Direct Aqueous Carbonation of Heat-Activated Lizardite; Effect of Particle Size and Solids Loading on Magnesite Yield
Abstract
:1. Introduction
2. Material, Characterisation, and Methodology
3. Results and Discussion
3.1. Particle Size Analysis
3.2. X-Ray Diffraction Analysis
3.3. Elemental Analysis of the Supernatant Solutions with ICP-OES
3.4. Thermogravimetric and Mass Spectroscopic Analysis (TGA-MS)
3.5. Magnesite Yield Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerdemann, S.J.; O’Connor, W.K.; Dahlin, D.C.; Penner, L.R.; Rush, H. Ex Situ Aqueous Mineral Carbonation. Environ. Sci. Technol. 2007, 41, 2587–2593. [Google Scholar] [CrossRef]
- Yadav, S.; Mehra, A. A review on ex situ mineral carbonation. Environ. Sci. Pollut Res. Int. 2021, 28, 12202–12231. [Google Scholar] [CrossRef] [PubMed]
- Park, A.-H.A.; Fan, L.-S. CO2 mineral sequestration: Physically activated dissolution of serpentine and pH swing process. Chem. Eng. Sci. 2004, 59, 5241–5247. [Google Scholar] [CrossRef]
- Park, A.H.A.; Jadhav, R.; Fan, L.S. CO2 Mineral Sequestration: Chemically Enhanced Aqueous Carbonation of Serpentine. Can. J. Chem. Eng. 2008, 81, 885–890. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.-J. Cost evaluation of CO2 sequestration by aqueous mineral carbonation. Energy Convers. Manag. 2007, 48, 1923–1935. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Ruijg, G.J.; Comans, R.N.J.; Witkamp, G.-J. Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation. Ind. Eng. Chem. Res. 2006, 45, 9184–9194. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Dahlin, D.C.; Rush, G.E.; Gerdemann, S.J.; Penner, L.R.; Nilsen, D.N. Final report, Aqueous Mineral Carbonation, Mineral Availability, Pretreatment, Reaction Parametrics and Process Studies. Off. Process Dev. 2005. [Google Scholar] [CrossRef]
- Balucan, R.D.; Dlugogorski, B.Z.; Kennedy, E.M.; Belova, I.V.; Murch, G.E. Energy cost of heat activating serpentinites for CO2 storage by mineralisation. Int. J. Greenh. Gas Control 2013, 17, 225–239. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; O’Connor, W.K.; Gerdemann, S.J. Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results. Environ. Prog. 2006, 25, 161–166. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C. Carbon dioxide sequestration by direct aqueous mineral carbonation. In Proceedings of the Conference: 25th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL, USA, 5–8 March 2001; Coal Technology Association: Gaithersburg, MD, USA, 2000; p. Medium: ED. [Google Scholar]
- O’Connor, W.K.; Dahlin, D.C.; Nielsen, D.N.; Rush, G.E.; Walters, R.P.; Turner, P.C. Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status; Albany Research Center (ARC): Albany, OR, USA, 2011. [Google Scholar]
- Garcia, B.; Beaumont, V.; Perfetti, E.; Blanchet, D.; Oger, P.; Dromart, G.; Huc, A.-Y.; Haeseler, F. Experiments and geochemical modelling of CO2 sequestration by olivine: Potential, quantification. Appl. Geochem. 2010, 25, 1383–1396. [Google Scholar] [CrossRef]
- Bodénan, F.; Bourgeois, F.; Petiot, C.; Augé, T.; Bonfils, B.; Julcour-Lebigue, C.; Guyot, F.; Boukary, A.; Tremosa, J.; Lassin, A.; et al. Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project). Miner. Eng. 2014, 59, 52–63. [Google Scholar] [CrossRef]
- Guyot, F.; Daval, D.; Dupraz, S.; Martinez, I.; Ménez, B.; Sissmann, O. CO2 geological storage: The environmental mineralogy perspective. Comptes Rendus Geosci. 2011, 343, 246–259. [Google Scholar] [CrossRef]
- Stockmann, G.J.; Wolff-Boenisch, D.; Gislason, S.R.; Oelkers, E.H. Do carbonate precipitates affect dissolution kinetics? 1: Basaltic glass. Chem. Geol. 2011, 284, 306–316. [Google Scholar] [CrossRef]
- Sanna, A.; Hall, M.R.; Maroto-Valer, M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ. Sci. 2012, 5, 7781–7796. [Google Scholar] [CrossRef]
- Rashid, M.I.; Benhelal, E.; Farhang, F.; Oliver, T.K.; Stockenhuber, M.; Kennedy, E.M. Application of concurrent grinding in direct aqueous carbonation of magnesium silicates. J. CO2 Util. 2021, 48, 101516. [Google Scholar] [CrossRef]
- Rashid, M.I.; Benhelal, E.; Farhang, F.; Oliver, T.K.; Stockenhuber, M.; Kennedy, E.M. Application of a concurrent grinding technique for two-stage aqueous mineral carbonation. J. CO2 Util. 2020, 42, 101347. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, H.; He, X.; Su, Y.; Zeng, J.; Li, W.; Li, Y.; Qi, H. Rapid wet grinding carbonation of sintering red mud for highly efficient CO2 sequestration and Cr solidification. Chem. Eng. J. 2024, 488, 151134. [Google Scholar] [CrossRef]
- He, X.; Zeng, J.; Yang, J.; Su, Y.; Wang, Y.; Jin, Z.; Zheng, Z.; Tian, C. Wet grinding carbonation technique: Achieving rapid carbon mineralization of concrete slurry waste under low CO2 flow rate. Chem. Eng. J. 2024, 493, 152836. [Google Scholar] [CrossRef]
- Abu Fara, A.; Rayson, M.R.; Brent, G.F.; Oliver, T.K.; Stockenhuber, M.; Kennedy, E.M. Effect of NaHCO3 on the Magnesite Yield in Direct Aqueous Carbonation of Thermally-Activated Lizardite. Ind. Eng. Chem. Res. 2024, 63, 1314–1320. [Google Scholar] [CrossRef]
- Qian, C.; Li, C.; Huang, P.; Liang, J.; Zhang, X.; Wang, J.; Wang, J.; Sun, Z. Research progress of CO2 capture and mineralization based on natural minerals. Int. J. Miner. Metall. Mater. 2024, 31, 1208–1227. [Google Scholar] [CrossRef]
- Balucan, R.D. Thermal Studies of Magnesium Silicates from the Great Serpentinite Belt in New South Wales for CO2 Sequestration by Mineral Carbonation in Australia. Ph.D. Thesis, The University of Newcastle, Callaghan, NSW, Australia, 2013. [Google Scholar]
- Ghoorah, M. Investigating the Suitability of the Weak Acid Process for Carbon Dioxide Mineralisation. Ph.D. Thesis, The University of Newcastle, Callaghan, NSW, Australia, 2014. [Google Scholar]
- Oliver, T.K. Aqueous Mineral Carbonation Via Decarbonation. Ph.D. Thesis, The University of Newcastle, Callaghan, NSW, Australia, 2017. [Google Scholar]
- Abu Fara, A. Experimental and Modelling Studies on Direct Aqueous Carbonation of Thermally Activated Lizardite. Ph.D. Thesis, The University of Newcastle, Callaghan, NSW, Australia, 2019. [Google Scholar]
- Benhelal, E. Synthesis and Application of Mineral Carbonation by-Products as Portland Cement Substitutes. Ph.D. Thesis, The University of Newcastle, Callaghan, NSW, Australia, 2018. [Google Scholar]
- Rashid, M.I. Mineral Carbonation of CO2 Using Alternative Feedstocks. Ph.D. Thesis, The University of Newcastle, Callaghan, NSW, Australia, 2019. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Thomas, A., Rosa Micaela, D., Eds.; De Gruyter (O): Berlin, Germany; München, Germany; Boston, MA, USA, 2016; pp. 1–30. [Google Scholar] [CrossRef]
- Brandt, C.G.; Kinneging, A.J. A Practical Guide to Quantitative Phase Analysis; The Analytical X-ray Company: Eindhoven, The Netherlands, 2005. [Google Scholar]
- Linville, J.L.; Shen, Y.; Urgun-Demirtas, M.; Snyder, S.W. Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures. Process Biochem. 2016, 51, 59–72. [Google Scholar] [CrossRef]
- Rinder, T.; von Hagke, C. The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal-Insights from a regional assessment. J. Clean. Prod. 2021, 315, 128178. [Google Scholar] [CrossRef]
- Béarat, H.; McKelvy, M.J.; Chizmeshya, A.V.G.; Gormley, D.; Nunez, R.; Carpenter, R.W.; Squires, K.; Wolf, G.H. Carbon Sequestration via Aqueous Olivine Mineral Carbonation: Role of Passivating Layer Formation. Environ. Sci. Technol. 2006, 40, 4802–4808. [Google Scholar] [CrossRef]
- Jarvis, K.; Carpenter, R.W.; Windman, T.; Kim, Y.; Nunez, R.; Alawneh, F. Reaction Mechanisms for Enhancing Mineral Sequestration of CO2. Environ. Sci. Technol. 2009, 43, 6314–6319. [Google Scholar] [CrossRef]
Crystalline Phases % | Amorphous Phase % | ||||
---|---|---|---|---|---|
Particle Size (µm) | Clinochlore | Lizardite | Magnetite | Total Crystalline % * | |
45–75 | 2.0 | 98.8 | 3.0 | 103.8 | 0.0 |
20–45 | 1.7 | 107.0 | 3.0 | 111.7 | 0.0 |
<20 | 0.80 | 84.0 | 3.8 | 88.6 | 11.0 |
Crystalline Phases % | Amorphous Phase % | ||||||
---|---|---|---|---|---|---|---|
Particle Size (µm) | Clinochlore | Lizardite | Forsterite | Magnetite | Hematite | Total Crystalline % | |
45–75 | 3.7 | 7.2 | 14.1 | 0.3 | 0.6 | 25.9 | 74.1 |
20–45 | 8.1 | 5.8 | 12.8 | 0.3 | 0.6 | 27.6 | 72.4 |
<20 | 6.8 | 0.9 | 8.7 | 0.2 | 0.6 | 17.2 | 82.8 |
Carbonation Experiment Undertaken with Distinctive Particle Size (µm) | Temperature at Which the Maximum Rate of Decomposition of Mg-Carbonate (°C) 5 wt% | Temperature at Which the Maximum Rate of Decomposition of Mg-Carbonate (°C) 15 wt% |
---|---|---|
45–75 | 489 | 490 |
20–45 | 493 | 493 |
Sub 20 | 495 | 497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Fara, A.; Rayson, M.R.; Brent, G.F.; Oliver, T.K.; Stockenhuber, M.; Kennedy, E.M. Direct Aqueous Carbonation of Heat-Activated Lizardite; Effect of Particle Size and Solids Loading on Magnesite Yield. Minerals 2025, 15, 155. https://doi.org/10.3390/min15020155
Abu Fara A, Rayson MR, Brent GF, Oliver TK, Stockenhuber M, Kennedy EM. Direct Aqueous Carbonation of Heat-Activated Lizardite; Effect of Particle Size and Solids Loading on Magnesite Yield. Minerals. 2025; 15(2):155. https://doi.org/10.3390/min15020155
Chicago/Turabian StyleAbu Fara, Ammar, Mark R. Rayson, Geoff F. Brent, Timothy K. Oliver, Michael Stockenhuber, and Eric M. Kennedy. 2025. "Direct Aqueous Carbonation of Heat-Activated Lizardite; Effect of Particle Size and Solids Loading on Magnesite Yield" Minerals 15, no. 2: 155. https://doi.org/10.3390/min15020155
APA StyleAbu Fara, A., Rayson, M. R., Brent, G. F., Oliver, T. K., Stockenhuber, M., & Kennedy, E. M. (2025). Direct Aqueous Carbonation of Heat-Activated Lizardite; Effect of Particle Size and Solids Loading on Magnesite Yield. Minerals, 15(2), 155. https://doi.org/10.3390/min15020155