Liptinite Segmentation in Microscopic Images via Deep Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Images Preprocessing
2.3. Training Procedure
- Horizontal flip;
- Vertical flip;
- Rotation by angle 90°, 180°, 270°;
2.4. Deep Network Architectures
- U-Net (three variants with varying depths were examined);
- U-Net with channel attention (three variants with varying depths were examined);
- U-Net with ResNet backbone (five variants of ResNet backbones were examined).
2.4.1. U-Net Architecture
2.4.2. U-Net with Channel Attention Architecture
2.4.3. U-Net with ResNet Backbone Architecture
3. Results
4. Discussion
4.1. Liptinite Segmentation Analysis
- Does the effectiveness of segmentation depend on network architecture?
- Are there any easily visible structure/texture properties that can explain the problems with segmentation?
4.2. Training Procedure Analysis
4.3. Results Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic Associations of Non-Mineral Elements in Coal: A Review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; O’Keefe, J.M. Phyteral Perspectives: Every Maceral Tells a Story. Int. J. Coal Geol. 2021, 247, 103849. [Google Scholar] [CrossRef]
- for Coal, I.C. The New Vitrinite Classification (ICCP System 1994). Fuel 1998, 77, 349–358. [Google Scholar]
- Sỳkorová, I.; Pickel, W.; Christanis, K.; Wolf, M.; Taylor, G.; Flores, D. Classification of Huminite—ICCP System 1994. Int. J. Coal Geol. 2005, 62, 85–106. [Google Scholar] [CrossRef]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M.; et al. Classification of Liptinite–ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef]
- Kruszewska, K.; Dybowa-Jachowicz, S. Draft of Coal Petrology; Publishing House of the University of Silesia: Katowice, Poland, 1997. [Google Scholar]
- O’Keefe, J.M.; Bechtel, A.; Christanis, K.; Dai, S.; DiMichele, W.A.; Eble, C.F.; Esterle, J.S.; Mastalerz, M.; Raymond, A.L.; Valentim, B.V.; et al. On the Fundamental Difference between Coal Rank and Coal Type. Int. J. Coal Geol. 2013, 118, 58–87. [Google Scholar]
- Parzentny, H.R.; Róg, L. Dependences between Certain Petrographic, Geochemical and Technological Indicators of Coal Quality in the Limnic Series of the Upper Silesian Coal Basin (USCB), Poland. Arch. Min. Sci. 2020, 65, 665–684. [Google Scholar]
- de Vasconcelos, L.S. The Petrographic Composition of World Coals. Statistical Results Obtained from a Literature Survey with Reference to Coal Type (Maceral Composition). Int. J. Coal Geol. 1999, 40, 27–58. [Google Scholar] [CrossRef]
- Denge, E.; Baiyegunhi, C. Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa. Appl. Sci. 2021, 11, 2179. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Ward, C.R. Basic Factors Controlling Coal Quality and Technological Behavior of Coal. In Applied Coal Petrology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 19–59. [Google Scholar]
- Cutruneo, C.M.; Oliveira, M.L.; Ward, C.R.; Hower, J.C.; de Brum, I.A.; Sampaio, C.H.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F. A Mineralogical and Geochemical Study of Three Brazilian Coal Cleaning Rejects: Demonstration of Electron Beam Applications. Int. J. Coal Geol. 2014, 130, 33–52. [Google Scholar] [CrossRef]
- Méndez, L.; Borrego, A.; Martinez-Tarazona, M.; Menéndez, R. Influence of Petrographic and Mineral Matter Composition of Coal Particles on Their Combustion Reactivity. Fuel 2003, 82, 1875–1882. [Google Scholar] [CrossRef]
- Jelonek, I.; Jelonek, Z. The Influence of Petrographic Properties of Bituminous Coal on the Quality of Metallurgical Coke. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Pol. Akad. Nauk 2017, 100, 49–65. [Google Scholar]
- Jelonek, I.; Mirkowski, Z. Petrographic and Geochemical Investigation of Coal Slurries and of the Products Resulting from Their Combustion. Int. J. Coal Geol. 2015, 139, 228–236. [Google Scholar] [CrossRef]
- Bielowicz, B. Petrographic Characteristics of Coal Gasification and Combustion By-Products from High Volatile Bituminous Coal. Energies 2020, 13, 4374. [Google Scholar] [CrossRef]
- Fender, T.D.; Rouainia, M.; Van Der Land, C.; Jones, M.; Mastalerz, M.; Hennissen, J.A.; Graham, S.P.; Wagner, T. Geomechanical Properties of Coal Macerals; Measurements Applicable to Modelling Swelling of Coal Seams during CO2 Sequestration. Int. J. Coal Geol. 2020, 228, 103528. [Google Scholar] [CrossRef]
- Misra, B.K.; Singh, B.D. Liptinite Macerals in Singrauli Coals, India: Their Characterization and Assessment. J. Palaeosci. 1993, 42, 1–13. [Google Scholar] [CrossRef]
- Kruszewska, K.; Szwed-Lorenz, J. Petrographic Basis of the Variability of Coal Quality in Deposit. Sci. Pap. Silesian Univ. Technol. 2005, 268. [Google Scholar]
- Hower, J.C.; Ban, H.; Schaefer, J.L.; Stencel, J.M. Maceral/Microlithotype Partitioning through Triboelectrostatic Dry Coal Cleaning. Int. J. Coal Geol. 1997, 34, 277–286. [Google Scholar] [CrossRef]
- Bielowicz, B. Petrographic Composition of Coal from the Janina Mine and Char Obtained as a Result of Gasification in the CFB Gasifier. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2019, 35, 99–116. [Google Scholar] [CrossRef]
- Bielowicz, B.; Misiak, J. The Impact of Coal’s Petrographic Composition on Its Suitability for the Gasification Process: The Example of Polish Deposits. Resources 2020, 9, 111. [Google Scholar] [CrossRef]
- Róg, L. Vitrinite Reflectance as a Measure of the Range of Influence of the Temperature of a Georeactor on Rock Mass during Underground Coal Gasification. Fuel 2018, 224, 94–100. [Google Scholar] [CrossRef]
- Mirkowski, Z.; Jelonek, I. Petrographic Composition of Coals and Products of Coal Combustion from the Selected Combined Heat and Power Plants (CHP) and Heating Plants in Upper Silesia, Poland. Int. J. Coal Geol. 2019, 201, 102–108. [Google Scholar] [CrossRef]
- Jasieńko, S.; Róg, L. Pertographic Constitution, Physical, Chemical and Technological Properties of the Fractions Separated from Flame Coal and Gas Flame Coal Using Enrichment in Heavy Liquids. Int. Conf. Coal Sci. 1993, 1, 377–380. [Google Scholar]
- Jasienko, S.; Róg, L. Petrographic Constitution, Physical, Chemical and Technological Properties of the Fractions Isolated from Metacoking Coal and Semicoking Coal by the Method of Separation in Heavy Liquids. Coal Sci.-Proc. Eighth Int. Conf. Coal Sci. 1995, 24, 263–266. [Google Scholar]
- Saxena, N.; Day-Stirrat, R.J.; Hows, A.; Hofmann, R. Application of Deep Learning for Semantic Segmentation of Sandstone Thin Sections. Comput. Geosci. 2021, 152, 104778. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Shi, J.; Hao, R. A Method to Extract the Content, Radius and Specific Surface Area of Maceral Compositions in Coal Reservoirs Based on Image Modeling. J. Pet. Sci. Eng. 2021, 201, 108419. [Google Scholar] [CrossRef]
- Skiba, M.; Młynarczuk, M. Identification of Macerals of the Inertinite Group Using Neural Classifiers, Based on Selected Textural Features. Arch. Min. Sci. 2018, 63, 827–837. [Google Scholar] [CrossRef]
- Zou, L.; Xu, S.; Zhu, W.; Huang, X.; Lei, Z.; He, K. Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs. Sensors 2023, 23, 7296. [Google Scholar] [CrossRef]
- Ma, Z.; He, X.; Kwak, H.; Gao, J.; Sun, S.; Yan, B. Enhancing Rock Image Segmentation in Digital Rock Physics: A Fusion of Generative Ai and State-of-the-Art Neural Networks. arXiv 2023, arXiv:2311.06079. [Google Scholar]
- Santos, R.B.M.; Augusto, K.S.; Iglesias, J.C.Á.; Rodrigues, S.; Paciornik, S.; Esterle, J.S.; Domingues, A.L.A. A Deep Learning System for Collotelinite Segmentation and Coal Reflectance Determination. Int. J. Coal Geol. 2022, 263, 104111. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Iwaszenko, S.; Róg, L. Application of Deep Learning in Petrographic Coal Images Segmentation. Minerals 2021, 11, 1265. [Google Scholar] [CrossRef]
- Iwaszenko, S.; Szymańska, M.; Róg, L. A Deep Learning Approach to Intrusion Detection and Segmentation in Pellet Fuels Using Microscopic Images. Sensors 2023, 23, 6488. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Du, M.; Liu, L.; Li, G.; Wang, D.; Liu, S. Macerals Particle Characteristics Analysis of Tar-Rich Coal in Northern Shaanxi Based on Image Segmentation Models via the U-Net Variants and Image Feature Extraction. Fuel 2023, 341, 127757. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Fang, J.; Yang, C.; Shi, Y.; Wang, N.; Zhao, Y. External Attention Based TransUNet and Label Expansion Strategy for Crack Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19054–19063. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Peng, X.; Yin, Z. Deeplab_v3_Plus-Net for Image Semantic Segmentation with Channel Compression. In Proceedings of the 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28–31 October 2020; IEEE: New York, NY, USA, 2020; pp. 1320–1324. [Google Scholar]
- Wang, Y.; Bai, X.; Wu, L.; Zhang, Y.; Qu, S. Identification of Maceral Groups in Chinese Bituminous Coals Based on Semantic Segmentation Models. Fuel 2022, 308, 121844. [Google Scholar] [CrossRef]
- Turkowski, K. Filters for Common Resampling Tasks. In Graphics Gems; Academic Press Inc.: Cambridge, MA, USA, 1990; pp. 147–165. [Google Scholar]
- Buslaev, A.; Parinov, E.; Khvedchenya, E.; Iglovikov, V.I.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. arXiv 2018, arXiv:1809.06839. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Ye, P.; Yu, B.; Zhang, R.; Chen, W.; Li, Y. Development and Application of a More Refined Process for Extracting Rock Crack Width Information Based on Artificial Intelligence. Res. Sq. 2023. [Google Scholar]
- Voncken, J. The Origin and Classification of Coal. In Geology of Coal Deposits of South Limburg, The Netherlands; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–40. ISBN 978-1-4939-8930-0. [Google Scholar]
Samples Origin | Number of Samples | Maceral Groups [% vol.] | Vitrinite Reflectance [%] | ||
---|---|---|---|---|---|
Vitrinite | Liptinite | Inertinite | |||
Poland, Upper Silesia | 26 | 48–75 | 4–14 | 21–32 | 0.52–0.75 |
Network ID | Network Type | Architecture Details |
---|---|---|
UN1 | U-Net | 16, 32, 64, 128 |
UN2 | U-Net | 16, 32, 64, 128, 256 |
UN3 | U-Net | 16, 32, 64, 128, 256, 512 |
SU1 | U-Net + Simple Attention | 16, 32, 64, 128 |
SU2 | U-Net + Simple Attention | 16, 32, 64, 128, 256 |
SU3 | U-Net + Simple Attention | 16, 32, 64, 128, 256, 512 |
UR1 | U-Net with ResNet encoder | ResNet18 |
UR2 | U-Net with ResNet encoder | ResNet34 |
UR3 | U-Net with ResNet encoder | ResNet50 |
UR4 | U-Net with ResNet encoder | ResNet101 |
UR5 | U-Net with ResNet encoder | ResNet152 |
Network ID | Image Size | Constant Learning Rate | Scheduled Learning Rate | ||||
---|---|---|---|---|---|---|---|
[Pixel × Pixel] | lr | IoU | Accuracy | Starting lr | IoU | Accuracy | |
UN1 | 256 × 256 | 10−3 | 0.671076 | 0.984067 | 10−3 | 0.667536 | 0.983995 |
UN1 | 512 × 512 | 10−3 | 0.715285 | 0.988587 | 10−3 | 0.654678 | 0.984221 |
UN2 | 256 × 256 | 10−3 | 0.701296 | 0.985928 | 10−3 | 0.589239 | 0.977995 |
UN2 | 512 × 512 | 10−3 | 0.725503 | 0.987457 | 10−3 | 0.622029 | 0.981534 |
UN3 | 256 × 256 | 10−3 | 0.570244 | 0.975736 | 10−3 | 0.602232 | 0.978368 |
UN3 | 512 × 512 | 10−3 | 0.673112 | 0.997436 | 10−3 | 0.644637 | 0.980819 |
SU1 | 256 × 256 | 10−3 | 0.731232 | 0.987534 | 10−3 | 0.603762 | 0.980358 |
SU1 | 512 × 512 | 10−3 | 0.729422 | 0.988659 | 10−3 | 0.649881 | 0.983203 |
SU2 | 256 × 256 | 10−3 | 0.669764 | 0.984286 | 10−3 | 0.606607 | 0.979867 |
SU2 | 512 × 512 | 10−3 | 0.788368 | 0.991566 | 10−3 | 0.685189 | 0.985391 |
SU3 | 256 × 256 | 10−3 | 0.627331 | 0.981021 | 10−3 | 0.553564 | 0.973038 |
SU3 | 512 × 512 | 10−3 | 0.755102 | 0.989774 | 10−3 | 0.582619 | 0.979038 |
UR1 | 256 × 256 | 5 × 10−4 | 0.835293 | 0.993426 | 10−3 | 0.787711 | 0.990501 |
UR1 | 512 × 512 | 5 × 10−4 | 0.846189 | 0.994433 | 10−3 | 0.695672 | 0.987332 |
UR2 | 256 × 256 | 5 × 10−4 | 0.851052 | 0.994207 | 10−3 | 0.802847 | 0.992266 |
UR2 | 512 × 512 | 5 × 10−4 | 0.856250 | 0.994330 | 10−3 | 0.816170 | 0.992466 |
UR3 | 256 × 256 | 5 × 10−4 | 0.878621 | 0.995852 | 10−3 | 0.811808 | 0.992449 |
UR3 | 512 × 512 | 5 × 10−4 | 0.915585 | 0.997436 | 10−3 | 0.800134 | 0.993146 |
UR4 | 256 × 256 | 10−4 | 0.884272 | 0.996129 | 10−3 | 0.857781 | 0.994800 |
UR4 | 512 × 512 | 10−4 | 0.910468 | 0.997433 | 10−3 | 0.810178 | 0.993604 |
UR5 | 256 × 256 | 10−4 | 0.883951 | 0.996846 | 10−3 | 0.844847 | 0.993461 |
UR5 | 512 × 512 | 10−4 | 0.894659 | 0.996769 | 10−3 | 0.870872 | 0.995519 |
Network ID | Image Size [Pixel × Pixel] | acc (Accuracy) | rcl (Recall) | prc (Precision) | F1 | IoU |
---|---|---|---|---|---|---|
UN1 | 256 × 256 | 0.679087 | 0.979058 | 0.791190 | 0.671076 | 0.679087 |
UN1 | 512 × 512 | 0.988587 | 0.722411 | 0.974642 | 0.819893 | 0.715286 |
UN2 | 256 × 256 | 0.985928 | 0.709571 | 0.980746 | 0.815265 | 0.701296 |
UN2 | 512 × 512 | 0.987457 | 0.732874 | 0.985958 | 0.833731 | 0.725503 |
UN3 | 256 × 256 | 0.978368 | 0.618260 | 0.953940 | 0.73140 | 0.602232 |
UN3 | 512 × 512 | 0.984650 | 0.681151 | 0.977873 | 0.791776 | 0.673112 |
SU1 | 256 × 256 | 0.987534 | 0.739890 | 0.98042 | 0.834904 | 0.731232 |
SU1 | 512 × 512 | 0.988659 | 0.73934 | 0.974415 | 0.830737 | 0.729422 |
SU2 | 256 × 256 | 0.984286 | 0.678011 | 0.972411 | 0.788763 | 0.669764 |
SU2 | 512 × 512 | 0.991566 | 0.801630 | 0.978020 | 0.876640 | 0.788368 |
SU3 | 256 × 256 | 0.981021 | 0.645645 | 0.925420 | 0.749697 | 0.627331 |
SU3 | 512 × 512 | 0.989774 | 0.764320 | 0.976705 | 0.850746 | 0.755102 |
UR1 | 256 × 256 | 0.993426 | 0.848134 | 0.976801 | 0.903709 | 0.835293 |
UR1 | 512 × 512 | 0.994433 | 0.853365 | 0.986271 | 0.908020 | 0.846189 |
UR2 | 256 × 256 | 0.994207 | 0.858564 | 0.988354 | 0.917532 | 0.851052 |
UR2 | 512 × 512 | 0.994330 | 0.864658 | 0.983132 | 0.916175 | 0.856250 |
UR3 | 256 × 256 | 0.995853 | 0.887876 | 0.982891 | 0.929751 | 0.878621 |
UR3 | 512 × 512 | 0.997436 | 0.926238 | 0.982401 | 0.952210 | 0.915586 |
UR4 | 256 × 256 | 0.996129 | 0.899227 | 0.976273 | 0.931553 | 0.884272 |
UR4 | 512 × 512 | 0.997433 | 0.920265 | 0.977116 | 0.944863 | 0.910468 |
UR5 | 256 × 256 | 0.996846 | 0.896490 | 0.983463 | 0.928265 | 0.883951 |
UR5 | 512 × 512 | 0.996769 | 0.902379 | 0.988267 | 0.937194 | 0.894659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwaszenko, S.; Róg, L. Liptinite Segmentation in Microscopic Images via Deep Networks. Minerals 2025, 15, 401. https://doi.org/10.3390/min15040401
Iwaszenko S, Róg L. Liptinite Segmentation in Microscopic Images via Deep Networks. Minerals. 2025; 15(4):401. https://doi.org/10.3390/min15040401
Chicago/Turabian StyleIwaszenko, Sebastian, and Leokadia Róg. 2025. "Liptinite Segmentation in Microscopic Images via Deep Networks" Minerals 15, no. 4: 401. https://doi.org/10.3390/min15040401
APA StyleIwaszenko, S., & Róg, L. (2025). Liptinite Segmentation in Microscopic Images via Deep Networks. Minerals, 15(4), 401. https://doi.org/10.3390/min15040401