Simultaneous Removal of Chlorides and Calcium from EAF Dust Wastewater
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sorption Materials
2.1.1. Preparation of Hydrotalcite
2.1.2. Preparation of Natural Zeolite Clinoptilolite
2.1.3. Preparation of Synthetic Zeolite
2.1.4. Preparation of Sludge
2.2. Preparation of Synthetic and Real Wastewater
2.3. Adsorption Test
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of Sorption Materials
3.1.1. Chemical Composition, Surface Area, Pore Size Distribution, and Morphology
3.1.2. Mineralogical Composition of Sorption Materials
3.2. Results of Chloride and Calcium Adsorption from Synthetic Solution and EAFD Wastewater
3.3. Evaluation of Sorption Results
Characterization of Adsorbents After Sorption
3.4. Investigation of Sorption Rate of Individual Sorbents from EAFD Wastewater
3.5. The Sorption of Other Species from EAFD Wastewater by Hydrotalcite Sorbent
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Steel Association: Crude Steel Production. Available online: https://worldsteel.org/data/steel-data-viewer/ (accessed on 28 June 2024).
- Sustainable Water Treatment, Delivered Anywhere. Available online: https://www.fluencecorp.com/ (accessed on 28 June 2024).
- Colla, V.; Branca, T.A.; Rosito, F.; Lucca, C.; Vivas, B.P.; Delmiro, V.M. Sustainable reverse osmosis application for wastewater treatment in the steel industry. J. Clean. Prod. 2016, 130, 103–115. [Google Scholar] [CrossRef]
- Water Management in the Steel Industry. Available online: https://worldsteel.org/wp-content/uploads/Water-management-in-the-steel-industry.pdf (accessed on 28 June 2024).
- Kirkelund, G.M.; Magro, C.; Guedes, P.; Jensen, P.E.; Ribeiro, A.B.; Ottosen, L.M. Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension—Test of a new two compartment experimental cell. Electrochim. Acta 2015, 181, 73–81. [Google Scholar] [CrossRef]
- Ozugbe, E.O.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.K.; Mainali, B.; Rout, P.R.; Lim, J.W.; Aslam, M.; Al-Rawajfeh, A.E.; Choi, Y. A Review of Membrane-Based Desalination Systems Powered by Renewable Energy Sources. Water 2023, 15, 534. [Google Scholar] [CrossRef]
- Charcosset, C. Classical and Recent Developments of Membrane Processes for Desalination and Natural Water Treatment. Membranes 2022, 12, 267. [Google Scholar] [CrossRef] [PubMed]
- Aljumaily, M.M.; Alshami, A.W.; Ismael, B.H.; Hameed, M.M.; AlOmar, M.K.; Hussain, I.R.; Hameed, M.S.; Alsalhy, Q.S.; Alsaadi, M.A. A Review on Membrane Desalination Process in Water Treatment. IOP Conf. Ser. Earth Environ. Sci. 2022, 1120, 012035. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mehejabin, F.; Momtahin, A.; Tasannum, N.; Faria, N.T.; Mofijur, M.; Hoang, T.; Vo, D.V.N.; Mahlia, T.M.I. Strategies to improve membrane performance in wastewater treatment. Chemosphere 2022, 306, 135527. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuang, Z.; Yang, K.; Wei, J.; Li, Z.; Ma, C.H.; Yang, X.; Wang, T.; Zeng, G.; Yu, G.; et al. Removal of chloride from water and wastewater: Removal mechanisms and recent trends. Sci. Total Environ. 2022, 821, 153174. [Google Scholar] [CrossRef] [PubMed]
- Kameda, T.; Miyano, Y.; Yoshioka, Y.; Uchida, M.; Okuwaki, A. New treatment methods for wastewater containing chloride ion using magnesium-aluminium oxide. Chem. Lett. 2000, 29, 1136–1137. [Google Scholar] [CrossRef]
- Wang, J.; Qu, D.; Tie, M.; Ren, H.; Peng, X.; Luan, Z. Effect of coagulation pretreatment on membrane distillation process for desalination of recirculating cooling water. Sep. Purif. Technol. 2008, 64, 108–115. [Google Scholar] [CrossRef]
- Shehata, N.; Egirani, D.; Olabi, A.G.; Inayat, A.; Abdelkareem, M.A.; Chae, K.-J.; Sayed, E.T. Membrane-based water and wastewater treatment technologies: Issues, current trends, challenges, and role in achieving sustainable development goals, and circular economy. Chemosphere 2023, 320, 137993. [Google Scholar] [CrossRef]
- Li, Q.; Xie, L.; Xu, S.; Zhang, W. Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment. Membranes 2024, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A.; Bogale, F.M. Role of coagulation/flocculation as a pretreatment option to reduce colloidal/bio-colloidal fouling in tertiary filtration of textile wastewater: A review and future outlooks. Front. Environ. Sci. 2023, 11, 1142227. [Google Scholar] [CrossRef]
- Dias, X.L.; Yokoyama, L.; Reich de Oliveira, V.; Travagini, R.G.; Araujo, O. The Role of Coagulation-flocculation in the Pretreatment of Reverse Osmosis in Power Plant. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 118–131. [Google Scholar] [CrossRef]
- Dron, J.; Dodi, A. Comparison of adsorption equilibrium models for the study of Cl−, NO3− and SO42− removal from aqueous solutions by an anion exchange resin. J. Hazard. Mat. 2011, 190, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Hilal, N.; Kochkodan, V.; Al Abdulgader, H.; Mandale, S.; Al-Jlil, S.A. A combined ion exchange-nanofiltration process for water desalination: I. sulphate-chloride ion-exchange in saline solutions. Desalination 2015, 363, 44–50. [Google Scholar] [CrossRef]
- Darracq, G.; Baron, J.; Joyeux, M. Kinetic and isotherm studies on perchlorate sorption by ion-exchange resins in drinking water treatment. J. Water Process Eng. 2014, 3, 123–131. [Google Scholar] [CrossRef]
- Dutta, R.; Ahmed, S.P.; Dolui, S.; Ray, B.C.H. Desalination of oil field produced water using ion exchange system: As a remediation environmental hazard. Nat. Hazards Res. 2024, 4, 596–603. [Google Scholar] [CrossRef]
- Iakovleva, E.; Mäkilä, E.; Salonen, J.; Sitarz, M.; Sillanpää, M. Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water. Chem. Eng. J. 2015, 259, 364–371. [Google Scholar] [CrossRef]
- El-Halim, E.H.A.; El-Gayar, D.A.; Farag, H.A. Treatment of wastewater by ion exchange resin using a pulsating disc. Desalination Water Treat. 2020, 193, 133–141. [Google Scholar] [CrossRef]
- Dahmani, K.; Kherroub, D.E.; Boucherdoud, A.; Bestani, B. Removal of Ca(II) and Mg(II) hardness by ion exchange resins and soda ash for seawater pretreatment to reduce scale formation in evaporators multi-stage flash desalination. Desalin. Water. Treat. 2021, 221, 23–30. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Hailu, Y.; Tilahun, E.; Brhane, A.; Resky, H.; Sahu, O. Ion exchanges process for calcium, magnesium and total hardness from ground water with natural zeolite. Groundw. Sustain. Dev. 2019, 8, 457–467. [Google Scholar] [CrossRef]
- Chae, D.; Son, K.P.; Kang, S.M.; Lim, J.; Lee, H.; Lee, J.; Lee, S.; Park, P.-K. Removal of calcium from water by zeolites with gravity-driven membrane filtration for water treatment without electricity. Environ. Sci.: Water Res. Technol. 2024, 10, 2357–2365. [Google Scholar] [CrossRef]
- Chang, H.; Liu, T.; He, Q.; Li, D.; Crittenden, J.; Liu, B. Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite. Water Sci. Technol. 2017, 76, 575–583. [Google Scholar] [CrossRef]
- Kameda, T.; Yoshioka, T.; Mitsuhashi, T.; Uchida, M.; Okuwaki, A. The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Res. 2003, 37, 4045–4050. [Google Scholar] [CrossRef]
- Kameda, T.; Yoshioka, T.; Hoshi, T.; Uchida, M.; Okuwaki, A. The removal of chloride from solutions with various cations using magnesium–aluminum oxide. Sep. Purif. Technol. 2005, 42, 25–29. [Google Scholar] [CrossRef]
- Hamidi, R.; Kazemi, P. Kinetics and mechanism of sorption of chloride ion from sodium carbonate manufacturing wastewater by Mg–Al oxide. Desal. Water Treat. 2014, 54, 332–341. [Google Scholar] [CrossRef]
- Hamidi, R.; Kahforoushan, D.; Fatehifar, E. The simultaneous removal of calcium, magnesium and chloride ions from industrial wastewater using magnesium-aluminum oxide. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2013, 48, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Kader, E.A.; Diwani, G.E.; El-Araby, R.; Hawash, S.I. A Case Study for Removing Highly Concentrated Chlorides from Industrial Wastewater. Egypt. J. Chem. 2023, 66, 233–244. [Google Scholar] [CrossRef]
- Lv, L.; Sun, P.; Gu, Z.; Du, H.; Pang, X.; Tao, X.; Xu, R.; Xu, L. Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. J. Hazard. Mater. 2009, 161, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Barczyk, K.; Mozgawa, W.; Król, M. Studies of anions sorption on natural zeolites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 876–882. [Google Scholar] [CrossRef]
- Osio-Norgaard, J.; Srubar, W.V., III. Zeolite Adsorption of Chloride from a Synthetic Alkali-Activated Cement Pore Solution. Materials 2019, 12, 2019. [Google Scholar] [CrossRef]
- Bezerra, B.G.P.; Parodia, A.; da Silva, D.R.; Pergher, S.B.V. Cleaning produced water: A study of cation and anion removal using different adsorbents. J. Environ. Chem. Eng. 2019, 7, 103006. [Google Scholar] [CrossRef]
- Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- Liu, J.Y.; Qiu, Z.S.; Huang, W.A.; Luo, Y.; Song, D.D. Nano-pore structure characterization of shales using gas adsorption and mercury intrusion techniques. J. Chem. Pharm. Res. 2014, 6, 850–857. [Google Scholar]
- Shoumkova, A.; Stoyanova, V. Zeolites formation by hydrothermal alkali activation of coal fly ash from thermal power station “Maritsa 3”, Bulgaria. Fuel 2013, 103, 533–541. [Google Scholar] [CrossRef]
- About Zeolite. Available online: https://www.stcloudmining.com/about-us/about-zeolite/ (accessed on 23 February 2025).
- Yang, S.; Lach-hab, M.; Vaisman, I.I.; Blaisten-Barojas, E.; Li, X.; Karen, V.L. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database. J. Phys. Chem. Ref. Data 2010, 39, 033102. [Google Scholar] [CrossRef]
- Musić, S. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide. J. Radioanal. Nucl. Chem. 1986, 100, 185–196. [Google Scholar] [CrossRef]
- Frost, R.L.; Martens, W.; Ding, Z.; Kloprogge, J.T.; Johnson, T.E. The role of water in synthesized hydrotalcites of formula MgxZn6−xCr2(OH)16(CO3)·4H2O and NixCo6−xCr2(OH)16(CO3)·4H2O—An infrared spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 291–302. [Google Scholar] [CrossRef]
- Morimoto, K.; Anraku, S.; Hoshino, J.; Yoneda, T.; Sato, T. Surface complexation reactions of inorganic anions on hydrotalcite-like compounds. J. Colloid. Interface Sci. 2012, 384, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Polatoglu, I.; Cakicioglu-Ozkan, F. Aqueous interactions of zeolitic material in acidic and basic solutions. Microporous and Mesoporous Mater. 2010, 132, 219–225. [Google Scholar] [CrossRef]
- Ye, N.; Yang, J.; Liang, S.; Hu, Y.; Hu, J.; Xiao, B.; Huang, O. Synthesis and strength optimization of one-part geopolymer based on red mud. Constr. Build. Mater. 2016, 111, 317–325. [Google Scholar] [CrossRef]
- Demortier, A.; Gobeltz, N.; Lelieur, J.P.; Duhayon, C. Infrared evidence for the formation of an intermediate compound during the synthesis of zeolite Na–A from metakaolin. Intern. J. Inorg. Mat. 1999, 1, 129–134. [Google Scholar] [CrossRef]
- Slany, M.; Kuzielova, E.; Zemlicka, M.; Matejdes, M.; Struharova, A.; Palou, M.T. Metabentonite and metakaolin-based geopolymers/zeolites: Relation between kind of clay, calcination temperature and concentration of alkaline activator. J. Therm. Anal. Calorim. 2023, 148, 10531–10547. [Google Scholar] [CrossRef]
Elements | Cl− | SO42− | Ca2+ | Pb2+ | Cr | Na+ | K+ |
---|---|---|---|---|---|---|---|
Ci [mg/L] | 1995.2 | 1200 | 1084 | 6.16 | 1.69 | 525 | 694 |
Sample | Metal Content [wt.%] | ||
---|---|---|---|
- | Mg | Al | |
HT-b | - | 24.42 | 3.72 |
Si | Ca | Al | |
ZC-b | 13.32 | 3.38 | 2.01 |
SZ-a | 34.7 | 0.13 | 11.5 |
KA-b | 0.27 | 0.04 | 30.265 |
Sample | BET Surface Area [m2 g−1] | Single Point Pore Volume [cm3 g−1] | Pore Diameter Dv (d) [nm] |
---|---|---|---|
HT-b | 48.532 | 0.209 | 3 |
ZC-b | 27.060 | 0.157 | 4 |
SZ-a | 78.267 | 0.064 | 3 |
KA-b | 118.890 | 0.200 | 4 |
Adsorption Material | Synthetic | EAFD Wastewater | |
---|---|---|---|
Initial pH value (pHi) | - | 6.87 | 12.78 |
Final pH value (pHf) | HT-b | 11.77 | 12.54 |
ZC-b | 8.53 | 12.24 | |
SZ-a | 12.34 | 12.87 | |
KA-b | 4.41 | 7.78 |
Ion | SO42− | SD | K+ | SD | Na+ | SD | Pb2+ | SD | Cr3+ | SD |
---|---|---|---|---|---|---|---|---|---|---|
Initial concentration [mg/L] | 1910 | 2.31 | 8.38 | 0.1 | 560 | 0.7 | 5.52 | 0.31 | 4.52 | 0.2 |
Final concentration [mg/L] | 1150 | 1.8 | - | 0.2 | - | 0.65 | 0.97 | 0.01 | 0.4 | 0.22 |
Sorption capacity [mg/g] | 25.33 | 2 | - | - | - | - | 0.15 | 0,02 | 0.14 | 0.21 |
Removal efficiency [%] | 39.79 | 1.8 | - | - | - | - | 82.43 | 0.02 | 91.15 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváthová, H.; Miškufová, A.; Takáčová, Z.; Bernardes, A.M.; Bureš, R.; Fáberová, M.; Oráč, D. Simultaneous Removal of Chlorides and Calcium from EAF Dust Wastewater. Minerals 2025, 15, 239. https://doi.org/10.3390/min15030239
Horváthová H, Miškufová A, Takáčová Z, Bernardes AM, Bureš R, Fáberová M, Oráč D. Simultaneous Removal of Chlorides and Calcium from EAF Dust Wastewater. Minerals. 2025; 15(3):239. https://doi.org/10.3390/min15030239
Chicago/Turabian StyleHorváthová, Hedviga, Andrea Miškufová, Zita Takáčová, Andréa Moura Bernardes, Radovan Bureš, Mária Fáberová, and Dušan Oráč. 2025. "Simultaneous Removal of Chlorides and Calcium from EAF Dust Wastewater" Minerals 15, no. 3: 239. https://doi.org/10.3390/min15030239
APA StyleHorváthová, H., Miškufová, A., Takáčová, Z., Bernardes, A. M., Bureš, R., Fáberová, M., & Oráč, D. (2025). Simultaneous Removal of Chlorides and Calcium from EAF Dust Wastewater. Minerals, 15(3), 239. https://doi.org/10.3390/min15030239