The Formation of Organic Matter Pores in Shales: Implications from Combined Thermal Heating and Scanning Electron Microscopy Imaging
Abstract
:1. Introduction
2. Geological Settings and Sample
3. Methods
3.1. Rock-Eval and TOC
3.2. Organic Petrology
3.3. Thermal Heating and SEM Imaging
3.4. Quantification of Organic Pores
4. Results
4.1. Geochemical Characteristics
4.2. SEM Images and Pore Diameters
4.3. Surface Porosity
5. Discussion
5.1. Organic Pores Evolution
5.2. Effects of Macerals on Organic Pores
5.3. Organic Matter- Hosted Cracks
5.4. Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.; He, L.; Melnichenko, Y.B.; Radliński, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Xiao, X.M.; Wilkins, R.W.; Meng, Z.; Huang, B. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong thrust fold belt, Southwester China using low pressure N2 adsorption and FE-SEM methods. Mar. Pet. Geol. 2013, 48, 8–19. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Han, H.; Zhong, N.N.; Ma, Y.; Huang, C.X.; Wang, Q.; Chen, S.J.; Lu, J.G. Gas storage and controlling factors in an over-mature marine shale: A case study of the Lower Cambrian Lujiaping shale in the Dabashan arc-like thrust–fold belt, southwestern China. J. Nat. Gas Sci. Eng. 2016, 33, 839–853. [Google Scholar] [CrossRef]
- Chandra, D.; Vishal, V. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery. Earth-Sci. Rev. 2021, 217, 103638. [Google Scholar] [CrossRef]
- Liu, B.; Mastalerz, M.; Schieber, J. SEM petrography of dispersed organic matter in black shales: A review. Earth-Sci. Rev. 2022, 224, 103874. [Google Scholar]
- Bahadur, J.; Chandra, D.; Das, A.; Vishal, V.; Agrawal, A.K.; Sen, D. Pore anisotropy in shale and its dependence on thermal maturity and organic carbon content: A scanning SAXS study. Int. J. Coal Geol. 2023, 273, 104268. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.M.; Ge, J.W.; Li, S.X.; Zhang, T.S. Karst topography paces the deposition of lower Permian, organic-rich, marine– continental transitional shales in the southeastern Ordos Basin, northwestern China. AAPG Bull. 2024, 108, 849–875. [Google Scholar] [CrossRef]
- Wang, R.Y.; Hu, Z.Q.; Long, S.X.; Liu, G.X.; Zhao, J.H.; Li, D.; Wei, D.; Wang, P.W.; Shuai, Y. Differential characteristics of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale reservoir and its implications for exploration and development of shale gas in/around the Sichuan Basin. Acta Geol. Sin. Engl. 2019, 93, 520–535. [Google Scholar]
- Wang, R.Y.; Liu, Y.J.; Li, Z.; Wang, D.H.; Wang, G.P.; Lai, F.Q.; Li, Z.H.; He, J.H. Microscopic pore structure characteristics and controlling factors of marine shale: A case study of Lower Cambrian shales in the Southeastern Guizhou, Upper Yangtze Platform, South China. Front. Earth Sci. 2024, 12, 1368326. [Google Scholar]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Strąpoć, D.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Hasenmueller, N.R. Geochemical constraints on the origin and volume of gas in the New Albany shale (Devonian-Mississippian) eastern Illinois basin. AAPG Bull. 2010, 94, 1713–1740. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T.W. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvanic. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Löhr, S.C.; Baruch, E.T.; Hall, P.A.; Kennedy, M.J. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter? Org. Geochem. 2015, 87, 119–132. [Google Scholar] [CrossRef]
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M. Combined SEM and reflected light petrography of organic matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation. Int. J. Coal Geol. 2017, 184, 57–72. [Google Scholar] [CrossRef]
- Katz, B.J.; Arango, I. Organic porosity: A geochemist’s view of the current state of understanding. Org. Geochem. 2018, 123, 1–16. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Stankiewicz, A.B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review. Int. J. Coal Geol. 2018, 195, 14–36. [Google Scholar] [CrossRef]
- Liu, B.; Schieber, J.; Mastalerz, M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany Shale during thermal maturation: Implications for kerogen transformation. In Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks; Camp, W., Milliken, K., Taylor, K., Fishman, N., Hackley, P., Macquaker, J., Eds.; AAPG Memoir: Tulsa, OK, USA, 2019; Volume 120, pp. 165–188. [Google Scholar]
- Pang, P.; Han, H.; Tan, X.C.; Ren, S.M.; Guo, C.; Xie, L.; Zheng, L.L.; Zhu, H.H.; Gao, Y.; Xie, X.H. Organic matter pores in the Chang 7 lacustrine shales from the Ordos Basin and its effect on reflectance measurement. Petrol. Sci. 2023, 20, 60–86. [Google Scholar] [CrossRef]
- Luo, Q.; Zhong, N.; Dai, N.; Zhang, W. Graptolite-derived organic matter in the wufengelongmaxi formations (upper ordovicianelower silurian) of south-eastern chongqing, China: Implications for gas shale evaluation. Int. J. Coal Geol. 2016, 153, 87–98. [Google Scholar]
- Ma, Y.; Zhong, N.; Cheng, L.; Pan, Z.; Dai, N.; Zhang, Y.; Yang, L. Pore structure of the graptolite-derived OM in the Longmaxi Shale, southeastern Upper Yangtze Region, China. Mar. Pet. Geol. 2016, 72, 1–11. [Google Scholar] [CrossRef]
- Ardakani, O.H.; Sanei, H.; Ghanizadeh, A.; Lavoie, D.; Chen, Z.; Clarkson, C.R. Do all fractions of organic matter contribute equally in shale porosity? A case study from Upper Ordovician Utica Shale, southern Quebec, Canada. Mar. Pet. Geol. 2018, 92, 794–808. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. The development of organic porosity in the woodford shale as a function of thermal maturity. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012. SPE-160158-MS. [Google Scholar]
- Pommer, M.; Milliken, K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bull. 2015, 99, 1713–1744. [Google Scholar] [CrossRef]
- Han, H.; Pang, P.; Li, Z.L.; Shi, P.T.; Guo, C.; Liu, Y.; Chen, S.J.; Lu, J.G.; Gao, Y. Controls of organic and inorganic compositions on pore structure of lacustrine shales of Chang 7 member from Triassic Yanchang Formation in the Ordos Basin, China. Mar. Pet. Geol. 2019, 100, 270–284. [Google Scholar] [CrossRef]
- Curtis, M.E.; Cardott, B.J.; Sondergeld, C.H.; Rai, C.S. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar]
- Knapp, L.J.; Ardakani, O.H.; Reyes, J.; Ishikawa, K. Early porosity generation in organic-sulfur-rich mudstones. Sci. Rep. 2023, 13, 9904. [Google Scholar] [CrossRef]
- Fishman, N.S.; Hackley, P.C.; Lowers, H.A.; Hill, R.J.; Egenhoff, S.O.; Eberl, D.D.; Blum, A.E. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom. Int. J. Coal Geol. 2012, 103, 32–50. [Google Scholar] [CrossRef]
- Dong, T.; He, S.; Chen, M.; Hou, Y.; Guo, X.; Wei, C.; Han, Y.; Yang, R. Quartz types and origins in the Paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for porosity preservation in shale reservoirs. Mar. Pet. Geol. 2019, 106, 62–73. [Google Scholar] [CrossRef]
- Knapp, L.J.; Ardakani, O.H.; Uchida, S.; Nanjo, T.; Otomo, C.; Hattori, T. The influence of rigid matrix minerals on organic porosity and pore size in shale reservoirs: Upper Devonian Duvernay Formation, Alberta, Canada. Int. J. Coal Geol. 2020, 227, 103525. [Google Scholar] [CrossRef]
- Modica, C.J.; Lapierre, S.G. Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry shale in the Powder River basin of Wyoming. AAPG Bull. 2012, 96, 87–108. [Google Scholar] [CrossRef]
- Romero-Sarmiento M., F.; Ducros, M.; Carpentier, B.; Lorant, F.; Cacas, M.; Pegaz-Fiornet, S.; Wolf, S.; Rohais, S.; Moretti, I. Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett shale. Mar. Pet. Geol. 2013, 45, 315–330. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, C. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data: Example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bull. 2016, 100, 405–422. [Google Scholar] [CrossRef]
- Teng, J.; Mastalerz, M.; Hampton, L. Maceral controls on porosity characteristics of lithotypes of Pennsylvanian high volatile bituminous coal: Example from the Illinois Basin. Int. J. Coal Geol. 2017, 172, 80–94. [Google Scholar] [CrossRef]
- Teng, J.; Liu, B.; Mastalerz, M.; Schieber, J. Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China. Int. J. Coal Geol. 2022, 253, 103970. [Google Scholar]
- Guan, Q.; Lü, X.; Dong, D.; Cai, X. Origin and significance of organic-matter pores in Upper ordovician wufeng-lower Silurian Longmaxi mudstones, Sichuan basin. J. Petrol. Sci. Eng. 2019, 176, 554–561. [Google Scholar] [CrossRef]
- Borjigin, T.; Lu, L.F.; Yu, L.J.; Zhang, W.T.; Pan, A.Y.; Shen, B.J.; Wang, Y.; Yang, Y.F.; Gao, Z.W. Formation, preservation and connectivity control of organic pores in shale. Petrol. Explor. Develop. 2021, 48, 798–812. [Google Scholar] [CrossRef]
- Castagna, M.; Goergen, E.; Skinner, K.; Dahl, J.E. Utilization of an ESEMTM with an embedded heating stage to investigate pyrolosis in immature oil shale. Microsc. Microanal. 2014, 20 (Suppl. 3), 1642–1643. [Google Scholar] [CrossRef]
- Camp, W.K.; Knowles, W.; Hooghan, K.; Ruble, T.E. Microsctructural analysis of the transformation of organic matter during artificial thermal maturation of the Upper Cretaceous Boquillas (Eagle Ford) Formation, Texas, USA. Microsc. Microanal. 2017, 23 (Suppl. 1), 2128–2129. [Google Scholar] [CrossRef]
- Gao, Z.; Xuan, Q.X.; Hu, Q.H.; Jiang, Z.X.; Liu, X.X. Pore structure evolution characteristics of continental shale in China as indicated from thermal simulation experiments. AAPG Bull. 2021, 105, 2159–2180. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, J.Y. Temperature-driven hydrocarbon generation-expulsion and structural transformation of organic-rich shale assessed by in situ heating SEM. Front. Earth. Sci. 2021, 9, 797760. [Google Scholar] [CrossRef]
- Liu, Z.J.; Meng, Q.T.; Liu, R.; Dong, Q.S. Geochemical characteristics of oil shale of Eocene Jijuntun Formation and its geological significance, Fushun Basin. Acta Petrol. Sin. 2009, 25, 2340–2350. (In Chinese) [Google Scholar]
- Meng, Q.T.; Bruch, A.A.; Sun, G.; Liu, Z.J.; Hu, F.; Sun, P.C. Quantitative reconstruction of Middle and Late Eocene paleoclimate based on palynological records from the Huadian Basin, northeastern China: Evidence for monsoonal influence on oil shale formation. Palaeogeogr. Palaeocl. 2018, 510, 63–77. [Google Scholar] [CrossRef]
- Sun, P.C.; Liu, Z.J.; Meng, Q.T.; Liu, R.; Jia, J.; Hu, X. Effect of the basin-fill features on oil shale formation in Paleogene, Huadian Basin. J. China coal Soc. 2011, 36, 1110–1116, (in Chinese with English abstract). [Google Scholar]
- Sun, P.C.; Sachsenhofer, R.F.; Liu, Z.J.; Strobl, S.A.I.; Meng, Q.T.; Liu, R.; Zhen, Z. Organic matter accumulation in the oil shale- and coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol. 2013, 105, 1–15. [Google Scholar] [CrossRef]
- Li, S. The developments of Chinese oil shale activities. Oil Shale 2012, 29, 101–102. [Google Scholar] [CrossRef]
- Behar, F.; Beaumont, B.; De, B.; Penteado, H.L. Rock-Eval 6 technology: Performances and developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- ISO 7404-2; Methods for the Petrographic Analysis of Coals–Part 2: Methods of Preparing Coal Samples. International Organization for Standardization: Geneva, Switzerland, 2009.
- ASTM D7708-14; Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks. ASTM International: West Conshohocken, PA. USA, 2014. Available online: www.astm.org (accessed on 28 May 2014).
- Sweeney, J.J.; Burnham, A.K. Evaluation of a sample method of vitrinite reflectance based on chemical kinetics. AAPG Bull. 1990, 74, 1559–1570. [Google Scholar]
- Tang, Y.; Jenden, P.D.; Nigrini, A.; Teerman, S.C. Modeling early methane generation in coal. Energ. Fuel. 1996, 10, 659–671. [Google Scholar] [CrossRef]
- Roduit, N. JMICROVISION Version 1.2.7: Image Analysis Toolbox For Measuring And Quantifying Components Of High-Definition Images. 2008. Available online: http://www.jmicrovision.com (accessed on 23 January 2025).
- Chen, J.; Xiao, X.M. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Lu, C.; Xiao, X.M.; Gai, H.F.; Feng, Y.; Li, G.; Meng, G.M.; Gao, P. Nanopore structure characteristics and evolution of type III kerogen in marine-continental transitional shales from the Qinshui basin, northern China. Geoenergy Sci. Eng. 2023, 221, 211413. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Cai, X.; Zhang, P.X.; He, G.S.; Gao, Q.F.; Wan, J.Y. Pore characteristics and evolution of Wufeng-Longmaxi Fms shale gas reservoirs in the basin-margin transition zone of SE Chongqing. Nat. Gas Ind. B 2019, 6, 323–332. [Google Scholar] [CrossRef]
- Mi, J.; Zhang, S.C.; Chen, J.P.; He, K.; Liu, K.Y.; Li, X.Q.; Bi, L.N. Upper thermal maturity limit for gas generation from humic coal. Int. J. Coal Geol. 2015, 152, 123–131. [Google Scholar] [CrossRef]
- Mi, J.K.; Zhang, S.C.; Su, J.; He, K.; Zhang, B.; Tian, H.; Li, X.Q. The upper thermal maturity limit of primary gas generated from marine organic matters. Mar. Petrol. Geol. 2018, 89, 120–129. [Google Scholar] [CrossRef]
- Curtis, M.E.; Sondergeld, C.H.; Rai, C.S. Relationship Between Organic Shale Microstructure and Hydrocarbon Generation. In Proceedings of the SPE Unconventional Resources Conference, Woodland, Houston, TX, USA, 10–12 April 2013. SPE Paper 164540. [Google Scholar]
- Tannenbaum, E.; Huizinga, B.J.; Kaplan, I.R. Role of minerals in thermal alteration of organic matter. Part II: A material balance. AAPG Bull. 1986, 70, 1156–1165. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Occurrence and Formation; Springer: Berlin/Heidelberg, Germany, 1984; p. 699. [Google Scholar]
- Chalmers, G.R.; Bustin, R.M. A multidisciplinary approach in determining the maceral (kerogen type) and mineralogical composition of Upper Cretaceous Eagle Ford Formation: Impact on pore development and pore size distribution. Int. J. Coal Geol. 2017, 171, 93–110. [Google Scholar] [CrossRef]
- Dai, S.; Bartley, R.; Bartley, S.; Valentim, B.; Guedes, A.; O’Keefe, J.M.K.; Kus, J.; Mastalerz, M.; Hower, H.C. Organic geochemistry of funginite (Miocene, Eel River, Mendocino County, California, USA) and macrinite (Cretaceous, Inner Mongolia, China). Int. J. Coal Geol. 2017, 179, 60–71. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential. Fuel 1996, 75, 1483–1498. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study: 1. Isotherms and pore volume distributions. Fuel 1999, 78, 1333–1344. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Rupp, J. Meso-and micropore characteristics of coal lithotypes: Implications for CO2 adsorption. Energy Fuel 2008, 22, 4049–4061. [Google Scholar]
- Hower, J.C.; O’keefe, J.M.K.; Watt, M.A.; Pratt, T.J.; Eble, C.F.; Stucker, J.D.; Richardson, A.R.; Kostova, I.J. Notes on the origin of inertinite macerals in coals: Observation on the importance of fungi in the origin of macrinite. Int. J. Coal Geol. 2009, 80, 135–143. [Google Scholar] [CrossRef]
- Milliken, K.L.; Ko, L.T.; Pommer, M.; Marsaglia, K.M. SEM petrography of eastern Mediterranean sapropels: Analogue data for assessing organic matter in oil and gas shales. J. Sediment. Res. 2014, 84, 961–974. [Google Scholar] [CrossRef]
- Yang, C.; Xiong, Y.Q.; Zhang, J.C.; Liu, Y.K.; Chen, C. Comprehensive Understanding of OM-Hosted Pores in Transitional Shale: A Case Study of Permian Longtan Shale in South China Based on Organic Petrographic Analysis, Gas Adsorption, and X-ray Diffraction Measurements. Energy Fuel 2019, 33, 8055–8064. [Google Scholar]
- Meng, Q.; Hao, F.; Tian, J. Origins of non-tectonic fractures in shale. Earth-SCI. Rev. 2021, 222, 103825. [Google Scholar] [CrossRef]
- Ting, F.T. Coal macerals. In Coal Structure; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 1982; pp. 7–49. [Google Scholar]
- Li, K.J.; Kong, S.Q.; Xia, P.; Wang, X.L. Microstructural characterization of organic matter pores in coal-measure shale. Adv. Geo-Energy Res. 2020, 4, 372–391. [Google Scholar]
- Gao, Z.; Liang, Z.; Hu, Q.; Jiang, Z.; Xuan, Q. A new and integrated imaging and compositional method to investigate the contributions of organic matter and inorganic minerals to the pore spaces of lacustrine shale in China. Mar. Pet. Geol. 2021, 127, 104962. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, W.; Zhang, D.; Wei, R.; Wang, Y. Influence of geochemical features on the mechanical properties of organic matter in shale. J. Geophys. Res. Sol. Ea. 2020, 125, e2020JB019809. [Google Scholar] [CrossRef]
- Hu, G.; Pang, Q.; Jiao, K.; Hu, C.; Liao, Z. Development of organic pores in the Longmaxi Formation overmature shales: Combined effects of thermal maturity and organic matter composition. Mar. Pet. Geol. 2020, 116, 104314. [Google Scholar] [CrossRef]
- Wang, G. Deformation of organic matter and its effect on pores in mud rocks. AAPG Bull. 2020, 104, 21–36. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, Y.; Peng, P. Effects of oil expulsion and pressure on nanopore development in highly mature shale: Evidence from a pyrolysis study of the Eocence Maoming oil shale, south China. Mar. Pet. Geol. 2017, 86, 526–536. [Google Scholar]
- Mathia, E.J.; Bowen, L.; Thomas, K.M.; Aplin, A.C. Evolution of porosity and pore type in organic-rich, calcareous, lower Toarcian Posidonia shale. Mar. Pet. Geol. 2016, 75, 117–139. [Google Scholar] [CrossRef]
Heating temperature (°C) | 417.8 | 461.5 | 511 | 553 | 602 | 658 | 700.8 |
Modified EasyRo (%) | 1.00 | 1.35 | 1.87 | 2.39 | 3.00 | 3.49 | 3.70 |
TOC (%) | Tmax (°C) | S1 (mg/g) | S2 (mg/g) | S1+S2 (mg/g) | HI (mg/g TOC) | Vitrinite Reflectance (%) |
---|---|---|---|---|---|---|
10.97 | 442 | 1.43 | 73.48 | 74.91 | 670 | 0.46 |
Vitrinite (%) | Inertinite (%) | Solid Bitumen (%) | Liptinite(%) |
---|---|---|---|
9 | 21 | 55 | 15 |
Heating Temperature (°C) | Ro/EasyRo (%) | Surface Porosity (%) | ||||
---|---|---|---|---|---|---|
2000× | 5000× | 10,000× | 30,000× | 100,000× | ||
/ | 0.46 | 0 | 0 | 0 | 0 | 0 |
417.8 | 1.00 | 1.62 | 1.15 | 3.30 | 7.12 | 12.08 |
461.5 | 1.35 | 5.60 | 4.02 | 4.36 | 8.03 | 14.52 |
511 | 1.87 | 9.97 | 6.78 | 4.96 | 9.50 | 24.53 |
553 | 2.39 | 14.28 | 11.77 | 6.98 | 10.19 | 26.40 |
602 | 3.00 | 21.02 | 20.18 | 12.17 | 20.39 | 55.51 |
658 | 3.49 | 37.51 | 37.15 | 33.06 | 39.53 | 58.12 |
700.8 | 3.70 | 40.06 | 42.53 | 36.05 | 33.37 | 61.34 |
Heating Temperature (°C) | Ro/EasyRo (%) | Surface Porosity (%) | |||
---|---|---|---|---|---|
5000× | 10,000× | 30,000× | 100,000× | ||
/ | 0.46 | 0 | 0 | 0 | 0 |
417.8 | 1.00 | 4.37 | 9.40 | 39.82 | 43.58 |
461.5 | 1.35 | 4.23 | 10.26 | 42.97 | 44.57 |
511 | 1.87 | 6.62 | 7.85 | 41.25 | 49.93 |
553 | 2.39 | 11.17 | 20.79 | 58.86 | 61.67 |
602 | 3.00 | 14.60 | 25.27 | 63.15 | 63.56 |
658 | 3.49 | 14.76 | 25.94 | 64.54 | 68.02 |
700.8 | 3.70 | 16.14 | 30.64 | 67.08 | 86.66 |
Heating Temperature (°C) | Ro/EasyRo (%) | Surface Porosity (%) | |||
---|---|---|---|---|---|
5000× | 10,000× | 30,000× | 100,000× | ||
/ | 0.46 | 0 | 0 | 0 | 0 |
417.8 | 1.00 | 0.00 | 10.60 | 43.74 | 24.32 |
461.5 | 1.35 | 5.38 | 14.25 | 53.11 | 35.25 |
511 | 1.87 | 5.00 | 14.65 | 59.09 | 37.29 |
553 | 2.39 | 13.39 | 26.89 | 66.62 | 38.43 |
602 | 3.00 | 30.55 | 36.86 | 85.06 | 90.41 |
658 | 3.49 | 32.02 | 41.36 | 87.66 | 87.87 |
700.8 | 3.70 | 36.84 | 51.70 | 88.36 | 86.03 |
Heating Temperature (°C) | Ro/EasyRo (%) | Surface Porosity (%) | ||||
---|---|---|---|---|---|---|
2000× | 5000× | 10,000× | 30,000× | 100,000× | ||
/ | 0.46 | 0 | 0 | 0 | 0 | 0 |
417.8 | 1.00 | 3.99 | 3.34 | 8.14 | 16.52 | 18.69 |
461.5 | 1.35 | 4.14 | 2.14 | 11.80 | 23.86 | 23.54 |
511 | 1.87 | 4.17 | 2.54 | 15.25 | 29.60 | 38.68 |
553 | 2.39 | 5.73 | 3.73 | 16.88 | 34.78 | 42.11 |
602 | 3.00 | 5.71 | 5.93 | 20.12 | 38.80 | 43.30 |
658 | 3.49 | 10.04 | 15.05 | 24.31 | 48.82 | 52.08 |
700.8 | 3.70 | 10.76 | 20.62 | 29.35 | 65.41 | 60.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; He, C.; Xiao, S.; Chen, J.; Kalmykov, A.; Wu, W.; Wang, Y.; Wang, J. The Formation of Organic Matter Pores in Shales: Implications from Combined Thermal Heating and Scanning Electron Microscopy Imaging. Minerals 2025, 15, 336. https://doi.org/10.3390/min15040336
Han H, He C, Xiao S, Chen J, Kalmykov A, Wu W, Wang Y, Wang J. The Formation of Organic Matter Pores in Shales: Implications from Combined Thermal Heating and Scanning Electron Microscopy Imaging. Minerals. 2025; 15(4):336. https://doi.org/10.3390/min15040336
Chicago/Turabian StyleHan, Hui, Chunchen He, Suqi Xiao, Jintao Chen, Anton Kalmykov, Wenjie Wu, Yixing Wang, and Jiang Wang. 2025. "The Formation of Organic Matter Pores in Shales: Implications from Combined Thermal Heating and Scanning Electron Microscopy Imaging" Minerals 15, no. 4: 336. https://doi.org/10.3390/min15040336
APA StyleHan, H., He, C., Xiao, S., Chen, J., Kalmykov, A., Wu, W., Wang, Y., & Wang, J. (2025). The Formation of Organic Matter Pores in Shales: Implications from Combined Thermal Heating and Scanning Electron Microscopy Imaging. Minerals, 15(4), 336. https://doi.org/10.3390/min15040336