Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Barberton BIF
2.2. SEM
2.3. Raman Spectroscopy
3. Results
3.1. SEM and Optical Microscopy in Petrography
3.2. Elemental Analysis via SEM-EDS
3.3. Raman Spectra
4. Discussion
4.1. Raman Spectroscopy Analysis of CMs
4.2. Origin of CMs
4.3. Formation Process of Core-Rim Magnetite with a Core Containing CMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klein, C. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origin. Am. Mineral. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.L. Geneses and Evolutions of Iron-Bearing Minerals in Banded Iron Formations of >3760 to ca. 2200 Million-Year-Old: Constraints from Electron Microscopic, X-Ray Diffraction and Mössbauer Spectroscopic Investigations. Precambrian Res. 2017, 289, 1–17. [Google Scholar] [CrossRef]
- Hinz, I.L.; Nims, C.; Theuer, S.; Templeton, A.S.; Johnson, J.E. Ferric Iron Triggers Greenalite Formation in Simulated Archean Seawater. Geology 2021, 49, 905–909. [Google Scholar] [CrossRef]
- Sun, S.; Konhauser, K.O.; Kappler, A.; Li, Y.L. Primary Hematite in Neoarchean to Paleoproterozoic Oceans. Bull. Geol. Soc. Am. 2015, 127, 850–861. [Google Scholar] [CrossRef]
- Teixeira, L.; Carlut, J.; Rego, E.S.; Trindade, R.I.F.; Philippot, P. Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil. Geobiology 2024, 22, e70008. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, B.; Muhling, J.R.; Suvorova, A.; Krapež, B. Greenalite Precipitation Linked to the Deposition of Banded Iron Formations Downslope from a Late Archean Carbonate Platform. Precambrian Res. 2017, 290, 49–62. [Google Scholar] [CrossRef]
- Cloud, P.E. Significance of the Gunflint (Precambrian) Microflora. Science 1965, 148, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Widdel, F.; Schnell, S.; Heising, S.; Ehrenreich, A.; Assmus, B.; Schink, B. Ferrous Iron Oxdation by Anoxygenic Phototrophic Bacteria. Nature 1993, 362, 834–836. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Amskold, L.; Lalonde, S.V.; Posth, N.R.; Kappler, A.; Anbar, A. Decoupling Photochemical Fe(II) Oxidation from Shallow-Water BIF Deposition. Earth Planet. Sci. Lett. 2007, 258, 87–100. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Robbins, L.J.; Alessi, D.S.; Flynn, S.L.; Gingras, M.K.; Martinez, R.E.; Kappler, A.; Swanner, E.D.; Li, Y.L.; Crowe, S.A.; et al. Phytoplankton Contributions to the Trace-Element Composition of Precambrian Banded Iron Formations. Bull. Geol. Soc. Am. 2018, 130, 941–951. [Google Scholar] [CrossRef]
- Pellerin, A.; Thomazo, C.; Ader, M.; Rossignol, C.; Rego, E.S.; Busigny, V.; Philippot, P. Neoarchaean Oxygen-Based Nitrogen Cycle En Route to the Great Oxidation Event. Nature 2024, 633, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Planavsky, N.J.; Wang, X.; Reinhard, C.T.; Bekker, A.; Knudsen, A.; Smith, A.J.B.; Johnson, T.M.; Hofmann, A.; Beukes, N.J.; Lalonde, S.V.; et al. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nat. Geosci. 2014, 7, 283–286. [Google Scholar] [CrossRef]
- Shih, P.M.; Hemp, J.; Ward, L.M.; Matzke, N.J.; Fischer, W.W. Crown Group Oxyphotobacteria Postdate the Rise of Oxygen. Geobiology 2017, 15, 19–29. [Google Scholar] [CrossRef]
- Hartman, H. Photosynthesis and the Origin of Life. Orig. life Evol. Biosph. J. Int. Soc. Study Orig. Lifenational Soc. Study Orig. Life 1998, 28, 515–521. [Google Scholar] [CrossRef]
- Xiong, J.; William, M.F.; Inoue, K.; Nakahara, M.; Bauer, C.E. Molecular Evidence for the Evolution of Photosynthesis. Trends Plant Sci. 2000, 289, 1724–1730. [Google Scholar] [CrossRef]
- Kappler, A.; Pasquero, C.; Konhauser, K.O.; Newman, D.K. Deposition of Banded Iron Formations by Anoxygenic Phototrophic Fe(II)-Oxidizing Bacteria. Geology 2005, 33, 865–868. [Google Scholar] [CrossRef]
- Wang, C.; Robbins, L.J.; Planavsky, N.J.; Beukes, N.J.; Patry, L.A.; Lalonde, S.V.; Lechte, M.A.; Asael, D.; Reinhard, C.T.; Zhang, L. Archean to Early Paleoproterozoic Iron Formations Document a Transition in Iron Oxidation Mechanisms. Geochim. Cosmochim. Acta 2023, 343, 286–303. [Google Scholar] [CrossRef]
- Heising, S.; Richter, L.; Ludwig, W.; Schink, B. Chlorobium Ferrooxidans Sp. Nov., a Phototrophic Green Sulfur Bacterium That Oxidizes Ferrous Iron in Coculture with a “Geospirillum” Sp. Strain. Arch. Microbiol. 1999, 172, 116–124. [Google Scholar] [CrossRef]
- Schädler, S.; Burkhardt, C.; Hegler, F.; Straub, K.L.; Miot, J.; Benzerara, K.; Kappler, A. Formation of Cell-Iron-Mineral Aggregates by Phototrophic and Nitrate-Reducing Anaerobic Fe(Ii)-Oxidizing Bacteria. Geomicrobiol. J. 2009, 26, 93–103. [Google Scholar] [CrossRef]
- Konhauser, K.; Newman, D.; Kappler, A. The Potential Significance of Microbial Fe (III) Reduction during Deposition of Precambrian Banded Iron Formations. Geobiology 2005, 3, 167–177. [Google Scholar] [CrossRef]
- Klein, C.; Beukes, N.J. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 1989, 84, 1733–1774. [Google Scholar] [CrossRef]
- Thompson, K.J.; Kenward, P.A.; Bauer, K.W.; Warchola, T.; Gauger, T.; Martinez, R.; Simister, R.L.; Michiels, C.C.; Llirós, M.; Reinhard, C.T. Photoferrotrophy, Deposition of Banded Iron Formations, and Methane Production in Archean Oceans. Sci. Adv. 2019, 5, eaav2869. [Google Scholar] [CrossRef]
- Fischer, W.W.; Knoll, A.H. An Iron Shuttle for Deepwater Silica in Late Archean and Early Paleoproterozoic Iron Formation. Bull. Geol. Soc. Am. 2009, 121, 222–235. [Google Scholar] [CrossRef]
- Walker, J.C.G. Suboxic Diagenesis in Banded Iron Formations. Nature 1984, 309, 340–342. [Google Scholar] [CrossRef]
- Bontognali, T.R.R.; Fischer, W.W.; Föllmi, K.B. Siliciclastic Associated Banded Iron Formation from the 3.2Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 2013, 226, 116–124. [Google Scholar] [CrossRef]
- Heubeck, C. The Moodies Group—A High-Resolution Archive of Archaean Surface Processes and Basin-Forming Mechanisms. In The Archaean Geology of the Kaapvaal Craton, Southern Africa; Springer: Cham, Switzerland, 2019; ISBN 9783319786520. [Google Scholar]
- Bonnand, P.; Lalonde, S.V.; Boyet, M.; Heubeck, C.; Homann, M.; Nonnotte, P.; Foster, I.; Konhauser, K.O.; Köhler, I. Post-Depositional REE Mobility in a Paleoarchean Banded Iron Formation Revealed by La-Ce Geochronology: A Cautionary Tale for Signals of Ancient Oxygenation. Earth Planet. Sci. Lett. 2020, 547, 116452. [Google Scholar] [CrossRef]
- Heubeck, C.; Engelhardt, J.; Byerly, G.R.; Zeh, A.; Sell, B.; Luber, T.; Lowe, D.R. Timing of Deposition and Deformation of the Moodies Group (Barberton Greenstone Belt, South Africa): Very-High-Resolution of Archaean Surface Processes. Precambrian Res. 2013, 231, 236–262. [Google Scholar] [CrossRef]
- Kröner, A.; Byerly, G.R.; Lowe, D.R. Chronology of Early Archaean Granite-Greenstone Evolution in the Barberton Mountain Land, South Africa, Based on Precise Dating by Single Zircon Evaporation. Earth Planet. Sci. Lett. 1991, 103, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Toulkeridis, T.; Goldstein, S.L.; Clauer, N.; Kröner, A.; Lowe, D.R. Sm-Nd Dating of Fig Tree Clay Minerals of the Barberton Greenstone Belt, South Africa. Geology 1994, 22, 199–202. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Goldstein, S.L.; Clauer, N.; Kröner, A.; Todt, W.; Schidlowski, M. Sm-Nd, Rb-Sr and Pb-Pb Dating of Silicic Carbonates from the Early Archaean Barberton Greenstone Belt, South Africa Evidence for Post-Depositional Isotopic Resetting at Low Temperature. Precambrian Res. 1998, 92, 129–144. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Channer, D.M.D.; Faure, K.; Bray, C.J.; Spooner, E.T.C. Fluid Chemistry of Archean Seafloor Hydrothermal Vents: Implications for the Composition of circa 3.2 Ga Seawater. Geochim. Cosmochim. Acta 1997, 61, 4025–4042. [Google Scholar] [CrossRef]
- Heubeck, C.; Lowe, D.R. Sedimentary Petrography and Provenance of the Archean Moodies Group, Barberton Greenstone Belt. In Geologic Evolution of the Barberton Greenstone Belt, South Africa; Lowe, D.R., Byerly, G.R., Eds.; Geological Society of America: Boulder, CO, USA, 1999; pp. 259–286. [Google Scholar] [CrossRef]
- Heubeck, C. Early Archean Surface Processes and Environments: Drilling the Moodies Group, Barberton Greenstone Belt, South Africa. In Proceedings of the Field Workshop, African Rest Lodge, Barberton, South Africa, 5–10 October 2017. Field Handout. [Google Scholar]
- Condie, K.C.; Macke John, E.; Reimer, T.O. Petrology and geochemistry of early Precambrian graywackes from the Fig Tree Group, South Africa. Geol. Soc. Am. Bull. 1970, 81, 2759–2776. [Google Scholar] [CrossRef]
- Hofmann, A. The Geochemistry of Sedimentary Rocks from the Fig Tree Group, Barberton Greenstone Belt: Implications for Tectonic, Hydrothermal and Surface Processes during Mid-Archaean Times. Precambrian Res. 2005, 143, 23–49. [Google Scholar] [CrossRef]
- El Mendili, Y.; Grasset, F.; Randrianantoandro, N.; Nerambourg, N.; Greneche, J.M.; Bardeau, J.F. Improvement of Thermal Stability of Maghemite Nanoparticles Coated with Oleic Acid and Oleylamine Molecules: Investigations under Laser Irradiation. J. Phys. Chem. C 2015, 119, 10662–10668. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. Raman Spectroscopy as a Tool to Determine the Thermal Maturity of Organic Matter: Application to Sedimentary, Metamorphic and Structural Geology. Earth-Sci. Rev. 2019, 198, 102936. [Google Scholar] [CrossRef]
- Beyssac, O.; Goffé, B.; Chopin, C.; Rouzaud, J.N. Raman Spectra of Carbonaceous Material in Metasediments: A New Geothermometer. J. Metamorph. Geol. 2002, 20, 859–871. [Google Scholar] [CrossRef]
- Ferralis, N.; Matys, E.D.; Knoll, A.H.; Hallmann, C.; Summons, R.E. Rapid, Direct and Non-Destructive Assessment of Fossil Organic Matter via MicroRaman Spectroscopy. Carbon N. Y. 2016, 108, 440–449. [Google Scholar] [CrossRef]
- Beny-Bassez, C.; Rouzaud, J.N. Characterization of Carbonaceous Materials By Correlated Electron and Optical Microscopy and Raman Microspectroscopy. Scan. Electron Microsc. 1985, 1985, 119–132. [Google Scholar]
- Kelemen, S.R.; Fang, H.L. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy Fuels 2001, 15, 653–658. [Google Scholar] [CrossRef]
- Hinrichs, R.; Brown, M.T.; Vasconcellos, M.A.Z.; Abrashev, M.V.; Kalkreuth, W. Simple Procedure for an Estimation of the Coal Rank Using Micro-Raman Spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Bonoldi, L.; Di Paolo, L.; Flego, C. Vibrational Spectroscopy Assessment of Kerogen Maturity in Organic-Rich Source Rocks. Vib. Spectrosc. 2016, 87, 14–19. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A. Raman Spectroscopy of Lipids: A Review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Barker, C.E.; Pawlewicz, M.J. Calculation of Vitrinite Reflectance from Thermal Histories and Peak Temperatures. In Vitrinite Reflectance as a Maturity Parameter; American Chemical Society: Washington, DC, USA, 1994; pp. 216–229. [Google Scholar] [CrossRef]
- McCollom, T.M. Formation of Meteorite Hydrocarbons from Thermal Decomposition of Siderite (FeCO3). Geochim. Cosmochim. Acta 2003, 67, 311–317. [Google Scholar] [CrossRef]
- Milesi, V.; Guyot, F.; Brunet, F.; Richard, L.; Recham, N.; Benedetti, M.; Dairou, J.; Prinzhofer, A. Formation of CO2, H2 and Condensed Carbon from Siderite Dissolution in the 200–300 °C Range and at 50 MPa. Geochim. Cosmochim. Acta 2015, 154, 201–211. [Google Scholar] [CrossRef]
- Smith, C.M.; Savage, P.E. Reactions of Polycyclic Alkylaromatics: Structure and Reactivity. AIChE J. 1991, 37, 1613–1624. [Google Scholar] [CrossRef]
- Li, Y.L.; Konhauser, K.O.; Cole, D.R.; Phelps, T.J. Mineral Ecophysiological Data Provide Growing Evidence for Microbial Activity in Banded-Iron Formations. Geology 2011, 39, 707–710. [Google Scholar] [CrossRef]
- Papineau, D.; De Gregorio, B.T.; Stroud, R.M.; Steele, A.; Pecoits, E.; Konhauser, K.; Wang, J.; Fogel, M.L. Ancient Graphite in the Eoarchean Quartz-Pyroxene Rocks from Akilia in Southern West Greenland II: Isotopic and Chemical Compositions and Comparison with Paleoproterozoic Banded Iron Formations. Geochim. Cosmochim. Acta 2010, 74, 5884–5905. [Google Scholar] [CrossRef]
- Dodd, M.S.; Papineau, D.; She, Z.B.; Manikyamba, C.; Wan, Y.S.; O’Neil, J.; Karhu, J.A.; Rizo, H.; Pirajno, F. Widespread Occurrences of Variably Crystalline 13 C-Depleted Graphitic Carbon in Banded Iron Formations. Earth Planet. Sci. Lett. 2019, 512, 163–174. [Google Scholar] [CrossRef]
- Dodd, M.S.; Papineau, D.; Pirajno, F.; Wan, Y.; Karhu, J.A. Minimal Biomass Deposition in Banded Iron Formations Inferred from Organic Matter and Clay Relationships. Nat. Commun. 2019, 10, 5022. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Damtie, M.M.; Wang, C.Y.; Li, C.L.; Chen, Z.; Cho, K.; Wei, W.; Yuan, P.; Frost, R.L.; Ni, B.J. Iron-Containing Nanominerals for Sustainable Phosphate Management: A Comprehensive Review and Future Perspectives. Sci. Total Environ. 2024, 926, 172025. [Google Scholar] [CrossRef] [PubMed]
- Kushkevych, I.; Bosáková, V.; Vítězová, M.; Rittmann, S.K.M.R. Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide. Antioxidants 2021, 10, 829. [Google Scholar] [CrossRef]
- Frigaard, N.U.; Dahl, C. Sulfur Metabolism in Phototrophic Sulfur Bacteria. Adv. Microb. Physiol. 2009, 54, 103–200. [Google Scholar] [PubMed]
- Dahl, C. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. In Sulfur Metabolism in Phototrophic Organisms-Advances in Photosynthesis and Respiration; Hell, R., Dahl, C., Knaff, D., Leustek, T., Eds.; Springer: New York, NY, USA, 2008; Volume 27, pp. 289–317. [Google Scholar]
- Moran, M.A.; Durham, B.P. Sulfur Metabolites in the Pelagic Ocean. Nat. Rev. Microbiol. 2019, 17, 665–678. [Google Scholar] [CrossRef]
- Vandenbroucke, M.; Largeau, C. Kerogen Origin, Evolution and Structure. Org. Geochem. 2007, 38, 719–833. [Google Scholar] [CrossRef]
- Kappler, A.; Newman, D.K. Formation of Fe(III)-Minerals by Fe(II)-Oxidizing Photoautotrophic Bacteria. Geochim. Cosmochim. Acta 2004, 68, 1217–1226. [Google Scholar] [CrossRef]
- Posth, N.R.; Köhler, I.; Swanner, E.D.; Schröder, C.; Wellmann, E.; Binder, B.; Konhauser, K.O.; Neumann, U.; Berthold, C.; Nowak, M.; et al. Simulating Precambrian Banded Iron Formation Diagenesis. Chem. Geol. 2013, 362, 66–73. [Google Scholar] [CrossRef]
- Halama, M.; Swanner, E.D.; Konhauser, K.O.; Kappler, A. Evaluation of Siderite and Magnetite Formation in BIFs by Pressure–Temperature Experiments of Fe(III) Minerals and Microbial Biomass. Earth Planet. Sci. Lett. 2016, 450, 243–253. [Google Scholar] [CrossRef]
- Han, X.; Wang, F.; Zheng, S.; Qiu, H.; Liu, Y.; Wang, J.; Menguy, N.; Leroy, E.; Bourgon, J.; Kappler, A. Morphological, Microstructural, and In Situ Chemical Characteristics of Siderite Produced by Iron-Reducing Bacteria. Environ. Sci. Technol. 2024, 58, 11016–11026. [Google Scholar] [CrossRef]
- Heimann, A.; Johnson, C.M.; Beard, B.L.; Valley, J.W.; Roden, E.E.; Spicuzza, M.J.; Beukes, N.J. Fe, C, and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5Ga Marine Environments. Earth Planet. Sci. Lett. 2010, 294, 8–18. [Google Scholar] [CrossRef]
- Zosel, J.; Oelner, W.; Decker, M.; Gerlach, G.; Guth, U. The Measurement of Dissolved and Gaseous Carbon Dioxide Concentration. Meas. Sci. Technol. 2011, 22, 072001. [Google Scholar] [CrossRef]
- Lin, C.Y.; Turchyn, A.V.; Krylov, A.; Antler, G. The Microbially Driven Formation of Siderite in Salt Marsh Sediments. Geobiology 2019, 18, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Fadli, A.; Amri, A.; Iwantono, I.; Adnan, A.; Sunarno, S.; Sukoco, S.; Mayangsari, M. The Oriented Attachment Model Applied on Crystal Growth of Hydrothermal Derived Magnetite Nanoparticles. Indones. J. Chem. 2020, 20, 379–385. [Google Scholar] [CrossRef]
- Park, B.C.; Ko, M.J.; Kim, Y.K.; Kim, G.W.; Kim, M.S.; Koo, T.M.; Fu, H.E.; Kim, Y.K. Surface-Ligand-Induced Crystallographic Disorder–Order Transition in Oriented Attachment for the Tuneable Assembly of Mesocrystals. Nat. Commun. 2022, 13, 1144. [Google Scholar] [CrossRef] [PubMed]
- De Yoreo, J.J.; Gilbert, P.U.P.A.; Sommerdijk, N.A.J.M.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef]
- Araújo, V.D.; Tranquilin, R.L.; Motta, F.V.; Paskocimas, C.A.; Bernardi, M.I.B.; Cavalcante, L.S.; Andres, J.; Longo, E.; Bomio, M.R.D. Effect of Polyvinyl Alcohol on the Shape, Photoluminescence and Photocatalytic Properties of PbMoO4 Microcrystals. Mater. Sci. Semicond. Process 2014, 26, 425–430. [Google Scholar] [CrossRef]
- Viedma, C.; McBride, J.M.; Kahr, B.; Cintas, P. Enantiomer-Specific Oriented Attachment: Formation of Macroscopic Homochiral Crystal Aggregates from a Racemic System. Angew. Chem. 2013, 125, 10739–10742. [Google Scholar] [CrossRef]
- Li, Z.; Xu, F.; Sun, X.; Zhang, W. Oriented Attachment in Vapor: Formation of ZnO Three-Dimensional Structures by Intergrowth of ZnO Microcrystals. Cryst. Growth Des. 2008, 8, 805–807. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, C.; Shi, Z.; Xu, Z.; Yan, S.; Zou, Z. Oriented Attachment Growth of Hundred-Nanometer-Size LaTaON2 Single Crystals in Molten Salts for Enhanced Photoelectrochemical Water Splitting. J. Mater. Chem. A 2018, 6, 7706–7713. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M.; Shvidchenko, A.V.; Smirnov, A.N.; Sokolov, V.V.; Yagovkina, M.A.; Vul’, A.Y. Growth of Diamond Microcrystals by the Oriented Attachment Mechanism at High Pressure and High Temperature. Tech. Phys. Lett. 2017, 43, 53–56. [Google Scholar] [CrossRef]
- Wang, J.; Lian, G.; Si, H.; Wang, Q.; Cui, D.; Wong, C.P. Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures. ACS Nano 2016, 10, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, B.; Hu, J.; Li, J.; Wang, F.; Pan, Y. Iron Reduction and Magnetite Biomineralization Mediated by a Deep-Sea Iron-Reducing Bacterium Shewanella piezotolerans WP3. J. Geophys. Res. Biogeosci. 2011, 116, G04034. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Z.; Lan, Y.; Ren, G.; Chen, D.; Huang, F.; Hong, M. A Multistep Oriented Attachment Kinetics: Coarsening of ZnS Nanoparticle in Concentrated NaOH. J. Am. Chem. Soc. 2006, 128, 12981–12987. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, J.; Huang, F.; Wang, Y.; Lin, Z. Pure Multistep Oriented Attachment Growth Kinetics of Surfactant-Free SnO2 Nanocrystals. Phys. Chem. Chem. Phys. 2009, 11, 8516–8521. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Penn, R.L.; Leite, E.R.; Huang, F.; Lin, Z. Crystal Growth by Oriented Attachment: Kinetic Models and Control Factors. CrystEngComm 2014, 16, 1419–1429. [Google Scholar] [CrossRef]
- Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. ChemInform 2005, 36, 5576–5591. [Google Scholar] [CrossRef] [PubMed]
- Imai, H. Mesostructured Crystals: Growth Processes and Features. Prog. Cryst. Growth Charact. Mater. 2016, 62, 212–226. [Google Scholar] [CrossRef]
- Kostka, J.E.; Nealson, K.H. Dissolution and Reduction of Magnetite by Bacteria. Environ. Sci. Technol. 1995, 29, 2535–2540. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T. Reductive Dissolution of Biogenic Magnetite. Earth Planets Space 2020, 72, 150. [Google Scholar] [CrossRef]
- Morris, R.C. Genesis of Iron Ore in Banded Iron-Formation by Supergene and Supergene-Metamorphic Processes—A Conceptual Model. In Handbook of Strata-Bound and Stratiform Ore Deposits; Wolf, K.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 13, pp. 73–235. [Google Scholar]
- Perring, C.S. Petrography of Martite–Goethite Ore and Implications for Ore Genesis, South Flank, Hamersley Province, Western Australia. Aust. J. Earth Sci. 2021, 68, 782–798. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manabe, T.; Konishi, H. Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa. Minerals 2025, 15, 218. https://doi.org/10.3390/min15030218
Manabe T, Konishi H. Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa. Minerals. 2025; 15(3):218. https://doi.org/10.3390/min15030218
Chicago/Turabian StyleManabe, Tatsuro, and Hiromi Konishi. 2025. "Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa" Minerals 15, no. 3: 218. https://doi.org/10.3390/min15030218
APA StyleManabe, T., & Konishi, H. (2025). Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa. Minerals, 15(3), 218. https://doi.org/10.3390/min15030218