Biomineralization in the Calcareous Nannoplankton Phenotypic Expressions Across Life Cycles, Geometric Control on Diversification, and Origin
Abstract
:1. Introduction
2. Material and Methods
2.1. Documentation
2.2. Analytical Procedures
2.2.1. Description of Skeletal Structures
2.2.2. Verified and Inferred Life Cycles
2.2.3. Preservation and Species Concepts
2.3. Chronostratigraphic Framework
3. Results
3.1. Background
3.1.1. Classification
3.1.2. Biology
3.1.3. Fossil Record
3.2. Characterization of Heterococcoliths, Holococcoliths, and Micaliths
3.2.1. Heterococcoliths
3.2.2. Holococcoliths
3.2.3. Micaliths
3.2.4. Summary
3.3. Biomineralization in Haploid Versus Diploid Phase of Coccolithophores
3.3.1. Consistency Between the Two Phases
3.3.2. Correlation of Characters
3.3.3. Structural Imprint
3.4. Intracellular Versus Extracellular Biomineralization: Geometric Constraints
3.4.1. Constraint of Geometry on Diversification
Heterococcoliths
Micaliths
3.4.2. Diversification and Extinction
Order Discoasterales
Nannoconus
4. Discussion
4.1. Patterns in Life Cycle of Coccolithophores
4.1.1. Holococcoliths and Heterococcoliths Are Homologous
4.1.2. Inferring Life Cycles Among Extinct Taxa from Structural Imprint
4.1.3. Correlation of Characters
4.2. Patterns in Deep Time
4.2.1. Longevity, Success, Evolvability, and Extinction
4.2.2. Discontinuous Occurrences
4.3. Origin of Biomineralization in the Haptophytes
4.3.1. Paleozoic Records
4.3.2. Triassic Records
Norian
Rhaetian
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PhyML | Maximum Likelihood Phylogenetic trees |
SU | Structural unit |
Appendix A
- (1)
- (2)
- Rhabdosphaera clavigera Murray & Blackman, 1898 [127]. Note the dimorphism, with flat and stem-bearing coccoliths
- (3)
- (4)
- Deutschlandia anthos Lohmann 1912 [129]. Coccosphere partly collapsed with exococcoliths concealing the endococcospheres. A coccolith of Syracosphaera pulchra rests on the bottom left side of the coccosphere.
- (5)
- (6)
- (7)
- Syracosphaera histrica Kamptner, 1941 [134]. Note the dithecatism with an external layer of exococcoliths
Appendix B
Appendix C
- (1)
- Broken micasphere of Braarudosphaera bigelowii preserved in an upper Miocene Braarudosphaera chalk. SEM; note scale at bottom right. Originally published in [117] (pl. 1, Figure 2); with permission from Dr. Martin Zuschin, Museum of Natural History, Vienna, Austria.
- (2)
- Fossil micasphere of Braarudosphaera orthia from the Rupelian calcareous sands of the Paris Basin.
- (3)
- Micasphere of Conusphaera mexicana in an upper Tithonian limestone from Mexico. Thin section of rock using polarized light; ~×1000. Originally published in [113] (pl. 3, Figure 1); with permission from Dr. Jaime S. Valente, Mexican Petroleum Institute, 07730 Mexico City, Mexico.
- (4)
- Micasphere of Nannoconus steinmannii in an upper Hauterivian limestone from Mexico. Thin section of rock using polarized light; ×800. Note the tiny cell, at least three times smaller than a micalith. Originally published in [113] (pl. 5, Figure 9); with permission from Dr. Jaime S. Valente.
Appendix D
Genus | Ordinal Classification | |
[20] | Herein | |
Eiffelithales | ||
Calcicalathina | ||
Stephanolithiales | ||
Calcivascularis | ||
Mitrolithus | ||
Parhabdolithus | ||
Timorella | ||
Braarudosphaerales | ||
Braarudosphaera | ||
Favoconus | ||
Micrantholithus | ||
Nannoconus | Braarudosphaerales | |
Pemma | ||
Pentaster | ||
Informal Group | ||
Heterococcolith incertae sedis | ||
Laguncula | ||
Nannoliths incertae sedis | ||
Conusphaera | ||
Eoconusphaera | ||
Lapideacassis | ||
Scampanella | ||
Holococcolith | ||
Pseudoconus | ||
Mesozoic non-coccoliths | ||
Cassianospica | ||
Prinsiosphaera |
Appendix E
- “parts of three specimens on the cleavage surface of a piece of the Pennsylvanian Tecumseh Shale of Missouri. ×7250”.
- “Enlargement of the holotype. ×20.000”. Reproduced with permission from Dr. M. Kaminski, Editor, Micropaleontology Press.
References
- Sorby, H.C. On the organic origin of the so-called “crystalloids” of the Chalk. Ann. Mag. Nat. Hist. 1861, 8, 193–200. [Google Scholar] [CrossRef]
- Bramlette, M.N. Significance of coccolithophorids in calcium-carbonate deposition. Bull. Gcol. Soc. Am. 1958, 69, 121–126. [Google Scholar] [CrossRef]
- Knoll, A. Biomineralization and Evolutionary History. Rev. Min. Geochem. 2003, 54, 329–356. [Google Scholar] [CrossRef]
- Thierstein, H.R.; Young, J.R. (Eds.) Coccolithophores. From Molecular Processes to Global Impact; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- De Vargas, C.; Aubry, M.-P.; Probert, Y.; Young, J. Origin and evolution of Coccolithophores: A paleonto-genomic approach. In Evolution of Primary Producers in the Sea; Falkowski, P., Knoll, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 251–285. [Google Scholar]
- Mayers, K.M.J.; Poulton, A.J.; Daniels, C.J.; Wells, S.R.; Woodward, E.M.S.; Tarran, G.A.; Widdicombe, C.E.; Mayor, D.J.; Atkinson, A.; Giering, S.L.C. Growth and mortality of coccolithophores during spring in a temperate Shelf Sea (Celtic Sea, April 2015). Progr. Oceanogr. 2015, 177, 101928. [Google Scholar] [CrossRef]
- Dauphin, Y. A Brief History of Biomineralization Studies. ACS Biomater. Sci. Eng. 2023, 9, 1774–1790. [Google Scholar] [CrossRef] [PubMed]
- Henderiks, J.; Daniela Sturm, D.; Šupraha, L.; Langer, G. Evolutionary Rates in the Haptophyta: Exploring Molecular and Phenotypic Diversity. J. Mar. Sci. Eng. 2022, 10, 798. [Google Scholar] [CrossRef]
- Langer, G.; Taylor, A.R.; Walker, C.E.; Meyer, E.M.; Joseph, O.B.; Gal, A.; Harper, G.M.; Probert, I.; Brownlee, C.; Wheeler, G.L. Role of silicon in the development of complex crystal shapes in coccolithophores. New Phytol. 2021, 231, 1845–1857. [Google Scholar] [CrossRef]
- Braarud, T.; Deflandre, G.; Halldal, P.; Kamptner, E. Terminology, nomenclature, and systematics of the Coccolithophoridae. Micropaleont 1955, 1, 157–159. [Google Scholar] [CrossRef]
- Hagino, K.; Tomioka, N.; Young, J.; Takano, Y.; Onuma, R.; Horiguchi, T. Extracellular calcification of Braarudosphaera bigelowii deduced from electron microscopic observations of cell surface structure and elemental composition of pentaliths. Mar. Micropal. 2016, 125, 85–94. [Google Scholar] [CrossRef]
- Wallich, G.C. Observations on the coccosphere. Ann. Mag. Nat. Hist. 1877, 19, 342–350. [Google Scholar] [CrossRef]
- Perch–Nielsen, K. Mesozoic calcareous nannofossils. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch–Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 329–426. [Google Scholar]
- Perch–Nielsen, K. Cenozoic calcareous nannofossils. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch–Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 427–554. [Google Scholar]
- Bown, P.R. (Ed.) Calcareous Nannofossil Biostratigraphy, British Micropaleontological Society Publications Series; Kluver Academic Publishers: London, UK, 1998; pp. 1–324. [Google Scholar]
- Aubry, M.-P. Handbook of Cenozoic Calcareous Nannoplankton; Micropaleontology Press: New York, NY, USA, 1990; Volume 4, pp. 1–381. [Google Scholar]
- Aubry, M.-P. Handbook of Cenozoic Calcareous Nannofossils; Micropaleontology Press: New York, NY, USA, 1999; Volume 5, pp. 1–368. [Google Scholar]
- Aubry, M.-P. Coccolithophores: Cenozoic Discoasterales—Biology, Taxonomy, Stratigraphy; SEPM: Tulsa, OK, USA, 2021; CSP14; pp. 1–452. [Google Scholar]
- Aubry, M.-P. Coccolithophores: The Haploid Phase of Living Coccolithophores—Biology, Taxonomy, Stratigraphy; SEPM: Tulsa, OK, USA, 2022; CSP15; pp. 1–402. [Google Scholar]
- Young, J.R.; Bown, P.R.; Lees, J.A. Nannotax 3 (Online Resource and Guide to the Biodiversity and Taxonomy of Coccolithophores). 2024. Available online: https://www.mikrotax.org/Nannotax3/ (accessed on 1 October 2024).
- Aubry, M.-P. Coccolithophores: Mesozoic Discoasterales—Taxonomy, Stratigraphy, Biogeography; SEPM: Tulsa, OK, USA, 2025; in progress. [Google Scholar]
- Aubry, M.-P. Coccolithophores: Braarudosphaerales—Taxonomy, Stratigraphy, Biogeography; SEPM: Tulsa, OK, USA, 2025; in progress. [Google Scholar]
- Aubry, M.-P. Coccolithophores: The Haploid Phase of Extinct Coccolithophores—Taxonomy, Stratigraphy, Biogeography; SEPM: Tulsa, OK, USA, 2025; in progress. [Google Scholar]
- Aubry, M.-P. Cenozoic Coccolithophores: Braarudosphaerales; Micropaleontology Press: New York, NY, USA, 2013; pp. 1–336. [Google Scholar]
- Aubry, M.-P. Cenozoic Coccolithophores: Extinct Holococcoliths; Micropaleontology Press: New York, NY, USA, 2017; pp. 1–366. [Google Scholar]
- Stradner, H.; Edwards, A.R. Electron microscope studies on Upper Eocene coccoliths from the Oamaru diatomite, New Zealand. Jahrb. Geol. Bund. Sond. 1968, 13, 1–66. [Google Scholar]
- Prins, B. Evolution and stratigraphy of coccolithinids from the Lower and Middle Lias. In Proceedings of the First International Conference on Planktonic Microfossils, Geneva 1967; Bronnimann, P., Renz, H.H., Eds.; E.J. Brill: Leiden, The Netherlands, 1969; Volume 2, pp. 547–558. [Google Scholar]
- Prins, B. Speculations on relations, evolution, and stratigraphic distribution of discoasters. In Proceedings of the II Planktonic Conference, Roma, 1970; Farinacci, A., Ed.; Ediz. Tecnoscienza: Roma, Italy, 1971; Volume 1, pp. 1017–1037. [Google Scholar]
- Grun, W.; Allemann, F. The Lower Cretaceous of Caravaca (Spain). Berriasian calcareous nannoplankton of the Miravetes section (Subbetic Zone, Prov. of Murcia). Eclog. Geol. Helv. 1975, 68, 147–211. [Google Scholar]
- Romein, A.J.T. Lineages in Early Paleogene calcareous nannoplankton. Utrecht Micropal. Bull. 1979, 22, 1–231. [Google Scholar]
- Edwards, A.R.; Perch-Nielsen, K. Calcareous nannofossils from the southern southwest Pacific, Deep Sea Drilling Project, Leg 29. In Initial Reports of the Deep Sea Drilling Project; Kennett, J.P., Houtz, R.E., et al., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1975; Volume 29, pp. 469–539. [Google Scholar]
- Cros, L.; Fortuño, J.-M. Atlas of Northwestern Mediterranean Coccolithophores. Scientia Marina 2002, 66 (Suppl. 1), 7–182. [Google Scholar] [CrossRef]
- Hattner, J.G.; Wise, S.W., Jr. Upper Cretaceous Calcareous Nannofossil Biostratigraphy of South Carolina. South Carolina Geology 1980, 24, 41–117. [Google Scholar]
- Perch-Nielsen, K. Remarks on Late Cretaceous to Pleistocene coccoliths from the North Atlantic. In Initial Reports of the Deep Sea Drilling Project; Laughton, A.S., Berggren, W.A., et al., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1972; Volume 12, pp. 1003–1069. [Google Scholar]
- Parke, M.; Adams, I. The motile (Crystallolithus hyalinus Gaarder & Markali) and non-motile phases in the life history of Coccolithus pelagicus (Wallich) Schiller. J. Mar. Biol. Assoc. UK 1960, 39, 263–274. [Google Scholar]
- Houdan, A.; Billard, C.; Marie, D.; Not, F.; Sáez, A.G.; Young, J.; Probert, I. Holococcolithophore-heterococcolithophore (Haptophyta) life cycles: Flow cytometric analysis of relative ploidy levels. Syst. Biodiv. 2004, 1, 453–465. [Google Scholar] [CrossRef]
- Cros, L.; Kleijne, A.; Zeltner, A.; Billard, C.; Young, J.R. New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. Mar. Micropal. 2000, 39, 1–34. [Google Scholar] [CrossRef]
- Geisen, M.; Billard, C.; Broerse, A.T.C.; Cros, L.; Probert, J.; Young, J.R. Life-cycle associations involving pairs of holococcolithophorid species: Intraspecific variation or cryptic speciation? Eur. J. Phys. 2002, 37, 531–550. [Google Scholar] [CrossRef]
- Aubry, M.-P. Peering into the biology of Extinct Coccolithophores: The Order Discoasterales. In Geologic Problem Solving with Microfossils IV; Denne, R., Kahn, A., Eds.; SEPM: Tulsa, OK, USA, 2019; Volume 111. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef]
- Cavalier-Smith, T.; Chao, E.E.; Lewis, R. Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista. Mol. Phyl. Evol. 2015, 93, 331–362. [Google Scholar] [CrossRef]
- Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The new tree of Eukaryotes. Trends Ecol. Evol. 2020, 35, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Hibberd, D.J. The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Prymnesiophyceae): A survey with some new observations on the ultrastructure of the Chrysophyceae. Bot. J. Linnean Soc. 1976, 72, 55–80. [Google Scholar] [CrossRef]
- Rothmaler, W. Die Abteilungen und Klassen der Pflanzen. Feddes Repert. Specierum Nov. Regni Veg. 1951, 54, 256–266. [Google Scholar] [CrossRef]
- Edvardsen, B.; Eikrem, W.; Green, J.C.; Andersen, R.A.; Stayy, S.Y.M.; Medlin, L.K. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data. Phycologia 2000, 39, 19–35. [Google Scholar] [CrossRef]
- Edvardsen, B.; Eikrem, W.; Throndsen, J.; Sáez, A.G.; Probert, I.; Medlin, L.K. Ribosomal DNA phylogenies and a morphological revision provide the basis for a revised taxonomy of the Prymnesiales (Haptophyta). Eur. J. Phycol. 2011, 46, 202–228. [Google Scholar] [CrossRef]
- Kawachi, M.; Nakayama, T.; Kayama, M.; Nomura, M.; Miyashita, H.; Bojo, O.; Rhodes, L.; Sym, S.; Pienaar, R.N.; Probert, I.; et al. Rappemonads are haptophyte phytoplankton. Curr. Biol. 2021, 31, 2395–2403. [Google Scholar] [CrossRef]
- Tangen, K. Papposphaera lepida, gen. nov., n. sp. a new marine coccolithophorid from Norwegian coastal waters. Norw. J. Bot. 1972, 19, 171–178. [Google Scholar]
- Heimdal, B.R. Modern coccolithophorids. In Marine Phytoplankton: A Guide to Nakes Flagellates and Coccolithophorids; Thomas, C.R., Ed.; Academy Press: San Diego, CA, USA, 1980; pp. 147–247. [Google Scholar]
- Throndsen, J. The planktonic marine flagellates. In Marine Phytoplankton: A Guide to Nakes Flagellates and Coccolithophorids; Thomas, C.R., Ed.; Academy Press: San Diego, CA, USA, 1980; pp. 7–145. [Google Scholar]
- Aubry, M.-P.; Bord, D. Reshuffling the cards in the photic zone at the Eocene/Oligocene boundary. In The Late Eocene Earth—Hothouse, Icehouse, and Impacts; Koeberl, C., Montanari, A., Eds.; GSA: Tulsa, OK, USA, 2009; SPEA 452; pp. 281–301. [Google Scholar] [CrossRef]
- Bown, P.R.; Young, J.R.; Lees, J.A. On the Cretaceous origin of the Order Syracosphaerales and the genus Syracosphaera. J. Micropal. 2017, 36, 153–165. [Google Scholar] [CrossRef]
- Si, W.; Novak, J.B.; Richter, N.; Polissar, P.; Mai, R.; Santos, E.; Nirenberg, J.; Herbert, T.D.; Aubry, M.-P. Alkenone-derived estimates of Cretaceous pCO2. Geology 2024, 52, 555–559. [Google Scholar] [CrossRef]
- Aubry, M.-P.; Si, W.; Beaufort, L.; Giraud, F.; Ma, R.; Shcherbinina, E.; Novak, J.B.; Richter, N.; Polissr, P.; Herbert, T. From Alkenones to Cretaceous Marine Isochrysidales to Coccoliths. 2024. Available online: https://ina.tmsoc.org/meetings/INA19Conwy/INA19timetable.html (accessed on 1 February 2025).
- Forchheimer, S. Scanning electron microscope studies of Cretaceous coccoliths from the Köpingsberg borehole no.1, SE Sweden. Sver. Geol. Unders. 1972, 14, 1–141. [Google Scholar]
- Thompson, A.W.; Foster, R.A.; Krupke, A.; Brandon, J.; Carter, B.J.; Musat, N.; Vaulot, D.; Kuypers, M.M.M.; Zehr, J.P. Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga. Science 2012, 337, 1546–1549. [Google Scholar] [CrossRef] [PubMed]
- Hagino, K.; Onuma, R.; Kawachi, M.; Horiguchi, T. Discovery of an Endosymbiotic Nitrogen-Fixing Cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae). PLoS ONE 2013, 8, e81749. [Google Scholar] [CrossRef]
- Edvardsen, B.; Egge, E.S.; Vaulot, D. Diversity and distribution of haptophytes revealed by environmental sequencing and metabarcoding—A review. Perspect. Phycol. 2016, 3, 77–91. [Google Scholar] [CrossRef]
- Bown, P.; Lees, J.A.; Young, J.R. Calcareous nannoplankton evolution and diversity through time. In Coccolithophores. From Molecular Processes to Global Impact; Thierstein, H.R., Young, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 481–508. [Google Scholar]
- Mable, B.K.; Otto, S.P. The evolution of life cycles with haploid and diploid phases. BioEssays 1998, 20, 453–462. [Google Scholar] [CrossRef]
- Taylor, A.R.; Brownlee, C.; Wheeler, G. Coccolithophore cell biology: Chalking up progress. Ann. Rev. Mar. Sci. 2017, 9, 283–310. [Google Scholar] [CrossRef]
- Brownlee, C.; Langer, G.; Wheeler, G.L. Coccolithophore calcification: Changing paradigms in changing oceans. Acta Biomater. 2021, 120, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Skeffington, A.; Fischer, A.; Sviben, A.; Brzezinka, M.; Górka, M.; Bertinetti, L.; Woehle, C.; Huettel, B.; Graf, A.; Scheffel, A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat. Commun. 2023, 14, 3749. [Google Scholar] [CrossRef]
- Walker, C.E.; Alison, R.; Taylor, A.R.; Langer, G.; Durak, G.M.; Heath, S.; Probert, I.; Tyrrell, T.; Brownlee, C.; Glen, L.; et al. The requirement for calcification differs between ecologically important coccolithophore species. New Phytol. 2018, 220, 147–162. [Google Scholar] [CrossRef]
- Henriksen, K.; Stipp, S.L.S.; Young, J.R.; Marsh, M.E. Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. Am. Mineral. 2004, 89, 1709–1716. [Google Scholar] [CrossRef]
- Chowdhury, R.; Boudjehem, R.; Suchéras-Marx, B.; Dupraz, M.; Kulow, A.; da Silva, J.C.; Hazemann, J.L.; Aubry, M.-P.; Javier Perez, J.; Fernandez-Martinez, A.; et al. Micro-structural reconstruction of Nannoconus from synchrotron-radiation-based ptychographic X-ray Computed Tomography. Int. J. Earth Planet. Mater. Res. 2025. in progress. [Google Scholar]
- Demangel, I.; Kovács, Z.; Richoz, S.; Gardin, S.; Krystyn, L.; Baldermanne, A.; Piller, W.E. Development of early calcareous nannoplankton in the late Triassic (Northern Calcareous Alps, Austria). Glob. Planet Change 2020, 193, 103254. [Google Scholar] [CrossRef]
- Aubry, M.-P. Early Paleogene calcareous nannoplankton evolution: A tale of climatic amelioration. In Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records; Aubry, M.-P., Lucas, S., Berggren, W.A., Eds.; Columbia University Press: New York, NY, USA, 1998; pp. 158–203. [Google Scholar]
- Aubry, M.-P. A major mid-Pliocene calcareous nannoplankton turnover: Change in life strategy in the photic zone. In Large Ecosystem Perturbations: Causes and Consequences; Monechi, S., Rampino, M., Coccioni, R., Eds.; GSA: Tulsa, OK, USA, 2007; Special Paper; pp. 25–51. [Google Scholar]
- Preto, N.; Agnini, C.; Rigo, M.; Sprovieri, M.; Westphal, H. The calcareous nannofossil Prinsiosphaera achieved rock-forming abundances in the latest Triassic of western Tethys: Consequences for the 13C of bulk carbonate. Biogeosciences 2013, 10, 6053–6068. [Google Scholar] [CrossRef]
- Aubry, M.-P. A sea of lilliputians. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 284, 88–113. [Google Scholar] [CrossRef]
- Perch–Nielsen, K. Elektronenmikrokopische Untersuchungen an Coccolithen und verwandten Formen aus dem Eozän von Dänemark. Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 1971, 18, 1–76. [Google Scholar]
- Young, J.R.; Didymus, J.M.; Bown, P.R.; Prins, B.; Mann, S. Crystal assembly and phylogenetic evolution in heterococcoliths. Nature 1992, 356, 1–3. [Google Scholar] [CrossRef]
- Young, J.R.; Davis, S.A.; Bown, P.R.; Mann, S. Coccolith ultrastructure and biomineralisation. J. Struct. Biol. 1999, 126, 195–215. [Google Scholar] [CrossRef]
- Young, J.R.; Henriksen, K. Biomineralization Within Vesicles: The Calcite of Coccoliths. Rev. Min. Geochem. 2003, 54, 189–215. [Google Scholar] [CrossRef]
- Young, J.R.; Henriksen, K.; Proberts, J. Structure and morphogenesis of the coccoliths of the CODENET species. In Coccolithophores: From Molecular Processes to Global Impact; Thierstein, H.R., Young, J.R., Eds.; Springer: Berlin, Germany, 2004; pp. 191–216. [Google Scholar] [CrossRef]
- Young, J.R.; Geisen, M.; Cros, L.; Kleijne, A.; Sprengel, C.; Probert, I.; Østergaard, J. A guide to extant coccolithophore taxonomy. JNR Spec. Issue 2003, 1, 1–125. [Google Scholar] [CrossRef]
- Frada, M.; Percopo, I.; Young, J.; Zingone, A.; De Vargas, C.; Probert, I. First observations of heterococcolithophore–holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta). Mar. Micropal. 2009, 71, 20–27. [Google Scholar] [CrossRef]
- Keuter, S.; Young, J.R.; Koplovitz, G.; Zingone, A.; Frada, M.J. Novel heterococcolithophores, holococcolithophores and life cycle combinations from the families Syracosphaeraceae and Papposphaeraceae and the genus Florisphaera. J. Micropal. 2021, 40, 75–99. [Google Scholar] [CrossRef]
- Jordan, R.W.; Young, J.R. Proposed changes to the classification system of living coccolithophorids. Int. Nannoplankton Assoc. (INA) Newsl. 1990, 12, 15–18. [Google Scholar] [CrossRef]
- Manton, I.; Oates, K. Polycrater galapagensis gen. et sp. nov., a putative coccolithophorid from the Galapagos Islands with an unusual aragonitic periplast. Brit. Phycol. J. 1980, 15, 95–103. [Google Scholar] [CrossRef]
- Kleijne, A.; Jordan, R.W.; Heimdal, B.R.; Samtleben, C.; Chamberlain, A.H.L.; Cros, L. Five new species of the coccolithophorid genus Alisphaera (Haptophyta) with notes on their distribution, coccolith structure and taxonomy. Phycologia 2001, 40, 583–601. [Google Scholar] [CrossRef]
- Stanley, S.M.; Hardie, L.A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeogr. Palaeoclim. Palaeoecol. 1998, 144, 3–19. [Google Scholar] [CrossRef]
- Bralower, T.J.; Bown, P.R.; Siesser, W.G. Upper triassic calcareous nannoplankton biostratigraphy, wombat plateau, northwest Australia. In Proceedings of the Ocean Drilling Program, Scientific Results; von Rad, U., Haq, B.U., et al., Eds.; 1992; Volume 122, pp. 437–451. [Google Scholar]
- Monechi, S.; Reale, V.; Bernaola, G.; Balestra, B. The Danian/Selandian boundary at Site 1262 (South Atlantic) and in the Tethyan region: Biomagnetostratigraphy, evolutionary trends in fasciculiths and environmental effects of the latest Danian event. Mar. Micropal. 2013, 98, 28–40. [Google Scholar] [CrossRef]
- De Vries, J.; Monteiro, F.; Wheeler, G.; Poulton, A.; Godrijan, J.; Cerino, F.; Malinverno, E.; Langer, G.; Brownlee, C. Haplo-diplontic life cycle expands coccolithophore niche. Biogeosciences 2021, 18, 1161–1184. [Google Scholar] [CrossRef]
- Foote, M. The evolution of morphological diversity. Ann. Rev. Ecol. Syst. 1997, 28, 129–152. [Google Scholar] [CrossRef]
- Hughes, M.; Gerber, S.; Wills, M.A. Clades reach highest morphological disparity early in their evolution. Proc. Nat. Acad. Sci. USA 2013, 110, 13875–13879. [Google Scholar] [CrossRef]
- Benton, M.J.; Harper, D.A.T. Introduction to Paleobiology and the Fossil Record; Wiley Blackwell: London, UK, 2009; ISBN 9781405141574. [Google Scholar]
- Triccas, A.; Laidlaw, F.; Songleton, M.R.; Nudelman, F. Control of crystal growth during coccolith formation by the coccolithophore Gephyrocapsa oceanica. J. Struct. Biol. 2024, 216, 108066. [Google Scholar] [CrossRef]
- Suchéras-Marx, B.; Mattioli, E.; Giraud, F.; Escarguel, G. Paleoenvironmental and paleobiological origins of coccolithophorid genus Watznaueria emergence during the late Aalenian–early Bajocian. Paleobiology 2015, 41, 415–435. [Google Scholar] [CrossRef]
- Agnini, C.; Muttoni, G.; Kent, D.V.; Rio, D. Eocene biostratigraphy and magnetic stratigraphy from Possagno, Italy: The calcareous nannofossil response to climate variability. Earth Planet. Sci. Lett. 2006, 241, 815–830. [Google Scholar] [CrossRef]
- Love, A.C.; Grabowski, M.; Houle, D.; Hsiang Liow, L.; Porto, A.; Tsuboi, M.; Voje, K.L.; Hunt, G. Evolvability in the fossil record. Paleobiology 2022, 48, 186–209. [Google Scholar] [CrossRef]
- Perch-Nielsen, K. Les coccolithes du Paléocène près de El Kef, Tunisie, et leurs ancêtres. Cah. Micropal. 1981, 3, 7–23. [Google Scholar]
- Bown, P. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 2005, 33, 653–656. [Google Scholar] [CrossRef]
- Bralower, T.J.; Cosmidis, J.; Fantle, M.S.; Lowery, C.M.; Passey, B.H.; Gulick, S.P.S.; Morgan, J.V.; Vajda, V.; Whalen, M.T.; Wittmannet, A.; et al. The habitat of the nascent Chicxulub crater. AGU Adv. 2020, 1, e2020AV000208. [Google Scholar] [CrossRef]
- Hay, W.W. Calcareous nannofossils. In Oceanic Micropaleontology; Ramsay, A.T.S., Ed.; Academic Press: London, UK, 1977; Volume 2, pp. 1055–1200. [Google Scholar]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef]
- Bown, P.R.; Young, J.R. Proposals for a revised classification system for calcareous nannoplankton. JNR 1997, 19, 15–47. [Google Scholar]
- Aubry, M.-P. Late Paleogene calcareous nannoplankton evolution: A tale of climatic deterioration. In The Eocene-Oligocene Climatic and Biotic Changes; Prothero, D., Berggren, W.A., Eds.; Princeton University Press: Princeton, NJ, USA, 1992; pp. 272–309. [Google Scholar] [CrossRef]
- Erba, E. The first 150 million years history of calcareous nannoplankton: Biosphere–geosphere interactions. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 232, 237–250. [Google Scholar] [CrossRef]
- Ma, R.; Aubry, M.-P.; Bord, D.; Jin, X.; Liu, C. Inferred nutrient forcing on the late middle Eocene to early Oligocene (~40–31 Ma) evolution of the coccolithophore Reticulofenestra (order Isochrysidales). Paleobiology 2024, 50, 29–42. [Google Scholar] [CrossRef]
- Gollain, B.; Mattioli, E.; Kenjo, S.; Bartolini, A.; Reboulet, S. Size patterns of the coccolith Watznaueria barnesiae in the lower Cretaceous: Biotic versus abiotic forcing. Mar. Micropal. 2019, 152, 101740. [Google Scholar] [CrossRef]
- Bendif, E.M.; Nevado, B.; Wong, E.L.Y.; Hagino, K.; Probert, I.; Young, J.R.; Rickaby, R.E.M.; Filatov, D.A. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 2019, 10, 4234. [Google Scholar] [CrossRef]
- Mattioli, E.; Erba, E. Synthesis of calcareous nannofossil events in Tethyan Lower and Middle Jurassic successions. Riv. Ital. Paleont. Stratigr. 1999, 105, 343–376. [Google Scholar] [CrossRef]
- Liu, H.; Aris-Brosou, S.; Probert, I.; de Vargas, C. A Time line of the Environmental Genetics of the Haptophytes. Mol. Biol. Evol. 2010, 27, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Jafar, S.A. Significance of Late Triassic calcareous nannoplankton from Austria and southern Germany. Neues Jahrb. Geol. Paläontol. Abh. 1983, 166, 218–259. [Google Scholar] [CrossRef]
- Janofske, D. Kalkiges Nannoplankton, insbesondere Kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner Gcowiss. Abh. 1992, E4, 33. [Google Scholar]
- Gartner, S.; Gentile, R. Problematic Pennsylvanian coccoliths from Missouri. Micropaleontology 1972, 18, 401–404. [Google Scholar] [CrossRef]
- Preto, N.; Willems, H.; Guaiumi, C.; Westphal, H. Onset of significant pelagic carbonate accumulation after the Carnian Pluvial Event (CPE) in the western Tethys. Facies 2013, 59, 891–914. [Google Scholar] [CrossRef]
- Ogg, J.G.; Chen, Z.-Q. The Triassic Period, with contributions by M.J. Orchard and H.S. Jiang. Chapter 25, p. 903=953. In Geological Time Sale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, ISBN 978-0-12-824363-3. [Google Scholar]
- Demangel, I.; Howe, R.; Gardin, S.; Richoz, S. Eoconusphaera hallstattensis sp. nov., a review of the Rhaetian genus Eoconusphaera. J. Nannoplankton Res. 2021, 39, 77–87. [Google Scholar] [CrossRef]
- Trejo, M. Conusphaera mexicana, un nuevo cocolitoforido del Jurasico superior de Mexico. Rev. Instît. Mexic. L. Petr. 1969, 1, 5–15. [Google Scholar]
- Mutterlose, J.; Bottini, C. Early Cretaceous chalks from the North Sea giving evidence for global change. Nat. Commun. 2013, 4, 1686. [Google Scholar] [CrossRef]
- Kelly, D.C.; Norris, R.D.; Zachos, J.C. Deciphering the paleoceanographic significance of Early Oligocene Braarudosphaera chalks in the South Atlantic. Mar. Micropaleontol. 2003, 49, 49–63. [Google Scholar] [CrossRef]
- Liebrand, D.; Raffi, I.; Fraguas, Á.; Laxenaire, R.; Bosmans, J.H.C.; Hilgen, F.J.; Wilson, P.A.; Batenburg, S.J.; Beddow, H.M.; Bohaty, S.M.; et al. Orbitally forced hyper-stratification of the Oligocene South Atlantic Ocean. Paleoceanogr. Paleoclim. 2018, 33, 511–529. [Google Scholar] [CrossRef]
- Stradner, H.; Fuchs, R. Über Nannoplanktonvorkommen im Sarmatian (Ober-Miozan) der Zentralen Paratethys in Niederösterreich und im Burgenland. Beiträge Paläontolgie Osterr. 1980, 7, 251–279. [Google Scholar]
- Bartol, M.; Pavsic, J.; Dobnikar, M.; Bernasconi, S.M. Unusual Braarudosphaera bigelowii and Micrantholithus vesper enrichment in the Early Miocene sediments from the Slovenian Corridor, a seaway linking the central Paratethys and the Mediterranean. Palaeogeog. Palaeoclimat. Palaeoecol. 2008, 267, 77–88. [Google Scholar] [CrossRef]
- Auer, G.; Piller, W.E.; Harzhauser, M. High-resolution calcareous nannoplankton palaeoecology as a proxy for small-scale environmental changes in the Early Miocene. Mar. Micropaleontol. 2014, 111, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Gallois, R.W. Coccolith bloom in the Kimmeridge Clay and the origin of the North Sea oil. Nature 1976, 259, 473–475. [Google Scholar] [CrossRef]
- Gallois, R.W.; Medd, A.W. Coccolith-rich marker bands in the English Kimmeridge Clay. Geol. Mag. 1979, 116, 247–260. [Google Scholar] [CrossRef]
- Coale, T.H.; Valentina Loconte, V.; Turk-Kubo, K.A.; Vanslembrouck, B.; Mak, W.K.E.; Cheung, S.; Ekman, A.; Jian-Hua Chen, J.H.; Kyoko Hagino, K.; Takano, Y.; et al. Nitrogen-fixing organelle in a marine alga. Science 2024, 384, 217–222. [Google Scholar] [CrossRef]
- Rogers, J.J.W.; Santosh, M. Continents and Supercontinents; Oxford University Press: Oxford, UK, 2004; p. 146. ISBN 978-0-19-516589-0. [Google Scholar]
- Erwin, D.H. The End-Permian Mass Extinction. Ann. Rev. Ecol. Evol. Syst. 1990, 21, 69–91. [Google Scholar] [CrossRef]
- Simms, M.J.; Ruffell, A.H. Synchroneity of climatic change and extinctions in the Late Triassic. Geology 1989, 17, 265–268. [Google Scholar] [CrossRef]
- Kamptner, E. Untersuchungen über den Feinbau der Coccolithen. Arch. Protist. 1954, 100, 2–90. [Google Scholar]
- Murray, J.; Blackman, V.H. On the nature of the coccospheres and rhabdospheres. Phil. Trans. Roy. Soc. Lond. Ser. B 1898, 190, 427–441. [Google Scholar]
- Loeblich, A.R.; Tappan, H. The coccolithophorid genus Calcidiscus Kamptner and its synonyms. J. Paleontol. 1978, 52, 1390–1392. [Google Scholar]
- Lohmann, H. Untersuchungen über das Pflanzen- und Tierleben der Hochsee, zugleich ein Bericht über die biologischen Arbeiten auf der Fahrt der “Deutschland” von Bremerhaven nach Buenos-Aires in der Zeit vom 7. Mai bis 7. September 1911. Veröffentlichungen Inst. Meereskd. Univ. Berl. 1912, 1, 1–92. [Google Scholar]
- Gran, H.H.; Braarud, T. Pelagic plant life. In The Depth of the Ocean; Murray, J., Hjort, J., Eds.; MacMillan and Co.: London, UK, 1912; pp. 307–386. [Google Scholar]
- Lohmann, H. Über Coccolithophoriden. Verh. Deuts. Zool. Ges. 1913, 23, 143–164. [Google Scholar]
- Lohmann, H. Die Coccolithophoridae, eine Monographie der Coccolithen bildenden Flagellaten, zugleich ein Beitrag zur Kenntnis des Mittelmeerauftriebs. Arch. Protistenkd. 1902, 1, 89–165. [Google Scholar]
- Hay, W.W.; Mohler, H.P.; Roth, P.H.; Schmidt, R.R.; Boudreaux, J.E. Calcareous nannoplankton zonation of the Cenozoic of the Gulf Coast and Caribbean–Antillean area, and transoceanic correlation. Trans. Gulf Coast Assoc. Geol. Soc. 1967, 17, 428–480. [Google Scholar]
- Kamptner, E. Die Coccolithineen der Südwestküste von Istrien. Ann. Naturhist. Mus. Wien 1941, 51, 54–149. [Google Scholar]
- Kristan-Tollmann, E. I. Coccolithen aus den älteren Allgäuschichten (alpiner lias, sinemur) von Timor, Indonesien. Geol. Paläont. Mitt. Innsbruck 1988, 15, 71–83. [Google Scholar]
- Kristan-Tollmann, E. II. Coccolithen aus dem Pliensbach (Ältere Allgäuschichten Alpiner Lias) von Timor, Inonesien. Geol. Paläontol. Mitt. Innsbr. 1988, 15, 109–133. [Google Scholar]
- Van Niel, B. Unusual twin specimens of Nannoconus abundans (calcareous nannofossil, incertae sedis). J. Micropal. 1995, 14, 159–164. [Google Scholar] [CrossRef]
- Abdi, A.; Mattioli, E.; Bádenas, B. A New Calcareous Nannofossil Record from the Lower Jurassic of Kermanshah, Western Iran: Implications for Biostratigraphy and Evolutionary Reconstructions. Geosciences 2022, 12, 59. [Google Scholar] [CrossRef]
Structure | Genera | # spp. | LS (Myr) |
---|---|---|---|
Core alone | Cassianospica | 1 | 10 |
Prinsiosphaera | 1 | 25.6 | |
Pseudoconus | 1 | 2 | |
Faviconus | 1 | 11 | |
Nannoconus | >70 | 76 | |
Micrantholithus | 30 | 130 | |
Braarudosphaera | 30 | 120 | |
Katharinalithus | 1 | 3 | |
Pemma | 21 | 14 | |
Pentaster | 1 | 2 | |
Core + Jacket | Eoconusphaera | 2 | 13 |
Mitrolithus | 2 | 17 | |
Timorella | 1 | 5 | |
Parhabdolithus | 4 | 17 | |
Calcivascularis | 2 | 16 [44] | |
Conusphaera | 4 | 16 | |
Calcicalathina | 4 | 46 | |
Laguncula | 2 | 20 | |
Jacket alone | Lapideacassis | 8 | 57 |
Scampanella | 12 | 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aubry, M.-P. Biomineralization in the Calcareous Nannoplankton Phenotypic Expressions Across Life Cycles, Geometric Control on Diversification, and Origin. Minerals 2025, 15, 322. https://doi.org/10.3390/min15030322
Aubry M-P. Biomineralization in the Calcareous Nannoplankton Phenotypic Expressions Across Life Cycles, Geometric Control on Diversification, and Origin. Minerals. 2025; 15(3):322. https://doi.org/10.3390/min15030322
Chicago/Turabian StyleAubry, Marie-Pierre. 2025. "Biomineralization in the Calcareous Nannoplankton Phenotypic Expressions Across Life Cycles, Geometric Control on Diversification, and Origin" Minerals 15, no. 3: 322. https://doi.org/10.3390/min15030322
APA StyleAubry, M.-P. (2025). Biomineralization in the Calcareous Nannoplankton Phenotypic Expressions Across Life Cycles, Geometric Control on Diversification, and Origin. Minerals, 15(3), 322. https://doi.org/10.3390/min15030322