Machine Learning Algorithm-Based Prediction Model and Software Implementation for Strength Efficiency of Cemented Tailings Fills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimentation and Data Acquisition
2.1.1. Techniques
2.1.2. Data Acquisition
- ➀
- Determine the minimum and maximum values of conservation age: min (AS) = 3 days, max (AS) = 112 days.
- ➁
- Data AS i normalized for each conservation age:
2.2. ML Techniques
2.2.1. ANN Model
2.2.2. AdaBoost Model
- (1)
- Given a dataset with a total number of samples N: , is sample feature, is sample label, .
- (2)
- Initialization of weights on the training sample dataset:
- (3)
- Train the individual learner hm with the training set Dm of the weight distribution according to the set of m iterations, m = 1, 2,…, M, M being the total number of iterations.
- (4)
- Calculate the error rate em for the individual learner hm:
- (5)
- Calculate the weight of the current individual learner hm based on the error rate αm:
- (6)
- Update the weight distribution of the training set Dm+1:
- (7)
- Repeat steps (3) to (6) for M iterations to build the final strong learner G(x):
2.2.3. RF Model
2.2.4. SVM Model
- (1)
- In the normalization process, in the process of SVR fitting, the input quantities often cover diverse scales and their units. This will influence the outcomes of data investigation, and to abolish the effect of magnitude, the data will be normalized [66], as could be apparently grasped in Equation (14).
- (2)
- Selecting kernel function, after testing it, finally selects the Gaussian radial basis kernel function. The training and test sample data are consistent with the regression tree model dataset.
- (3)
- Parameter selection, the value of the penalty parameter C, can largely determine the performance of the algorithm; the main role of the kernel function parameter gamma is to control the number of dimensions of feature space, affecting the complexity of the distribution of train specimen data in a high-dimensional feature universe. This study uses the grid search method to select C and gamma; the CS prediction selected C = 60, gamma = 0.01.
3. Results and Discussion
3.1. ML Prediction Outcomes
3.1.1. ANN
3.1.2. AdaBoost
3.1.3. RF
3.1.4. SVM
3.2. Performance Evaluation of Different ML Models
3.2.1. Determination Factor R2
3.2.2. MAE, MSE, and RMSE
3.3. Database Based Analysis of CS Parameters for Cement Mortars
3.3.1. Correlation Analysis
3.3.2. Feature Importance Analysis
3.4. Luzhong Mining Filling Practical Prediction Application
3.5. Development of an Intelligent System for Predicting CTF’s Strength
4. Conclusions
- Performance evaluation ranked: RF model < SVM model < ANN model < AdaBoost model, with the AdaBoost model outperforming the other models in envisaging CS’s strength.
- Parameter/sensitivity analysis showed that curing age (AS) was the most strongly correlated with the compressive strength of CS, followed by C/T, additive concentration (AC), extra additive (EA), curing temperature (T), and additive type (AT). The parameter with the major effect on strength property was AS, with variable weight coefficients above 0.5 for AS.
- The proposed system for intelligent forecasting of the macroscopic strength of media for CTF specimens is simple to implement, very cheap to calculate, and representative.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Zhang, X.; Wang, L.; Qu, F.; Shao, A.; Zhao, L.; He, J. Research progress and prospects of intelligent technology in underground mining of hard rock mines. Green Smart Min. Eng. 2024, 1, 12–26. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Li, B.; Zhou, N.; Xiao, X.; Li, M.; Zhu, C. Environmental behavior of construction and demolition waste as recycled aggregates for backfilling in mines: Leaching toxicity and surface subsidence studies. J. Hazard Mater. 2020, 389, 121870. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Chen, C.; Liu, X.; Liu, X.; Yuan, J.; Dang, S. Assessing the stability of high-level pillars in deeply-buried metal mines stabilized using cemented backfill. Int. J. Rock Mech. Min. Sci. 2023, 170, 105489. [Google Scholar] [CrossRef]
- Saedi, A.; Jamshidi-Zanjani, A.; Mohseni, M.; Darban, A.K. Mechanical activation for sulfidic tailings treatment by tailings: Environmental aspects and cement consumption reduction. Case Stud. Constr. Mater. 2023, 19, e02632. [Google Scholar] [CrossRef]
- Laing, T.; Pinto, A.-N. Artisanal and small-scale mining and the low-carbon transition: Challenges and opportunities. Environ. Sci. Policy 2023, 149, 103563. [Google Scholar] [CrossRef]
- Li, D.; Guan, X.; Tang, T.; Zhao, L.; Tong, W.; Wang, Z. The clean energy development path and sustainable development of the ecological environment driven by big data for mining projects. J. Environ. Manag. 2023, 348, 119426. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, L. Transition towards carbon neutrality: Forecasting Hong Kong’s buildings carbon footprint by 2050 using a machine learning approach. Sustain. Prod. Consum. 2023, 35, 633–642. [Google Scholar] [CrossRef]
- Wang, X.; Yu, B.; An, R.; Sun, F.; Xu, S. An integrated analysis of China’s iron and steel industry towards carbon neutrality. Appl. Energy 2022, 322, 119453. [Google Scholar] [CrossRef]
- Dávila, J.-G.; Sacchi, R.; Pizzol, M. Preconditions for achieving carbon neutrality in cement production through CCUS. J. Clean. Prod. 2023, 425, 138935. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, J.; Zhang, S.; Guo, Z.; Wu, P.; Sun, X.; Gu, X. Low carbon binder modified by calcined quarry dust for cemented paste backfill and the associated environmental assessments. J. Environ. Manag. 2021, 300, 113760. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, L.; Wang, Y.; Chen, J.; Qi, C.-C. The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2. Sci. Total Environ. 2022, 852, 158516. [Google Scholar] [CrossRef] [PubMed]
- Ayeni, I.S.; Lim, N.H.A.S.; Samad, M. Engineering properties of natural fibre-reinforced one-part geopolymer concrete. Constr. Build. Mater. 2024, 456, 139161. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Zhang, N.; Zhou, A.; Shen, S.-L. Numerical evaluation of segmental tunnel lining with voids in outside backfill. Undergr. Space 2022, 7, 786–797. [Google Scholar] [CrossRef]
- Xue, G.-L.; Yilmaz, E.; Wang, Y. Progress and prospects of mining with backfill in metal mines in China. Int. J. Miner. Metall. Mater. 2023, 30, 1455–1473. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Song, W.-D.; Fu, J. Effect of waste glass powder on pore structure, mechanical properties and microstructure of cemented tailings backfill. Constr. Build. Mater. 2023, 365, 130062. [Google Scholar] [CrossRef]
- Zou, L.; Xing, J.; Xiang, J.; Zhao, Y.; Zhang, Q.; Qiu, J. Mechanical behavior and microscopic mechanism of synergistically enhanced cemented ultra-fine tailings backfill with polypropylene fiber and silica fume. Constr. Build. Mater. 2024, 443, 137668. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, N.; Li, W.; Li, J.; Wu, X. Effect of different fibers and fiber contents on the mechanical properties and failure behavior of early age cemented lithium feldspar tailings backfill. Dev. Built Environ. 2024, 19, 100495. [Google Scholar] [CrossRef]
- Liu, L.; Lei, M.; Hu, Z.; Za, X.; Shi, C.; Li, S.; Yang, Z. A robust mix design method for steel fiber reinforced self-compacting concrete. J. Build. Eng. 2023, 76, 107336. [Google Scholar] [CrossRef]
- Wang, A.-A.; Cao, S.; Yilmaz, E. Quantitative analysis of pore characteristics of nanocellulose reinforced cementitious tailings fills using 3D reconstruction of CT images. J. Mater. Res. Technol. 2023, 26, 1428–1444. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, J.; Sun, C.; Wang, P.; Lin, J.; Li, J.; Jiang, Y. Optimization of cemented paste backfill with carbon nanotubes as a sustainable treatment for lead-containing tailings. Powder Technol. 2023, 415, 118152. [Google Scholar] [CrossRef]
- Hu, L.; Zheng, B.; Zhu, D.; Yang, Z.; Huang, N. Enhancing bending performance of cemented lithium feldspar tailings backfill with 3D printing polymer lattices: Effects of unit shapes and materials. Case Stud. Constr. Mater. 2025, 22, e04463. [Google Scholar] [CrossRef]
- Pan, H.; Xiao, Q.; Huang, N.; Xiao, A.; Zhu, D. Effect of alkaline rice straw fibers content and curing ages on static mechanical properties of cemented lithium mica tailings backfill. Case Stud. Constr. Mater. 2024, 21, e03450. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Strength investigation and prediction of superfine tailings cemented paste backfill based on experiments and intelligent methods. Materials 2023, 16, 3995. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Wang, W.; Xiong, X.; Li, J.; Xu, C. Effect of curing temperature on the mechanical properties and pore structure of cemented backfill materials with waste rock-tailings. Constr. Build. Mater. 2023, 409, 133850. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, J.; Kirichek, A.; Zhou, H.; Liu, C.; Yang, L. Recycling waste tyre polymer for production of fibre reinforced cemented tailings backfill in green mining. Sci. Total Environ. 2024, 908, 168320. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, T.; Zhou, Y.; Tang, S.; Tan, J.; Liu, Z.; Su, J. The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete. Constr. Build. Mater. 2021, 282, 122706. [Google Scholar] [CrossRef]
- Jeon, K.; Jeon, C.; Choi, W. Effect of mixing ratio on fire resistance of cement mortar with polypropylene fiber and polymer. Case Stud. Constr. Mater. 2023, 19, e02503. [Google Scholar] [CrossRef]
- Li, J.-J.; Cao, S.; Song, W.-D. Distribution development of pore/crack expansion and particle structure of cemented solid-waste composites based on CT and 3D reconstruction techniques. Constr. Build. Mater. 2023, 376, 130966. [Google Scholar] [CrossRef]
- Xiao, B.; Wen, Z.; Miao, S.; Gao, Q. Utilization of steel slag for cemented tailings backfill: Hydration, strength, pore structure, and cost analysis. Case Stud. Constr. Mater. 2021, 15, e00621. [Google Scholar] [CrossRef]
- Zhang, M.; Li, K.; Ni, W.; Zhang, S.; Liu, Z.; Wang, K.; Wei, X.; Yu, Y. Preparation of mine backfilling from steel slag-based non-clinker combined with ultra-fine tailing. Constr. Build. Mater. 2022, 320, 126248. [Google Scholar] [CrossRef]
- Wang, A.-A.; Cao, S.; Yilmaz, E. Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill. Constr. Build. Mater. 2022, 344, 128179. [Google Scholar] [CrossRef]
- Gwon, S.; Ahn, E.; Shin, M.; Kim, J.-Y.; Kim, G. Assessment of internal curing of cellulose microfibers-incorporated cement composites using destructive and nondestructive methods. Constr. Build. Mater. 2022, 352, 129004. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiu, J.; Jiang, H.; Kong, X.; Guo, Z.; Xiang, J.; Sun, X. Effect of hydroxypropyl methyl cellulose on coarse tailings cemented backfill: Rheology, stability, strength and microstructure. Constr. Build. Mater. 2024, 425, 136042. [Google Scholar] [CrossRef]
- Nasir, M.; Aziz, M.-A.; Zubair, M.; Manzar, M.-S.; Ashraf, N.; Mu’azu, N.-D.; Al-Harthi, M.-A. Recent review on synthesis, evaluation, and SWOT analysis of nanostructured cellulose in construction applications. J. Build. Eng. 2022, 46, 103747. [Google Scholar] [CrossRef]
- Khan, S.; Ashraf, S.; Ali, S.; Khan, K. Experimental investigations on the mechanical properties and damage detection of carbon nanotubes modified crumb rubber concrete. J. Build. Eng. 2023, 75, 106937. [Google Scholar] [CrossRef]
- Tang, C.; Liu, J.; Qiao, J.; Wei, Y.; Shi, C.; Hao, W. The preparation and axial compressive properties of 3D-printed polymer lattice-reinforced cementitious composite columns. J. Build. Eng. 2024, 97, 110770. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, Z.; Šavija, B. Elevating mechanical performance of cementitious composites with surface-modified 3D-Printed polymeric reinforcements. Dev. Built Environ. 2024, 19, 100522. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Liu, Y. Three-dimensional reconstruction and material mechanical properties study of concrete-like transparent physical models based on 3D printing technology. J. Water Resour. Archit. Eng. 2022, 20, 85–90. [Google Scholar]
- Xue, G.-L.; Yilmaz, E.; Feng, G.; Cao, S. Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction. Constr. Build. Mater. 2021, 289, 123163. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Strength investigation of the cemented paste backfill in alpine regions using lab experiments and machine learning. Constr. Build. Mater. 2022, 323, 126583. [Google Scholar] [CrossRef]
- Wang, A.-A.; Cao, S.; Yilmaz, E. Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading. Constr. Build. Mater. 2022, 322, 126448. [Google Scholar] [CrossRef]
- Yin, S.; Yan, Z.; Chen, X.; Yan, R.; Chen, D.; Chen, J. Mechanical properties of cemented tailings and waste-rock backfill (CTWB) materials: Laboratory tests and deep learning modeling. Constr. Build. Mater. 2023, 369, 130610. [Google Scholar] [CrossRef]
- Xin, L. Meso-scale modeling of the influence of waste rock content on mechanical behavior of cemented tailings backfill. Constr. Build. Mater. 2021, 307, 124473. [Google Scholar] [CrossRef]
- Zhang, B.; Li, K.; Zhang, S.; Hu, Y.; Han, B. Strength prediction and application of cemented paste backfill based on machine learning and strength correction. Heliyon 2022, 8, e10338. [Google Scholar] [CrossRef] [PubMed]
- Khuram, R.; Fatima, R.; Zunaira, N.; Fahad, K.-A.; Idrees, Z.; Minkwan, J. Machine learning and multicriteria analysis for prediction of compressive strength and sustainability of cementitious materials. Case Stud. Constr. Mater. 2024, 21, e04080. [Google Scholar]
- Li, H.; Peng, T. Prediction of compressive strength of concrete based on BP and RBF neural network. J. Wuhan Univ. Technol. 2009, 31, 33–36. [Google Scholar]
- Chen, H.; Deng, T.; Du, T.; Chen, B.; Skibniewski, M.-J.; Zhang, L. An RF and LSSVM–NSGA-II method for the multi-objective optimization of high-performance concrete durability. Cem. Concr. Compos. 2022, 129, 104446. [Google Scholar] [CrossRef]
- Du, K.; Liu, M.; Zhou, J.; Khandelwal, M. Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR. Min. Metall. Explor. 2022, 39, 433–452. [Google Scholar] [CrossRef]
- Wang, Z.; Kou, Y.; Wang, Z.; Wu, Z.; Guo, J. Random Forest slurry pressure loss model based on loop experiment. Minerals 2022, 12, 447. [Google Scholar] [CrossRef]
- Qi, C.-C.; Chen, Q.-S.; Fourie, A.; Zhang, Q. An intelligent modelling framework for mechanical properties of cemented paste backfill. Miner. Eng. 2018, 123, 16–27. [Google Scholar] [CrossRef]
- Fan, C.; Zheng, Y.; Wang, S.; Ma, J. Prediction of bond strength of reinforced concrete structures based on feature selection and GWO-SVR model. Constr. Build. Mater. 2023, 400, 132602. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, P.; Fu, X.; Zhang, J.; Yang, H.; Gao, H.; Li, Y. Comparative analysis of BP neural network and RBF neural network in seismic performance evaluation of pier columns. Mech. Syst. Signal Process. 2020, 141, 106707. [Google Scholar] [CrossRef]
- Wang, K.; Ren, J.; Yan, J.; Wu, X.; Dang, F. Research on a concrete compressive strength prediction method based on the random forest and LCSSA-improved BP neural network. J. Build. Eng. 2023, 76, 107150. [Google Scholar] [CrossRef]
- Wang, P.; Dong, B.; Zhang, Y. Evaluation and characteristic analysis of compressive strength and resistivity of EG cement conductive mortar based upon hybrid-BP neural network. Constr. Build. Mater. 2023, 394, 132203. [Google Scholar] [CrossRef]
- Peng, Y.; Unluer, C. Development of alternative cementitious binders for 3D printing applications: A critical review of progress, advantages and challenges. Compos. Part B Eng. 2023, 252, 110492. [Google Scholar] [CrossRef]
- Fang, K.; Ren, L.; Jiang, H.-Q. Development of Mode I and Mode II fracture toughness of cemented paste backfill: Experimental results of the effect of mix proportion, temperature and chemistry of the pore water. Eng. Fract. Mech. 2021, 258, 108096. [Google Scholar] [CrossRef]
- Koohestani, B.; Mokhtari, P.; Yilmaz, E.; Mahdipour, F.; Darban, A.-K. Geopolymerization mechanism of binder-free mine tailings by sodium silicate. Constr. Build. Mater. 2021, 268, 121217. [Google Scholar] [CrossRef]
- Ngo, Q.-T.; Ngo, C.-T.; Nguyen, Q.-H.; Nguyen, H.-N.; Nguyen, L.-Q.; Nguyen, K.-Q.; Tran, V.-Q. Data-driven approach in investigating and predicting unconfined compressive strength of cemented paste backfill. Mater. Today Commun. 2023, 37, 107065. [Google Scholar] [CrossRef]
- Li, B.; Yan, H.; Zhang, J.; Zhou, N. Compaction property prediction of mixed gangue backfill materials using hybrid intelligence models: A new approach. Constr. Build. Mater. 2020, 247, 118633. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, S.; Yilmaz, E. Influence of 3D-printed polymer structures on dynamic splitting and crack propagation behavior of cementitious tailings backfill. Constr. Build. Mater. 2022, 343, 128137. [Google Scholar] [CrossRef]
- Xie, C.; Nguyen, H.; Bui, X.-N.; Choi, Y.; Zhou, J.; Nguyen-Trang, T. Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms. Geosci. Front. 2021, 12, 101108. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Wang, L.; Chen, Z.-S.; Qin, Y. Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model. Constr. Build. Mater. 2022, 356, 129232. [Google Scholar] [CrossRef]
- Arachchilage, C.-B.; Fan, C.; Zhao, J.; Huang, G.; Liu, W.-V. A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill. J. Rock Mech. Geotech. Eng. 2023, 15, 2803–2815. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Zhang, Y. Prediction model for the flexural load-carrying capacity of bionic fiber-reinforced composite sandwich panels based on the BP neural network. Compos. Part B Eng. 2019, 175, 107043. [Google Scholar]
- Zhou, J.; Fang, C.; Yang, L. Study on the pull-out performance of vertical inclination shear connectors between steel-concrete composite beams and precast slabs. J. Build. Eng. 2021, 41, 102540. [Google Scholar]
- Saurabh, D.; Deepak, G.; Mainak, M. Extreme learning machine to foretell the deflection in plain cement, steel-reinforced, and bamboo-reinforced concrete beams. Emerg. Mater. Res. 2025, 14, 12–27. [Google Scholar]
- Wang, W.; Lu, Y. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012049. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. Discuss. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Yang, L.; Jia, H.; Wu, A. Particle Aggregation and Breakage Kinetics in Cemented Paste Backfill. Int. J. Miner. Metall. Mater. 2023, 220, 172–186. [Google Scholar] [CrossRef]
- Min, C.; Xiong, S.; Shi, Y.; Liu, Z.; Lu, X. Early-age compressive strength prediction of cemented phosphogypsum backfill using lab experiments and ensemble learning models. Case Stud. Constr. Mater. 2023, 18, e02107. [Google Scholar] [CrossRef]
- Li, E.; Zhou, J.; Shi, X.; Armaghani, D.J.; Yu, Z.; Chen, X.; Huang, P. Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill. Eng. Comput. 2021, 37, 3519–3540. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, A.; Liang, B. Development of eco-efficiency concrete containing diatomite and iron ore tailings: Mechanical properties and strength prediction using deep learning. Constr. Build. Mater. 2022, 327, 126930. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Pang, S.; Zhu, K.; Su, L.; Liu, J.; Zhang, X. Mechanical properties and interface microscopic characterisation of fibre-reinforced slag-fly ash geopolymer agglutinated iron tailings filling materials. Mater. Today Commun. 2023, 36, 106650. [Google Scholar] [CrossRef]
- Salami, A.; Iqbal, M.; Abdulraheem, A.; Jalal, F.-E.; Alimi, W.; Jamal, A.; Tafsirojjaman, T.; Liu, Y.; Bardhan, A. Estimating compressive strength of lightweight foamed concrete using neural, genetic and ensemble machine learning approaches. Cem. Concr. Compos. 2022, 133, 104721. [Google Scholar] [CrossRef]
- Ni, H.; Wang, J. Prediction of compressive strength of concrete by neural networks. Cem. Concr. Res. 2000, 30, 1245–1250. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Investigation of the strength of concrete-like material with waste rock and aeolian sand as aggregate by machine learning. J. Comput. Des. Eng. 2022, 9, 2134–2150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Wang, A.; Yilmaz, E.; Cao, S. Machine Learning Algorithm-Based Prediction Model and Software Implementation for Strength Efficiency of Cemented Tailings Fills. Minerals 2025, 15, 405. https://doi.org/10.3390/min15040405
Cao H, Wang A, Yilmaz E, Cao S. Machine Learning Algorithm-Based Prediction Model and Software Implementation for Strength Efficiency of Cemented Tailings Fills. Minerals. 2025; 15(4):405. https://doi.org/10.3390/min15040405
Chicago/Turabian StyleCao, Hui, Aiai Wang, Erol Yilmaz, and Shuai Cao. 2025. "Machine Learning Algorithm-Based Prediction Model and Software Implementation for Strength Efficiency of Cemented Tailings Fills" Minerals 15, no. 4: 405. https://doi.org/10.3390/min15040405
APA StyleCao, H., Wang, A., Yilmaz, E., & Cao, S. (2025). Machine Learning Algorithm-Based Prediction Model and Software Implementation for Strength Efficiency of Cemented Tailings Fills. Minerals, 15(4), 405. https://doi.org/10.3390/min15040405