Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining
Abstract
1. More Mercury Monitoring, Less Solutions Applied
2. Where Does the Mercury Come from?
3. No Data on Mercury, No Pollution
4. Engineering Solutions Are Overlooked
5. A Herculean Effort
6. A New Generation of Researchers and Engineers
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cousteau, J.Y.; Richards, M. Jacques Cousteau’s Amazon Journey, 1st ed.; H.N. Abrams Inc.: New York, NY, USA, 1984. [Google Scholar]
- Cleary, D. Anatomy of the Amazon Gold Rush, 1st ed.; St Antony’s Series; Macmillan: Oxford, UK, 1990; ISBN 978-1-349-11247-0. [Google Scholar]
- Veiga, M.M.; Hinton, J.J. Abandoned Artisanal Gold Mines in the Amazon: A Legacy of Mercury Pollution. Nat. Res. Forum 2002, 26, 15–26. [Google Scholar] [CrossRef]
- Guimaraes, J.R.D. Mercury in the Amazon: Problem or Opportunity? A Commentary on 30 Years of Research on the Subject. Elem. Sci. Anthr. 2020, 8, 032. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Pfeiffer, W.C.; Marins, R.V.; Rodrigues, S.; Souza, C.M.M.; Bastos, W.R. Mercury Dispersal in Water, Sediments and Aquatic Biota of a Gold Mining Tailing Deposit Drainage in Pocone, Brazil. Water Air Soil Pollut. 1991, 55, 283–294. [Google Scholar] [CrossRef]
- Veiga, M.M.; Baker, R.F. Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners; United Nations Industrial Development Organization: Vienna, Austria, 2004; ISBN 92-1-106429-5. [Google Scholar]
- Veiga, M.M. Mercury in Artisanal Gold Mining in Latin America: Facts, Fantasies and Solutions. In Proceedings of the UNIDO Expert Group Meeting, Vienna, Austria, 1–3 July 1997; Available online: http://artisanalmining.org/Repository/01/The_CASM_Files/CASM_Projects/Topic_Mercury/veiga_02.pdf (accessed on 25 March 2025).
- Milea, Ş.A.; Lazăr, N.N.; Simionov, I.A.; Petrea, Ş.M.; Călmuc, M.; Călmuc, V.; Georgescu, P.L.; Iticescu, C. Effects of Cooking Methods and Co-Ingested Foods on Mercury Bioaccessibility in Pontic Shad (Alosa immaculata). Curr. Res. Food Sci. 2023, 7, 100599. [Google Scholar] [CrossRef]
- Ouédraogo, C.; Amyot, M. Effects of Various Cooking Methods and Food Components on Bioaccessibility of Mercury from Fish. Environ. Res. 2011, 111, 1064–1069. [Google Scholar] [CrossRef]
- Jovel, E.; Abramowski, Z.; Pakalnis, E.; Marshall, B.; Veiga, M.M. Mercury (II) Binding Activity of Vegetable and Fruit Juices: Identifying Potential Detoxifying Juices for the Citizens of Portovelo-Zaruma, Ecuador. Asp. Min. Min. Sci. 2018, 2, 1–15. [Google Scholar]
- Mieiro, C.L.; Coelho, J.P.; Dolbeth, M.; Pacheco, M.; Duarte, A.C.; Pardal, M.A.; Pereira, M.E. Fish and Mercury: Influence of Fish Fillet Culinary Practices on Human Risk. Food Control 2016, 60, 575–581. [Google Scholar] [CrossRef]
- Girard, C.; Charette, T.; Leclerc, M.; Shapiro, B.J.; Amyot, M. Cooking and Co-Ingested Polyphenols Reduce In Vitro Methylmercury Bioaccessibility from Fish and May Alter Exposure in Humans. Sci. Total Environ. 2018, 616–617, 863–874. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Dias, R.K.S.; Souza, L.R.R.; da Veiga, M.A.M.S. The Effect of Selenium Co-Ingestion on Mercury Bioaccessibility in Contaminated Fish of the Amazon Region. Environ. Adv. 2023, 14, 100450. [Google Scholar] [CrossRef]
- Passos, C.J.; Mergler, D.; Gaspar, E.; Morais, S.; Lucotte, M.; Larribe, F.; Davidson, R.; de Grosbois, S. Eating Tropical Fruit Reduces Mercury Exposure from Fish Consumption in the Brazilian Amazon. Environ. Res. 2003, 93, 123–130. [Google Scholar] [CrossRef]
- Dórea, J.G. Research into Mercury Exposure and Health Education in Subsistence Fish-Eating Communities of the Amazon Basin: Potential Effects on Public Health Policy. Int. J. Environ. Res. Public Health 2010, 7, 3467–3477. [Google Scholar] [CrossRef] [PubMed]
- Silva-Forsberg, M.C.; Forsberg, B.R.; Zeidemann, V.K. Mercury Contamination in Humans Linked to River Chemistry in the Amazon Basin. Ambio 1999, 28, 519–521. [Google Scholar]
- Roulet, M. Methylmercury in Water, Seston, and Epiphyton of an Amazonian River and Its Floodplain, Tapajós River, Brazil. Sci. Total Environ. 2000, 261, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Tromans, D.; Meech, J.A.; Veiga, M.M. Natural Organics and Environmental Stability of Mercury: Electrochemical Considerations. J. Electrochem. Soc. 1996, 143, L123. [Google Scholar] [CrossRef]
- Barbosa, A.; Souza, J.; Dórea, J.; Jardim, W.; Fadini, P. Mercury Biomagnification in a Tropical Black Water, Rio Negro, Brazil. Arch. Environ. Contam. Toxicol. 2003, 45, 235–246. [Google Scholar] [CrossRef]
- Jardim, W.F.; Bisinoti, M.C.; Fadini, P.S.; da Silva, G.S. Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light. Aquat. Geochem. 2010, 16, 267–278. [Google Scholar] [CrossRef]
- Kasper, D.; Forsberg, B.R.; do Amaral Kehrig, H.; Amaral, J.H.F.; Bastos, W.R.; Malm, O. Mercury in Black-Waters of the Amazon. In Igapó (Black-Water Flooded Forests) of the Amazon Basin; Myster, R.W., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 39–56. ISBN 978-3-319-90122-0. [Google Scholar]
- Meech, J.A.; Veiga, M.M.; Tromans, D. Reactivity of Mercury from Gold Mining Activities in Darkwater Ecosystems. Ambio 1998, 27, 92–98. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Araujo, B.F.; Hintelmann, H.; Dimock, B.; Sobrinho, R.L.; Bernardes, M.C.; Almeida, M.G.; Krusche, A.V.; Rangel, T.P.; Thompson, F.T.; Rezende, C.E. Mercury Speciation and Hg Stable Isotope Ratios in Sediments from Amazon Floodplain Lakes—Brazil. Limnol. Oceanogr. 2017, 63, 1134–1145. [Google Scholar] [CrossRef]
- Marshall, B.G.; Veiga, M.M.; Kaplan, R.J.; Miserendino, R.A.; Schudel, G.; Berquist, B.; Guimarães, J.R.; Gonzalez-Mueller, C. Evidence of Transboundary Mercury and Other Pollutants in the Puyango-Tumbes River Basin, Ecuador-Peru. Environ. Sci. Process. Impacts 2018, 20, 638–641. [Google Scholar]
- Lepak, R.F.; Janssen, S.E.; Yin, R.; Krabbenhoft, D.P.; Ogorek, J.M.; DeWild, J.F.; Tate, M.T.; Holsen, T.M.; Hurley, J.P. Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes. Environ. Sci. Technol. 2018, 52, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.E.; Riva-Murray, K.; DeWild, J.F.; Ogorek, J.M.; Tate, M.T.; Van Metre, P.C.; Krabbenhoft, D.P.; Coles, J.F. Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States. Environ. Sci. Technol. 2019, 53, 10110–10119. [Google Scholar] [CrossRef] [PubMed]
- Hinton, J.J.; Veiga, M.M. Earthworms as Bioindicators of Mercury Pollution from Mining and Other Industrial Activities. Geochem. Explor. Environ. Anal. 2002, 2, 269–274. [Google Scholar] [CrossRef]
- Hinton, J.J.; Veiga, M.M. The Influence of Organic Acids on Mercury Bioavailability: Insight from an Earthworm Assessment Protocol. Environ. Bioindic. 2008, 3, 47–67. [Google Scholar] [CrossRef]
- Brown, S.T.; Bandoo, L.L.; Agard, S.S.; Thom, S.T.; Gilhuys, T.E.; Mudireddy, G.K.; Eechampati, A.V.; Hasan, K.M.; Hasan, K.M.; Loving, D.C.; et al. A Collaborative Training Program to Assess Mercury Pollution from Gold Shops in Guyana’s Artisanal and Small-Scale Gold Mining Sector. Atmosphere 2020, 11, 719. [Google Scholar] [CrossRef]
- Veiga, M.M.; Fadina, O. A Review of the Failed Attempts to Curb Mercury Use at Artisanal Gold Mines and a Proposed Solution. Extr. Ind. Soc. 2020, 7, 1135–1146. [Google Scholar] [CrossRef]
- Veiga, M.M.; Meech, J.A.; Hypolito, R. Educational Measures to Address Mercury Pollution from Gold-Mining Activities in the Amazon. Ambio 1995, 24, 216–220. [Google Scholar]
- Kiefer, A. Mercury Capture System. ASM Grand Challenge, Conservation X Labs. Available online: https://www.youtube.com/watch?v=yv7zfSGN2VM&ab_channel=ConservationXLabs (accessed on 31 March 2025).
- Veiga, M.M.; Angeloci-Santos, G.; Meech, J.A. Review of Barriers to Reduce Mercury Use in Artisanal Gold Mining. Extr. Ind. Soc. 2014, 1, 351–361. [Google Scholar] [CrossRef]
- Chen, A.; Danfakha, F.; Hausermann, H.; Gerson, J.R. Education and Equipment Distribution Lead to Increased Mercury Knowledge and Retort Use in Artisanal and Small-Scale Gold Mining Communities in Senegal. Clean. Prod. Lett. 2023, 5, 100050. [Google Scholar] [CrossRef]
- Esdaile, L.J.; Chalker, J.M. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chem. Eur. J. 2018, 24, 6905–6916. [Google Scholar] [CrossRef]
- IGF—Intergovernmental Forum Global Trends in ASGM Tailings Management and Reprocessing Governance. 16 May 2024. Available online: https://www.igfmining.org/event/global-trends-in-asgm-tailings-management-and-reprocessing-governance (accessed on 31 March 2025).
- Cheng, Y.; Nakajima, K.; Nansai, K.; Seccatore, J.; Veiga, M.M.; Takaoka, M. Examining the Inconsistency of Mercury Flow in Post-Minamata Convention Global Trade Concerning Artisanal and Small-Scale Gold Mining Activity. Resour. Conserv. Recycl. 2022, 185, 106461. [Google Scholar] [CrossRef]
- Veiga, M.; Marshall, B. Why Does Canada Export Mercury to Cuba? Extr. Ind. Soc. 2016, 3, 359–360. [Google Scholar] [CrossRef]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury Contamination from Artisanal Gold Mining in Antioquia, Colombia: The World’s Highest per Capita Mercury Pollution. Sci. Total Environ. 2011, 410–411, 154–160. [Google Scholar] [CrossRef]
- García, O.; Veiga, M.M.; Cordy, P.; Suescún, O.E.; Molina, J.M.; Roeser, M. Artisanal Gold Mining in Antioquia, Colombia: A Successful Case of Mercury Reduction. J. Clean. Prod. 2015, 90, 244–252. [Google Scholar] [CrossRef]
- Anene, N.C.; Dangulbi, B.M.; Veiga, M.M. Assessment of Gold and Mercury Losses in an Artisanal Gold Mining Site in Nigeria and Its Implication on the Local Economy and the Environment. Minerals 2024, 14, 1131. [Google Scholar] [CrossRef]
- Keane, S.; Bernaudat, L.; Davis, K.J.; Stylo, M.; Mutemeri, N.; Singo, P.; Twala, P.; Mutemeri, L.; Nakafeero, A.; Etui, I.D. Mercury and Artisanal and Small-Scale Gold Mining: Review of Global Use Estimates and Considerations for Promoting Mercury-Free Alternatives. Ambio 2023, 52, 833–852. [Google Scholar] [CrossRef]
- McDaniels, J.; Chouinard, R.; Veiga, M.M. Appraising the Global Mercury Project: An Adaptive Management Approach to Combating Mercury Pollution in Small-Scale Gold Mining. Int. J. Environ. Pollut. 2010, 41, 242–258. [Google Scholar] [CrossRef]
- Stocklin-Weinberg, R.; Veiga, M.M.; Marshall, B.G. Training Artisanal Miners: A Proposed Framework with Performance Evaluation Indicators. Sci. Total Environ. 2019, 660, 1533–1541. [Google Scholar] [CrossRef]
- Martinez, G.; Restrepo-Baena, O.J.; Veiga, M.M. The Myth of Gravity Concentration to Eliminate Mercury Use in Artisanal Gold Mining. Extr. Ind. Soc. 2021, 8, 477–485. [Google Scholar] [CrossRef]
- Veiga, M.M.; Gunson, A.J. Gravity Concentration in Artisanal Gold Mining. Minerals 2020, 10, 1026. [Google Scholar] [CrossRef]
- Torkaman, P.; Veiga, M.M. Comparing Cyanidation with Amalgamation of a Colombian Artisanal Gold Mining Sample: Suggestion of a Simplified Zinc Precipitation Process. Extr. Ind. Soc. 2023, 13, 101208. [Google Scholar] [CrossRef]
- Jønsson, J.B.; Appel, P.W.U.; Chibunda, R.T. A Matter of Approach: The Retort’s Potential to Reduce Mercury Consumption Within Small-Scale Gold Mining Settlements in Tanzania. J. Clean. Prod. 2009, 17, 77–86. [Google Scholar] [CrossRef]
- Yoshimura, A.; Suemasu, K.; Veiga, M.M. Estimation of Mercury Losses and Gold Production by Artisanal and Small-Scale Gold Mining (ASGM). J. Sustain. Metall. 2021, 7, 1045–1059. [Google Scholar] [CrossRef]
- Dooyema, C.A.; Neri, A.; Lo, Y.-C.; Durant, J.; Dargan, P.I.; Swarthout, T.; Biya, O.; Gidado, S.O.; Haladu, S.; Sani-Gwarzo, N.; et al. Outbreak of Fatal Childhood Lead Poisoning Related to Artisanal Gold Mining in Northwestern Nigeria, 2010. Environ. Health Perspect. 2012, 120, 601–607. [Google Scholar] [CrossRef]
- Landrigan, P.; Bose-O’Reilly, S.; Elbel, J.; Nordberg, G.; Lucchini, R.; Bartrem, C.; Grandjean, P.; Mergler, D.; Moyo, D.; Nemery, B.; et al. Reducing Disease and Death from Artisanal and Small-Scale Mining (ASM)—The Urgent Need for Responsible Mining in the Context of Growing Global Demand for Minerals and Metals for Climate Change Mitigation. Environ. Health 2022, 21, 78. [Google Scholar] [CrossRef]
- Morgan, V.L.; McLamore, E.S.; Correll, M.; Kiker, G.A. Emerging Mercury Mitigation Solutions for Artisanal Small-Scale Gold Mining Communities Evaluated Through a Multicriteria Decision Analysis Approach. Environ. Syst. Decis. 2021, 41, 413–424. [Google Scholar] [CrossRef]
- Appel, P.W.U.; Na-Oy, L. The Borax Method of Gold Extraction for Small-Scale Miners. J. Health Pollut. 2012, 2, 5–10. [Google Scholar] [CrossRef]
- Veiga, M.M.; Tarra A, J.A.; Restrepo-Baena, O.J.; De Tomi, G. Coexistence of Artisanal Gold Mining with Companies in Latin America. Extr. Ind. Soc. 2022, 12, 101177. [Google Scholar] [CrossRef]
- Tarra, J.A.; Restrepo, O.J.; Veiga, M.M. Coexistence between Conventional Alluvial Mining and Artisanal Mining to Deal with Problems Associated with Informality in the Lower Nechí River Basin-Colombia. Resour. Policy 2022, 78, 102821. [Google Scholar] [CrossRef]
- Hilson, G.; Zolnikov, T.R.; Ramirez-Ortiz, D.; Kumah, C. Formalizing Artisanal Gold Mining Under the Minamata Convention: Previewing the Challenge in Sub-Saharan Africa. Environ. Sci Policy 2018, 85, 123–131. [Google Scholar]
- Bansah, K.J. From Diurnal to Nocturnal: Surviving in a Chaotic Artisanal and Small-Scale Mining Sector. Resour. Policy 2019, 64, 101475. [Google Scholar] [CrossRef]
- Hilson, G. ‘Formalization Bubbles’: A Blueprint for Sustainable Artisanal and Small-Scale Mining (ASM) in Sub-Saharan Africa. Extr. Ind. Soc. 2020, 7, 1624–1638. [Google Scholar] [CrossRef]
- Marshall, B.G.; Veiga, M.M. Formalization of Artisanal Miners: Stop the Train, We Need to Get Off! Extr. Ind. Soc. 2017, 4, 300–303. [Google Scholar] [CrossRef]
- Hilson, G.; Bartels, E.; Hu, Y. Brick by Brick, Block by Block: Building a Sustainable Formalization Strategy for Small-Scale Gold Mining in Ghana. Environ. Sci. Policy 2022, 135, 207–225. [Google Scholar] [CrossRef]
- Atienza, M.; Scholvin, S.; Irarrazaval, F.; Arias-Loyola, M. Formalization Beyond Legalization: ENAMI and the Promotion of Small-Scale Mining in Chile. J. Rural Stud. 2023, 98, 123–133. [Google Scholar] [CrossRef]
- Kinyondo, A.; Huggins, C. Centres of Excellence’ for Artisanal and Small-Scale Gold Mining in Tanzania: Assumptions around Artisanal Entrepreneurship and Formalization. Extr. Ind. Soc. 2020, 7, 758–766. [Google Scholar] [CrossRef]
- Bernaudat, L.; Keane, S. PlanetGOLD as a Vehicle for the Implementation of the National Action Plans and Reporting Progress on the Minamata Convention. In Proceedings of the ICMGP 2024, Cape Town, South Africa, 21–26 July 2024; Available online: https://www.mercurycapetown.com/wp-content/uploads/2024/10/4-Session-16-Bernaudat.pdf (accessed on 31 March 2025).
- PlanetGold Annual Progress Report (2022–2023), 73p. Available online: https://www.thegef.org/sites/default/files/documents/2024-05/planetGOLD_22-23_Annual_Progress_Report.pdf (accessed on 31 March 2025).
- Mahlatsi, S.; Guest, R.N. The iGoli Mercury-Free Gold Extraction Process. Urban Health Dev. Bull. 2003, 6, 62–63. [Google Scholar]
- Veiga, M.M.; Angeloci, G.; Hitch, M.; Velasquez-López, P.C. Processing Centers in Artisanal Gold Mining. J. Clean. Prod. 2014, 64, 535–544. [Google Scholar] [CrossRef]
- Drace, K.; Kiefer, A.M.; Veiga, M.M. Cyanidation of Mercury-Contaminated Tailings: Potential Health Effects and Environmental Justice. Curr. Environ. Health Rep. 2016, 3, 443–449. [Google Scholar] [CrossRef]
- Seney, C.S.; Bridges, C.C.; Aljic, S.; Moore, M.E.; Orr, S.E.; Barnes, M.C.; Joshee, L.; Uchakina, O.N.; Bellott, B.J.; McKallip, R.J.; et al. Reaction of Cyanide with Hg0-Contaminated Gold Mining Tailings Produces Soluble Mercuric Cyanide Complexes. Chem. Res. Toxicol. 2020, 33, 2834–2844. [Google Scholar] [CrossRef]
- Silva, H.A.M.; Kasper, D.; Marshall, B.G.; Veiga, M.M.; Guimarães, J.R.D. Acute Ecotoxicological Effects of Hg(CN)2 in Danio rerio (Zebrafish). Ecotoxicology 2023, 32, 429–437. [Google Scholar] [PubMed]
- Silva, E.M.; Vriesde, E.; Druiventak, A.; Veiga, M.; De Tomi, G. Production of Cement-Tailings Bricks with Artisanal Gold Mining Waste. Clean. Waste Syst. 2025, 11, 100269. [Google Scholar] [CrossRef]
Micro-Miners | Processing Centers | |
---|---|---|
Number of AGMs in the world | 90% | 10% |
Gold production | 20% | 80% |
Loss of Hg | 10% | 90% |
Attention to the intervention projects | 100% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga, M.M.; Anene, N.C.; Silva, E.M. Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining. Minerals 2025, 15, 376. https://doi.org/10.3390/min15040376
Veiga MM, Anene NC, Silva EM. Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining. Minerals. 2025; 15(4):376. https://doi.org/10.3390/min15040376
Chicago/Turabian StyleVeiga, Marcello M., Nnamdi C. Anene, and Emiliano M. Silva. 2025. "Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining" Minerals 15, no. 4: 376. https://doi.org/10.3390/min15040376
APA StyleVeiga, M. M., Anene, N. C., & Silva, E. M. (2025). Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining. Minerals, 15(4), 376. https://doi.org/10.3390/min15040376