rich Eclogites from the Kreuzeck Mountains, Eastern Alps, Austria. J. Petrol. 2012, 53, 99–125. [Google Scholar] [CrossRef]
- Oakes, C.S.; Bodnar, R.J.; Simonson, T.M. The system NaCl-CaCl2-H2O: The ice liquidus at 1 atm total pressure. Geochim. Cosmochim. Acta 1990, 54, 603–610. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Franz, J.D. Experimental determination of the compositional limits of immiscibility in the system CaCl2-H2O-CO2 at high temperatures and pressures using synthetic fluid inclusions. Chem. Geol. 1989, 74, 289–308. [Google Scholar] [CrossRef]
- Spencer, R.J.; Møller, N.; Weare, J.H. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Mg–Cl– SO4–H2O system at temperatures below 25 °C. Geochim. Cosmochim. Acta 1990, 54, 575–590. [Google Scholar] [CrossRef]
- Thiéry, R.; van den Kerkhof, A.M.; Dubessy, J. VX properties of CH4–CO2 and CO2–N2 fluid inclusions: Modelling for T < 31 °C and P < 400 bars. Eur. J. Mineral. 1994, 6, 753–771. [Google Scholar]
- Thiéry, R.; Vidal, J.; Dubessy, J. Phase equilibria modelling applied to fluid inclusions: Liquid-vapour equilibria and calculation of the molar volume in the CO2–CH4–N2 system. Geochim. Cosmochim. Acta 1994, 58, 1073–1082. [Google Scholar] [CrossRef]
- Bakker, R.J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Davis, D.W.; Lowenstein, T.K.; Spencer, R.J. Melting behaviour of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgC12-H2O, and NaCl-CaCl2-H2O. Geochim. Cosmochim. Acta 1990, 54, 591–601. [Google Scholar] [CrossRef]
- Bodnar, R.J. Introduction to aqueous-electrolyte fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; Volume 32, pp. 81–100. [Google Scholar]
- Burke, E.A.J. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Expl. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Hurai, V.; Huraiová, M.; Slobodník, M.; Thomas, R. Geofluids; Elsevier: Amsterdam, The Netherlands, 2015; p. 485. [Google Scholar]
- Dufresne, W.J.; Rufledt, C.J.; Marshall, C.P. Raman spectroscopy of eight natural carbonate minerals of calcite structure. J. Raman Spec. 2018, 49, 1999–2007. [Google Scholar] [CrossRef]
- Habler, G.; Thöni, M.; Miller, C. Major and trace element chemistry and Sm-Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem. Geol. 2007, 241, 4–22. [Google Scholar] [CrossRef]
- Chernoff, C.B.; Carlson, W.D. Disequilibrium for Ca during growth of pelitic garnet. J. Metam. Geol. 1997, 15, 421–438. [Google Scholar] [CrossRef]
- Menard, T.; Spear, F.S. Metamorphism of calcic Pelitic schists, Strafford Dome, Vermont: Compositional zoning and reaction history. J. Petrol. 1993, 34, 977–1005. [Google Scholar] [CrossRef]
- Manning, D.A.C. Chemical variation in garnets from aplites and pegmatites, peninsular Thailand. Mineral. Mag. 1983, 47, 353–358. [Google Scholar] [CrossRef]
- Whitworth, M.P. Petrogenetic implications of garnets associated with lithium pegmatites from SE Ireland. Mineral. Mag. 1992, 56, 75–83. [Google Scholar] [CrossRef]
- Thöni, M.; Miller, C. Ordovician meta-pegmatite garnet (NW Ötztal basement, Tyrol, Eastern Alps): Preservation of magmatic garnet chemistry and Sm–Nd age during mylonitization. Chem. Geol. 2004, 209, 1–26. [Google Scholar] [CrossRef]
- Gadas, P.; Novák, M.; Talla, D.; Galiová, M.V. Compositional evolution of grossular garnet from leucotonalitic pegmatite at Rudanad Moravou, Czech Republic; a complex EMPA, LA-ICP-MS, IR and CL study. Mineral. Petrol. 2013, 107, 311–326. [Google Scholar] [CrossRef]
- Ganguly, J.; Cheng, W.; Chakraborty, S. Cation diffusion in aluminosilicate garnets: Experimental determination in pyrope-almandine diffusion couples. Contrib. Mineral. Petrol. 1998, 131, 171–180. [Google Scholar] [CrossRef]
- Anderson, A.J. Microthermometric behavior of crystal-rich inclusions in spodumene under confining pressure. Can. Mineral. 2019, 57, 853–865. [Google Scholar] [CrossRef]
- Anderson, A.J.; Clark, A.H.; Gray, S. The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: Implications for the internal evolution of rare-element granitic pegmatites. Can. Mineral. 2001, 39, 1513–1527. [Google Scholar] [CrossRef]
- Crawford, M.L. Phase equilibria in aqueous fluid inclusions. In Fluid Inclusions: Applications to Petrology; Hollister, L.S., Crawford, M.L., Eds.; Mineralogical Association of Canada Short Course Handbook: Toronto, ON, Canada, 1981; Volume 6, pp. 75–100. [Google Scholar]
- Itihara, Y.; Honma, H. Ammonium in biotite from metamorphic and granitic rocks of Japan. Geochim. Cosmochim. Acta 1979, 43, 503–509. [Google Scholar] [CrossRef]
- Thomas, A.V.; Spooner, E.T.C. Fluid inclusions in the systems H2O-CH4-NaCl-CO2 from metasomatic tourmaline within the border unit of the Tanco zoned granite pegmatite, S.E. Manitoba. Geochim. Cosmochim. Acta 1998, 52, 1065–1075. [Google Scholar] [CrossRef]
- Whitworth, M.P.; Rankin, A.H. Evolution of fluid phases associated with lithium pegmatites from SE Ireland. Mineral. Mag. 1989, 53, 271–284. [Google Scholar] [CrossRef]
- Linnen, R.L.; Williams-Jones, A.E. The evolution of pegmatite-hosted Sn-W mineralization at Nong Sua, Thailand: Evidence from fluid inclusions and stable isotopes. Geochim. Cosmochim. Acta 1994, 58, 735–747. [Google Scholar] [CrossRef]
- Fuertes-Fuente, M.; Martin-Izard, A.; Boiron, M.C.; Viñuela, J.M. P–T path and fluid evolution in the Franqueira Granitic Pegmatite, Central Galicia, Northwestern Spain. Can. Mineral. 2000, 38, 1163–1175. [Google Scholar] [CrossRef]
- Huizenga, J.M. Thermodynamic modelling of C−O−H fluids. Lithos 2001, 55, 101–114. [Google Scholar] [CrossRef]
- Bakker, R.J.; Jansen, J.B.H. A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. Contrib. Mineral. Petrol. 1994, 116, 7–20. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Essene, E.J. Diffusion of the hydrous component in pyrope. Am. Mineral. 1996, 81, 706–718. [Google Scholar] [CrossRef]
- Severs, M.J.; Azbej, T.; Thomas, J.B.; Mandeville, C.W.; Bodnar, R.J. Experimental determination of H2O loss from melt inclusions during laboratory heating: Evidence from Raman spectroscopy. Chem. Geol. 2007, 237, 358–371. [Google Scholar] [CrossRef]
- Johnson, E.L. Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites. Geology 1991, 19, 925–928. [Google Scholar] [CrossRef]
- Diamond, L.W. Review of the systematics of CO2-H2O fluid inclusions. Lithos 2001, 55, 69–99. [Google Scholar] [CrossRef]
- Ferry, J.M. Dehydration and decarbonation reactions as a record of fluid infiltration. Rev. Mineral. Geochem. 1991, 26, 351–393. [Google Scholar]
- Ratschbacher, L.; Merle, O.; Davy, P.; Cobbold, P. Lateral extrusion in the eastern Alps, Part 1: Boundary conditions and experiments scaled for gravity. Tectonics 1991, 10, 245–256. [Google Scholar] [CrossRef]
RPF | MPF | PPF |
---|---|---|
PE05 47°12.62 N; 15°29.58 E | MC02 46°45.48 N; 13°41.11 E | PS10 46°54.04 N; 13°10.1 E |
PE23 47°11.69 N; 15°29.02 E | MC03 46°45.58 N; 13°41.22 E | PS13 46°54.02 N; 13°10.0 E |
PE10/15 47°12.42 N; 15°29.0 E | MCSee 46°46.55 N; 13°33.3 E | PS17 46°54.13 N; 13°10.36 E |
PE20 47°11.90 N; 15°29.05 E | PE57 46°47.46 N; 13°31.28 E | PS18 46°54.28 N; 13°10.57 E |
PE25 47°11.37 N; 15°29.02 E | PE63 46°47.50 N; 13°35.32 E | PS19/21 46°54.3 N; 13°10.58 E |
Location | Host | Type | Sample | Fluid Chemistry | Size [µm] | car/aq Proportions | Phases at RT | Tm (CH4 ± N2) | Th (CH4 ± N2) gL | Tm (car) [°C] | Th (car) gL/V [°C] | TE (ice) [°C] | Tm (HH) [°C] | Tm (ice) [°C] | Tm (Cla) [°C] | Th (Total) gL [°C] | Salinity (Average) [Equiv.Mass%] | Density * [g/cm3] | Solid Phases |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Radegund Pegmatite Field | Grt | RG-1 | PE 23 | H2O-NaCl-CaCl2 ± MgCl2 | ≤18 | Laqu + Vaqu | −53.3 to −48.9 | −22.9 to −21.2 | −2.2 to 0.0 | 286.4 to 319.9 | ≤3.9 (3.6) | 0.70 to 0.77 | n.o. | ||||||
RG-2 | PE 05/23 | CO2 ± N2-H2O-NaCl-CaCl2 ± MgCl2 | ≤25 | 40/60 | Laqu + Vcar ± S | −58.1 to −56.6 | 15.6 to 21.4 (V) | −51.7 to −44.7 | −25.1 to −21.2 | −7.2 to 0.0 | 6.8 to 11.5 | 257.5 to 385.2 | ≤10.9 (6.2) | 0.70 to 0.72 | Rho, Cal, Ms, Xtm, Rt, Qtz | ||||
Spd | RS-1 | PE 10/15 | H2O-NaCl-CaCl2 ± MgCl2 | ≤20 | Laqu + Vaqu | −48.7 to −43.6 | −24.7 to −22.4 | −6.4 to −0.3 | 236.0 to 356.0 | 0.5–6.5 (5.1) | 0.65 to 0.86 | n.o. | |||||||
RS-2 | PE 10/15 | CO2-H2O-NaCl-CaCl2 ± MgCl2 | ≤20 | 40/60 | Laqu + Lcar ± Vcar ± S | −57.8 to −56.6 | 12.8 to 25.2 (V) | −47.5 to −45.1 | −25.2 to −21.2 | −3.9 to −0.3 | 4.8 to 10.5 | 297.2 to 346.0 | 0.3–6.7 (5.2) | 0.70 to 0.73 | Qtz, Cal, Zbl, Ms | ||||
Tur | RT-1 | PE 20/25 | H2O-NaCl-CaCl2 ± MgCl2 | ≤40 | Laqu + Vaqu ± S | −46.0 | −26.9 to −21.1 | −9.3 to −0.1 | 187.0 to 272.0 | 13.2 (7.1) | 0.85 to 0.97 | Cal | |||||||
Millstatt Pegmatite Field | Grt | MG-1A | MC 02 | CO2-N2-CH4-H2O-NaCl-CaCl2 ± MgCl2 | ≤10 | 90/10 to 50/50 | Laqu + Lcar ± S | n.o. | −59.1 to −57.9 | 5.4 to 11.0 (L) | −55.4 to −47.4 | −28.8 to −25.6 | −7.2 to −3.7 | 14.7 to 18.8 | 272.5 to 363.6 | 6.5–11.1 (8.7) | 0.75 to 0.90 | Ap, Zrn, Ms, Cal, Rho, Qtz, Ab | |
MG-1B | MC 03 | CO2-CH4-N2-H2O-NaCl-CaCl2 ± MgCl2 | ≤8 | 40/60 | Laqu + Vcar ± S | −99.4 to −93.7 | −98.7 to −56.7 | 13.6 to 20.1 (V) | −53.6 to −46.6 | −29.4 to −24.3 | −6.2 to −3.2 | 16.4 to 21.0 | 187.7 to 280.3 | 5.6–10.0 (7.9) | 0.70 to 0.72 | ||||
Spd | MS | MC_See | CO2-N2-H2O-NaCl-CaCl2 ± MgCl2 | ≤25 | 30/70 to 40/60 | Laqu + Lcar ± S | −58.4 to −57.2 | 20.7 to 22.3 (L) 18.7 to 20.9 (V) | −55.2 to −53.5 | −23.7 to −21.8 | −7.8 to −5.8 | 11.7 to 13.8 | 306.9 to 350.9 | 9.2–11.7 (10.6) | 0.82 to 0.96 | Gr, Zbl, Ms, Qtz, Ap | |||
Tur | MT | PE 57/63 | CO2-N2-H2O-NaCl-CaCl2 ± MgCl2 | <80 | 40/60 to 80/20 | Laqu + Lcar | −59.9 to −57.3 | 15.9 to 18.5 (V) | −51.3 to −38.0 | −25.8 to −21.2 | −16.5 to −4.2 | 1.8 to 7.9 | 275.0 to 311.5 | 10.9–19.2 (13.6) | 0.75 to 0.76 | n.o. | |||
Polinik Pegmatite Field | Grt | PG-1A | PS 17/19 | CO2-N2 ± CH4-H2O-NaCl-CaCl2 ± MgCl2 | ≤8 | 85/15 | Laqu + Lcar ± S | −150.0 to−127.5 | −62.3 to −61.1 | −52.9 to −40.4 (L) | −55.2 to −52.5 | −28.3 to −25.8 | −9.1 to −0.2 | 19.9 to 21.5 | 306.7 to 341.8 | 0.4–13.1 (8.7) | 0.86 to 0.91 | Qtz, Ab, Cal, Rho, Ms, Ap, Rt, Zrn, Xen, Gr | |
PG-1B | PS 10/13/18 | CO2-CH4-N2-H2O-NaCl-CaCl2 ± MgCl2 | ≤15 | 40/60 | Lcar ± Vcar + Laqu ± S | −105.6 to −83.4 | −65.7 to −56.6 | −25.7 to 24.8 (L) | −52.0 to −45.0 | −34.7 to −21.4 | −8.2 to −1.6 | 17.2 to 22.4 | 178.5 to 365.7 | 2.7 to 13.1 (8.7) | 0.86 to 0.88 | ||||
Brl | PB | PS 10 | CO2-CH4-N2-H2O-NaCl-CaCl2 ± MgCl2 | ≤20 | 80/20 to 30/70 | Lcar + Laqu ± S | −66.4 to −57.7 | 9.1 to 10.8 (L) 9.0 to 15.8 (V) | −52.3 to −49.6 | −24.9 to −21.2 | −4.7 to −2.0 | 12.4 to 15.9 | 302.3 to 390.5 | 3.4–7.8 (6.0) | 0.78 to 0.91 | Qtz, Ab, Cal, Ms, ±Tpz | |||
Tur | PT-1 | PS 18/21 | CO2-CH4-N2-H2O-NaCl-CaCl2 ± MgCl2 | ≤50 | 90/10 to 20/80 | Lcar + Laqu | −130.0 to −73.6 | −127.0 to −85.5 | −20.0 to 12.5 (L) −40.1 to 5.3 (V) | −59.0 to −30.0 °C | n.o. | −9.1 to −6.0 | 15.0 to 21.0 | 187.0 to 309.0 | 4.5–17.8 (12.0) | 0.68 to 0.73 | Qtz | ||
PT-2 | PS 18 | H2O-NaCl-CaCl2 ± MgCl2 | ≤50 | Laqu + Vaqu | −59.0 to −46.0 | −25.1 to −21.4 | −8.5 to −8.3 | 157.0 to 188.0 | 12.1–12.3 | 0.97 to 0.99 | n.o. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krenn, K.; Husar, M. Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis. Minerals 2025, 15, 423. https://doi.org/10.3390/min15040423
Krenn K, Husar M. Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis. Minerals. 2025; 15(4):423. https://doi.org/10.3390/min15040423
Chicago/Turabian StyleKrenn, Kurt, and Martina Husar. 2025. "Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis" Minerals 15, no. 4: 423. https://doi.org/10.3390/min15040423
APA StyleKrenn, K., & Husar, M. (2025). Fluid and Solid Inclusions from Accessory Host Minerals of Permian Pegmatites of the Eastern Alps (Austria)—Tracing Permian Fluid, Its Entrapment Process and Its Role During Crustal Anatexis. Minerals, 15(4), 423. https://doi.org/10.3390/min15040423