Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barberton BIF
2.2. SEM
2.3. Raman Spectroscopy
3. Results
3.1. SEM and Optical Microscopy in Petrography
3.2. Elemental Analysis via SEM-EDS
3.3. Raman Spectra
4. Discussion
4.1. Raman Spectroscopy Analysis of CMs
4.2. Origin of CMs
4.3. Formation Process of Core-Rim Magnetite with a Core Containing CMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klein, C. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origin. Am. Mineral. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.L. Geneses and Evolutions of Iron-Bearing Minerals in Banded Iron Formations of >3760 to ca. 2200 Million-Year-Old: Constraints from Electron Microscopic, X-Ray Diffraction and Mössbauer Spectroscopic Investigations. Precambrian Res. 2017, 289, 1–17. [Google Scholar] [CrossRef]
- Hinz, I.L.; Nims, C.; Theuer, S.; Templeton, A.S.; Johnson, J.E. Ferric Iron Triggers Greenalite Formation in Simulated Archean Seawater. Geology 2021, 49, 905–909. [Google Scholar] [CrossRef]
- Sun, S.; Konhauser, K.O.; Kappler, A.; Li, Y.L. Primary Hematite in Neoarchean to Paleoproterozoic Oceans. Bull. Geol. Soc. Am. 2015, 127, 850–861. [Google Scholar] [CrossRef]
- Teixeira, L.; Carlut, J.; Rego, E.S.; Trindade, R.I.F.; Philippot, P. Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil. Geobiology 2024, 22, e70008. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.; Muhling, J.R.; Suvorova, A.; Krapež, B. Greenalite Precipitation Linked to the Deposition of Banded Iron Formations Downslope from a Late Archean Carbonate Platform. Precambrian Res. 2017, 290, 49–62. [Google Scholar] [CrossRef]
- Cloud, P.E. Significance of the Gunflint (Precambrian) Microflora. Science 1965, 148, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Widdel, F.; Schnell, S.; Heising, S.; Ehrenreich, A.; Assmus, B.; Schink, B. Ferrous Iron Oxdation by Anoxygenic Phototrophic Bacteria. Nature 1993, 362, 834–836. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Amskold, L.; Lalonde, S.V.; Posth, N.R.; Kappler, A.; Anbar, A. Decoupling Photochemical Fe(II) Oxidation from Shallow-Water BIF Deposition. Earth Planet. Sci. Lett. 2007, 258, 87–100. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Robbins, L.J.; Alessi, D.S.; Flynn, S.L.; Gingras, M.K.; Martinez, R.E.; Kappler, A.; Swanner, E.D.; Li, Y.L.; Crowe, S.A.; et al. Phytoplankton Contributions to the Trace-Element Composition of Precambrian Banded Iron Formations. Bull. Geol. Soc. Am. 2018, 130, 941–951. [Google Scholar] [CrossRef]
- Pellerin, A.; Thomazo, C.; Ader, M.; Rossignol, C.; Rego, E.S.; Busigny, V.; Philippot, P. Neoarchaean Oxygen-Based Nitrogen Cycle En Route to the Great Oxidation Event. Nature 2024, 633, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Planavsky, N.J.; Wang, X.; Reinhard, C.T.; Bekker, A.; Knudsen, A.; Smith, A.J.B.; Johnson, T.M.; Hofmann, A.; Beukes, N.J.; Lalonde, S.V.; et al. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nat. Geosci. 2014, 7, 283–286. [Google Scholar] [CrossRef]
- Shih, P.M.; Hemp, J.; Ward, L.M.; Matzke, N.J.; Fischer, W.W. Crown Group Oxyphotobacteria Postdate the Rise of Oxygen. Geobiology 2017, 15, 19–29. [Google Scholar] [CrossRef]
- Hartman, H. Photosynthesis and the Origin of Life. Orig. life Evol. Biosph. J. Int. Soc. Study Orig. Lifenational Soc. Study Orig. Life 1998, 28, 515–521. [Google Scholar] [CrossRef]
- Xiong, J.; William, M.F.; Inoue, K.; Nakahara, M.; Bauer, C.E. Molecular Evidence for the Evolution of Photosynthesis. Trends Plant Sci. 2000, 289, 1724–1730. [Google Scholar] [CrossRef]
- Kappler, A.; Pasquero, C.; Konhauser, K.O.; Newman, D.K. Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)-Oxidizing Bacteria. Geology 2005, 33, 865–868. [Google Scholar] [CrossRef]
- Wang, C.; Robbins, L.J.; Planavsky, N.J.; Beukes, N.J.; Patry, L.A.; Lalonde, S.V.; Lechte, M.A.; Asael, D.; Reinhard, C.T.; Zhang, L. Archean to Early Paleoproterozoic Iron Formations Document a Transition in Iron Oxidation Mechanisms. Geochim. Cosmochim. Acta 2023, 343, 286–303. [Google Scholar] [CrossRef]
- Heising, S.; Richter, L.; Ludwig, W.; Schink, B. Chlorobium Ferrooxidans Sp. Nov., a Phototrophic Green Sulfur Bacterium That Oxidizes Ferrous Iron in Coculture with a “Geospirillum” Sp. Strain. Arch. Microbiol. 1999, 172, 116–124. [Google Scholar] [CrossRef]
- Schädler, S.; Burkhardt, C.; Hegler, F.; Straub, K.L.; Miot, J.; Benzerara, K.; Kappler, A. Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(Ii)-Oxidizing Bacteria. Geomicrobiol. J. 2009, 26, 93–103. [Google Scholar] [CrossRef]
- Konhauser, K.; Newman, D.; Kappler, A. The Potential Significance of Microbial Fe (III) Reduction during Deposition of Precambrian Banded Iron Formations. Geobiology 2005, 3, 167–177. [Google Scholar] [CrossRef]
- Klein, C.; Beukes, N.J. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 1989, 84, 1733–1774. [Google Scholar] [CrossRef]
- Thompson, K.J.; Kenward, P.A.; Bauer, K.W.; Warchola, T.; Gauger, T.; Martinez, R.; Simister, R.L.; Michiels, C.C.; Llirós, M.; Reinhard, C.T. Photoferrotrophy, Deposition of Banded Iron Formations, and Methane Production in Archean Oceans. Sci. Adv. 2019, 5, eaav2869. [Google Scholar] [CrossRef]
- Fischer, W.W.; Knoll, A.H. An Iron Shuttle for Deepwater Silica in Late Archean and Early Paleoproterozoic Iron Formation. Bull. Geol. Soc. Am. 2009, 121, 222–235. [Google Scholar] [CrossRef]
- Walker, J.C.G. Suboxic Diagenesis in Banded Iron Formations. Nature 1984, 309, 340–342. [Google Scholar] [CrossRef]
- Bontognali, T.R.R.; Fischer, W.W.; Föllmi, K.B. Siliciclastic Associated Banded Iron Formation from the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 2013, 226, 116–124. [Google Scholar] [CrossRef]
- Heubeck, C. The Moodies Group—A High-Resolution Archive of Archaean Surface Processes and Basin-Forming Mechanisms. In The Archaean Geology of the Kaapvaal Craton, Southern Africa; Springer: Cham, Switzerland, 2019; ISBN 9783319786520. [Google Scholar]
- Bonnand, P.; Lalonde, S.V.; Boyet, M.; Heubeck, C.; Homann, M.; Nonnotte, P.; Foster, I.; Konhauser, K.O.; Köhler, I. Post-Depositional REE Mobility in a Paleoarchean Banded Iron Formation Revealed by La-Ce Geochronology: A Cautionary Tale for Signals of Ancient Oxygenation. Earth Planet. Sci. Lett. 2020, 547, 116452. [Google Scholar] [CrossRef]
- Heubeck, C.; Engelhardt, J.; Byerly, G.R.; Zeh, A.; Sell, B.; Luber, T.; Lowe, D.R. Timing of Deposition and Deformation of the Moodies Group (Barberton Greenstone Belt, South Africa): Very-High-Resolution of Archaean Surface Processes. Precambrian Res. 2013, 231, 236–262. [Google Scholar] [CrossRef]
- Kröner, A.; Byerly, G.R.; Lowe, D.R. Chronology of Early Archaean Granite-Greenstone Evolution in the Barberton Mountain Land, South Africa, Based on Precise Dating by Single Zircon Evaporation. Earth Planet. Sci. Lett. 1991, 103, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Toulkeridis, T.; Goldstein, S.L.; Clauer, N.; Kröner, A.; Lowe, D.R. Sm-Nd Dating of Fig Tree Clay Minerals of the Barberton Greenstone Belt, South Africa. Geology 1994, 22, 199–202. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Goldstein, S.L.; Clauer, N.; Kröner, A.; Todt, W.; Schidlowski, M. Sm-Nd, Rb-Sr and Pb-Pb Dating of Silicic Carbonates from the Early Archaean Barberton Greenstone Belt, South Africa Evidence for Post-Depositional Isotopic Resetting at Low Temperature. Precambrian Res. 1998, 92, 129–144. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Channer, D.M.D.; Faure, K.; Bray, C.J.; Spooner, E.T.C. Fluid Chemistry of Archean Seafloor Hydrothermal Vents: Implications for the Composition of circa 3.2 Ga Seawater. Geochim. Cosmochim. Acta 1997, 61, 4025–4042. [Google Scholar] [CrossRef]
- Heubeck, C.; Lowe, D.R. Sedimentary Petrography and Provenance of the Archean Moodies Group, Barberton Greenstone Belt. In Geologic Evolution of the Barberton Greenstone Belt, South Africa; Lowe, D.R., Byerly, G.R., Eds.; Geological Society of America: Boulder, CO, USA, 1999; pp. 259–286. [Google Scholar] [CrossRef]
- Heubeck, C. Early Archean Surface Processes and Environments: Drilling the Moodies Group, Barberton Greenstone Belt, South Africa. In Proceedings of the Field Workshop, African Rest Lodge, Barberton, South Africa, 5–10 October 2017. Field Handout. [Google Scholar]
- Condie, K.C.; Macke John, E.; Reimer, T.O. Petrology and geochemistry of early Precambrian graywackes from the Fig Tree Group, South Africa. Geol. Soc. Am. Bull. 1970, 81, 2759–2776. [Google Scholar] [CrossRef]
- Hofmann, A. The Geochemistry of Sedimentary Rocks from the Fig Tree Group, Barberton Greenstone Belt: Implications for Tectonic, Hydrothermal and Surface Processes during Mid-Archaean Times. Precambrian Res. 2005, 143, 23–49. [Google Scholar] [CrossRef]
- El Mendili, Y.; Grasset, F.; Randrianantoandro, N.; Nerambourg, N.; Greneche, J.M.; Bardeau, J.F. Improvement of Thermal Stability of Maghemite Nanoparticles Coated with Oleic Acid and Oleylamine Molecules: Investigations under Laser Irradiation. J. Phys. Chem. C 2015, 119, 10662–10668. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. Raman Spectroscopy as a Tool to Determine the Thermal Maturity of Organic Matter: Application to Sedimentary, Metamorphic and Structural Geology. Earth-Sci. Rev. 2019, 198, 102936. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman Spectra of Carbonaceous Material in Metasediments: A New Geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Ferralis, N.; Matys, E.D.; Knoll, A.H.; Hallmann, C.; Summons, R.E. Rapid, Direct and Non-Destructive Assessment of Fossil Organic Matter via MicroRaman Spectroscopy. Carbon N. Y. 2016, 108, 440–449. [Google Scholar] [CrossRef]
- Beny-Bassez, C.; Rouzaud, J.N. Characterization of Carbonaceous Materials By Correlated Electron and Optical Microscopy and Raman Microspectroscopy. Scan. Electron Microsc. 1985, 1985, 119–132. [Google Scholar]
- Kelemen, S.R.; Fang, H.L. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy Fuels 2001, 15, 653–658. [Google Scholar] [CrossRef]
- Hinrichs, R.; Brown, M.T.; Vasconcellos, M.A.Z.; Abrashev, M.V.; Kalkreuth, W. Simple Procedure for an Estimation of the Coal Rank Using Micro-Raman Spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Bonoldi, L.; Di Paolo, L.; Flego, C. Vibrational Spectroscopy Assessment of Kerogen Maturity in Organic-Rich Source Rocks. Vib. Spectrosc. 2016, 87, 14–19. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A. Raman Spectroscopy of Lipids: A Review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Barker, C.E.; Pawlewicz, M.J. Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperatures. In Vitrinite Reflectance as a Maturity Parameter; American Chemical Society: Washington, DC, USA, 1994; pp. 216–229. [Google Scholar] [CrossRef]
- McCollom, T.M. Formation of Meteorite Hydrocarbons from Thermal Decomposition of Siderite (FeCO3). Geochim. Cosmochim. Acta 2003, 67, 311–317. [Google Scholar] [CrossRef]
- Milesi, V.; Guyot, F.; Brunet, F.; Richard, L.; Recham, N.; Benedetti, M.; Dairou, J.; Prinzhofer, A. Formation of CO2, H2 and Condensed Carbon from Siderite Dissolution in the 200–300 °C Range and at 50 MPa. Geochim. Cosmochim. Acta 2015, 154, 201–211. [Google Scholar] [CrossRef]
- Smith, C.M.; Savage, P.E. Reactions of Polycyclic Alkylaromatics: Structure and Reactivity. AIChE J. 1991, 37, 1613–1624. [Google Scholar] [CrossRef]
- Li, Y.L.; Konhauser, K.O.; Cole, D.R.; Phelps, T.J. Mineral Ecophysiological Data Provide Growing Evidence for Microbial Activity in Banded-Iron Formations. Geology 2011, 39, 707–710. [Google Scholar] [CrossRef]
- Papineau, D.; De Gregorio, B.T.; Stroud, R.M.; Steele, A.; Pecoits, E.; Konhauser, K.; Wang, J.; Fogel, M.L. Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland II: Isotopic and Chemical Compositions and Comparison with Paleoproterozoic Banded Iron Formations. Geochim. Cosmochim. Acta 2010, 74, 5884–5905. [Google Scholar] [CrossRef]
- Dodd, M.S.; Papineau, D.; She, Z.B.; Manikyamba, C.; Wan, Y.S.; O’Neil, J.; Karhu, J.A.; Rizo, H.; Pirajno, F. Widespread Occurrences of Variably Crystalline 13 C-Depleted Graphitic Carbon in Banded Iron Formations. Earth Planet. Sci. Lett. 2019, 512, 163–174. [Google Scholar] [CrossRef]
- Dodd, M.S.; Papineau, D.; Pirajno, F.; Wan, Y.; Karhu, J.A. Minimal Biomass Deposition in Banded Iron Formations Inferred from Organic Matter and Clay Relationships. Nat. Commun. 2019, 10, 5022. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Damtie, M.M.; Wang, C.Y.; Li, C.L.; Chen, Z.; Cho, K.; Wei, W.; Yuan, P.; Frost, R.L.; Ni, B.J. Iron-Containing Nanominerals for Sustainable Phosphate Management: A Comprehensive Review and Future Perspectives. Sci. Total Environ. 2024, 926, 172025. [Google Scholar] [CrossRef] [PubMed]
- Kushkevych, I.; Bosáková, V.; Vítězová, M.; Rittmann, S.K.M.R. Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide. Antioxidants 2021, 10, 829. [Google Scholar] [CrossRef]
- Frigaard, N.U.; Dahl, C. Sulfur Metabolism in Phototrophic Sulfur Bacteria. Adv. Microb. Physiol. 2009, 54, 103–200. [Google Scholar] [PubMed]
- Dahl, C. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. In Sulfur Metabolism in Phototrophic Organisms-Advances in Photosynthesis and Respiration; Hell, R., Dahl, C., Knaff, D., Leustek, T., Eds.; Springer: New York, NY, USA, 2008; Volume 27, pp. 289–317. [Google Scholar]
- Moran, M.A.; Durham, B.P. Sulfur Metabolites in the Pelagic Ocean. Nat. Rev. Microbiol. 2019, 17, 665–678. [Google Scholar] [CrossRef]
- Vandenbroucke, M.; Largeau, C. Kerogen Origin, Evolution and Structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Kappler, A.; Newman, D.K. Formation of Fe(III)-Minerals by Fe(II)-Oxidizing Photoautotrophic Bacteria. Geochim. Cosmochim. Acta 2004, 68, 1217–1226. [Google Scholar] [CrossRef]
- Posth, N.R.; Köhler, I.; Swanner, E.D.; Schröder, C.; Wellmann, E.; Binder, B.; Konhauser, K.O.; Neumann, U.; Berthold, C.; Nowak, M.; et al. Simulating Precambrian Banded Iron Formation Diagenesis. Chem. Geol. 2013, 362, 66–73. [Google Scholar] [CrossRef]
- Halama, M.; Swanner, E.D.; Konhauser, K.O.; Kappler, A. Evaluation of Siderite and Magnetite Formation in BIFs by Pressure–Temperature Experiments of Fe(III) Minerals and Microbial Biomass. Earth Planet. Sci. Lett. 2016, 450, 243–253. [Google Scholar] [CrossRef]
- Han, X.; Wang, F.; Zheng, S.; Qiu, H.; Liu, Y.; Wang, J.; Menguy, N.; Leroy, E.; Bourgon, J.; Kappler, A. Morphological, Microstructural, and In Situ Chemical Characteristics of Siderite Produced by Iron-Reducing Bacteria. Environ. Sci. Technol. 2024, 58, 11016–11026. [Google Scholar] [CrossRef]
- Heimann, A.; Johnson, C.M.; Beard, B.L.; Valley, J.W.; Roden, E.E.; Spicuzza, M.J.; Beukes, N.J. Fe, C, and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5Ga Marine Environments. Earth Planet. Sci. Lett. 2010, 294, 8–18. [Google Scholar] [CrossRef]
- Zosel, J.; Oelner, W.; Decker, M.; Gerlach, G.; Guth, U. The Measurement of Dissolved and Gaseous Carbon Dioxide Concentration. Meas. Sci. Technol. 2011, 22, 072001. [Google Scholar] [CrossRef]
- Lin, C.Y.; Turchyn, A.V.; Krylov, A.; Antler, G. The Microbially Driven Formation of Siderite in Salt Marsh Sediments. Geobiology 2019, 18, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Fadli, A.; Amri, A.; Iwantono, I.; Adnan, A.; Sunarno, S.; Sukoco, S.; Mayangsari, M. The Oriented Attachment Model Applied on Crystal Growth of Hydrothermal Derived Magnetite Nanoparticles. Indones. J. Chem. 2020, 20, 379–385. [Google Scholar] [CrossRef]
- Park, B.C.; Ko, M.J.; Kim, Y.K.; Kim, G.W.; Kim, M.S.; Koo, T.M.; Fu, H.E.; Kim, Y.K. Surface-Ligand-Induced Crystallographic Disorder–Order Transition in Oriented Attachment for the Tuneable Assembly of Mesocrystals. Nat. Commun. 2022, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- De Yoreo, J.J.; Gilbert, P.U.P.A.; Sommerdijk, N.A.J.M.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef]
- Araújo, V.D.; Tranquilin, R.L.; Motta, F.V.; Paskocimas, C.A.; Bernardi, M.I.B.; Cavalcante, L.S.; Andres, J.; Longo, E.; Bomio, M.R.D. Effect of Polyvinyl Alcohol on the Shape, Photoluminescence and Photocatalytic Properties of PbMoO4 Microcrystals. Mater. Sci. Semicond. Process 2014, 26, 425–430. [Google Scholar] [CrossRef]
- Viedma, C.; McBride, J.M.; Kahr, B.; Cintas, P. Enantiomer-Specific Oriented Attachment: Formation of Macroscopic Homochiral Crystal Aggregates from a Racemic System. Angew. Chem. 2013, 125, 10739–10742. [Google Scholar] [CrossRef]
- Li, Z.; Xu, F.; Sun, X.; Zhang, W. Oriented Attachment in Vapor: Formation of ZnO Three-Dimensional Structures by Intergrowth of ZnO Microcrystals. Cryst. Growth Des. 2008, 8, 805–807. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, C.; Shi, Z.; Xu, Z.; Yan, S.; Zou, Z. Oriented Attachment Growth of Hundred-Nanometer-Size LaTaON2 Single Crystals in Molten Salts for Enhanced Photoelectrochemical Water Splitting. J. Mater. Chem. A 2018, 6, 7706–7713. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M.; Shvidchenko, A.V.; Smirnov, A.N.; Sokolov, V.V.; Yagovkina, M.A.; Vul’, A.Y. Growth of Diamond Microcrystals by the Oriented Attachment Mechanism at High Pressure and High Temperature. Tech. Phys. Lett. 2017, 43, 53–56. [Google Scholar] [CrossRef]
- Wang, J.; Lian, G.; Si, H.; Wang, Q.; Cui, D.; Wong, C.P. Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures. ACS Nano 2016, 10, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, B.; Hu, J.; Li, J.; Wang, F.; Pan, Y. Iron Reduction and Magnetite Biomineralization Mediated by a Deep-Sea Iron-Reducing Bacterium Shewanella piezotolerans WP3. J. Geophys. Res. Biogeosci. 2011, 116, G04034. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Z.; Lan, Y.; Ren, G.; Chen, D.; Huang, F.; Hong, M. A Multistep Oriented Attachment Kinetics: Coarsening of ZnS Nanoparticle in Concentrated NaOH. J. Am. Chem. Soc. 2006, 128, 12981–12987. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, J.; Huang, F.; Wang, Y.; Lin, Z. Pure Multistep Oriented Attachment Growth Kinetics of Surfactant-Free SnO2 Nanocrystals. Phys. Chem. Chem. Phys. 2009, 11, 8516–8521. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Penn, R.L.; Leite, E.R.; Huang, F.; Lin, Z. Crystal Growth by Oriented Attachment: Kinetic Models and Control Factors. CrystEngComm 2014, 16, 1419–1429. [Google Scholar] [CrossRef]
- Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. ChemInform 2005, 36, 5576–5591. [Google Scholar] [CrossRef] [PubMed]
- Imai, H. Mesostructured Crystals: Growth Processes and Features. Prog. Cryst. Growth Charact. Mater. 2016, 62, 212–226. [Google Scholar] [CrossRef]
- Kostka, J.E.; Nealson, K.H. Dissolution and Reduction of Magnetite by Bacteria. Environ. Sci. Technol. 1995, 29, 2535–2540. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T. Reductive Dissolution of Biogenic Magnetite. Earth Planets Space 2020, 72, 150. [Google Scholar] [CrossRef]
- Morris, R.C. Genesis of Iron Ore in Banded Iron-Formation by Supergene and Supergene-Metamorphic Processes—A Conceptual Model. In Handbook of Strata-Bound and Stratiform Ore Deposits; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 13, pp. 73–235. [Google Scholar]
- Perring, C.S. Petrography of Martite–Goethite Ore and Implications for Ore Genesis, South Flank, Hamersley Province, Western Australia. Aust. J. Earth Sci. 2021, 68, 782–798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manabe, T.; Konishi, H. Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa. Minerals 2025, 15, 218. https://doi.org/10.3390/min15030218
Manabe T, Konishi H. Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa. Minerals. 2025; 15(3):218. https://doi.org/10.3390/min15030218
Chicago/Turabian StyleManabe, Tatsuro, and Hiromi Konishi. 2025. "Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa" Minerals 15, no. 3: 218. https://doi.org/10.3390/min15030218
APA StyleManabe, T., & Konishi, H. (2025). Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa. Minerals, 15(3), 218. https://doi.org/10.3390/min15030218