Advancing Continuous and Refined Lithology Identification: A Similarity Image Recognition Approach for Enhanced Accuracy and Efficiency
Abstract
:1. Introduction
2. Methodology and Research Workflow
2.1. Laminar Type and Characterization
2.2. Target Recognition Based on Multi-Channel Feature Extraction
2.3. Mineral Composition Calculation
3. Geological Context and Study Area
4. Laboratory Experiment
4.1. Light Microscope Observation
4.2. AMICS
5. Results
5.1. Mineral Distribution
5.2. Hierarchical Recognition Result
5.3. Identification Result
6. Discussion
6.1. Comparative Analysis of Mineralogical Composition
6.2. Enhanced Lithological Classification Through Thin-Section and Well-Logging Integration
6.3. Discussion on Methods
7. Conclusions
- This study is grounded in the analysis of optical thin-section samples, ensuring that the primary lithological characteristics of the target area are accurately captured. By integrating RGB and grayscale four-channel histograms with AMICS experimental results, the intelligent model employs statistical algorithms and threshold constraints to identify specific features. This approach enables the precise identification of layer types and significantly enhances the efficiency of mineral composition and lithology classification, providing a reliable multiscale tool for analyzing mineralogical and structural characteristics.
- The proposed method demonstrates significant improvements in efficiency and accuracy, addressing challenges in lamina identification and mineral composition analysis across diverse geological contexts. It enhances classification precision by incorporating advanced segmentation algorithms, leading to measurable gains in lithological identification.
- Future optimizations will aim to refine segmentation techniques and integrate additional features, such as mineral textures and microstructure patterns, to better address the complexities of optical thin-section analysis. These advancements are anticipated to further enhance the method’s precision and practicality. Additionally, expanding the dataset to encompass diverse regions and lithological types will improve the technique’s generalizability and robustness, ensuring broader applicability in various geological contexts.
- The method’s adaptability enables its application to diverse geological studies, including stratigraphic correlation, reservoir characterization, and mineral exploration. By tailoring the histogram-based analysis to region-specific lithologies and depositional environments, the approach ensures versatility and effectiveness under various imaging and geological conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, X.; Yang, Z.; Yan, W.; Guo, X.; Wu, Y.; Liu, J. Classification evaluation criteria and exploration potential of tight oil resources in key basins of China. J. Nat. Gas Geosci. 2019, 4, 309–319. [Google Scholar] [CrossRef]
- Yirenkyi, S.; Boateng, C.D.; Ahene, E.; Danuor, S.K. Automatic lithology identification in meteorite impact craters using machine learning algorithms. Sci. Rep. 2024, 14, 14360. [Google Scholar] [CrossRef]
- Han, Z.; Wang, G.; Wu, H.; Feng, Z.; Tian, H.; Xie, Y.; Wu, H. Lithofacies Characteristics of Gulong Shale and Its Influence on Reservoir Physical Properties. Energies 2024, 17, 779. [Google Scholar] [CrossRef]
- Li, M.; Chen, C.; Liang, H.; Han, S.; Ren, Q.; Li, H. Refined implicit characterization of engineering geology with uncertainties: A divide-and-conquer tactic-based approach. Bull. Eng. Geol. Environ. 2024, 83, 282. [Google Scholar] [CrossRef]
- Liu, F.; Lin, P.; Xu, Z.; Shao, R.; Han, T. Extraction and imaging of indicator elements for non-destructive, in-situ, fast identification of adverse geology in tunnels. Int. J. Min. Sci. Technol. 2023, 33, 1437–1449. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Jin, K.; Zhang, X.; Liu, Y.; Chen, C.; Liu, R.; Li, M.; Li, J. Study on the Influencing Factors of Oil Bearing and Mobility of Shale Reservoirs in the Fourth Member of the Shahejie Formation in the Liaohe Western Depression. Energies 2024, 17, 3931. [Google Scholar] [CrossRef]
- Geng, Z.; Liu, J.; Li, S.; Yang, C.; Zhang, J.; Zhou, K.; Tang, J. Channel attention-based static-dynamic graph convolutional network for lithology identification with scarce labels. Geoenergy Sci. Eng. 2023, 223, 211526. [Google Scholar] [CrossRef]
- Joshi, D.; Patidar, A.K.; Mishra, A.; Mishra, A.; Agarwal, S.; Pandey, A.; Dewangan, B.K.; Choudhury, T. Prediction of sonic log and correlation of lithology by comparing geophysical well log data using machine learning principles. GeoJournal 2021, 88 (Suppl. S1), 47–68. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Wang, S.; Cao, J.; Li, M.; Pang, X.; Han, C.; Fan, X.; Yang, L.; He, Z.; et al. A review on the applications of image logs in structural analysis and sedimentary characterization. Mar. Pet. Geol. 2018, 95, 139–166. [Google Scholar] [CrossRef]
- Yang, L.; Xing, J.; Xue, W.; Zheng, L.; Wang, R.; Xiao, D. Characteristics and Key Controlling Factors of the Interbedded-Type Shale Oil Sweet Spots of Qingshankou Formation in Changling Depression. Energies 2023, 16, 6213. [Google Scholar] [CrossRef]
- Feng, Q.F.; Xiao, Y.X.; Hou, X.L.; Chen, H.-K.; Wang, Z.-C.; Feng, Z.; Tian, H.; Jiang, H. Logging identification method of depositional facies in Sinian Dengying Formation of the Sichuan Basin. Pet. Sci. 2021, 18, 1086–1096. [Google Scholar] [CrossRef]
- Sonnenberg, S.A.; Pramudito, A. Petroleum geology of the giant Elm Coulee field, Williston Basin. AAPG Bull. 2009, 93, 1127–1153. [Google Scholar] [CrossRef]
- Mackay, D.A.R.; Simandl, G.J.; Ma, W.; Redfearn, M.; Gravel, J. Indicator mineral-based exploration for carbonatites and related specialty metal deposits—A QEMSCAN® orientation survey, British Columbia, Canada. J. Geochem. Explor. 2016, 165, 159–173. [Google Scholar] [CrossRef]
- Miranda, J.G.V.; Vasconcelos, R.N.; Lentini, C.A.D.; Lima, A.T.C.; Mendonça, L.F.F. Maximum angular multiscale entropy: Characterization of the angular self-similarity patterns in two types of SAR images: Oil spills and low-wind conditions images. Phys. D Nonlinear Phenom. 2023, 455, 133892. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Wang, Y.; Tan, M. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks Dongying Sag, Bohai Bay Basin, China. Pet. Explor. Dev. 2016, 43, 218–229. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S.; Li, J.; Guo, R.; Wang, G.; Wang, Y. Effects of Astronomical Cycles on Laminated Shales of the Paleogene Shahejie Formation in the Dongying Sag, Bohai Bay Basin, China. Energies 2023, 16, 3624. [Google Scholar] [CrossRef]
- Shi, J.X.; Zhao, X.Y.; Zeng, L.B.; Zhang, Y.-Z.; Zhu, Z.-P.; Dong, S.-Q. Identification of reservoir types in deep carbonates based on mixed-kernel machine learning using geophysical logging data. Pet. Sci. 2024, 21, 1632–1648. [Google Scholar] [CrossRef]
- Kim, J. Lithofacies classification integrating conventional approaches and machine learning technique. J. Nat. Gas Sci. Eng. 2022, 100, 104500. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, F.; Wu, Z.; Wang, Z.; Qiu, F.; Fang, Q.; Chen, Q.; Zhou, L. A new diffusion effect correction method in pulsed neutron capture logging. J. Pet. Sci. Eng. 2021, 204, 108673. [Google Scholar] [CrossRef]
- Sun, Y.; Pang, S.; Zhang, Y. Innovative lithology identification enhancement via the recurrent transformer model with well logging data. Geoenergy Sci. Eng. 2024, 240, 213015. [Google Scholar] [CrossRef]
- Fan, J.; Chen, W.; Yue, A.; Zhang, Q.; Zhang, F. An enhanced accuracy method for monitoring formation water salinity utilizing elemental spectroscopy logging. Geoenergy Sci. Eng. 2024, 233, 212521. [Google Scholar] [CrossRef]
- Konaté, A.A.; Ma, H.; Pan, H.; Khan, N. Analysis of situ elemental concentration log data for lithology and mineralogy exploration— A case study. Results Geophys. Sci. 2021, 8, 1000030. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Jiang, S.; Tang, S. Quantitative identification and distribution of quartz genetic types based on QemScan: A case study of Silurian Longmaxi Formation in Weiyuan area, Sichuan Basin. Pet. Res. 2021, 6, 423–430. [Google Scholar] [CrossRef]
- Pszonka, J.; Götze, J. Quantitative estimate of interstitial clays in sandstones using Nomarski differential interference contrast (DIC) microscopy and image analysis. J. Pet. Sci. Eng. 2018, 161, 582–589. [Google Scholar] [CrossRef]
- Tang, K.; Wang, Y.D.; Mostaghimi, P.; Knackstedt, M.; Hargrave, C.; Armstrong, R.T. Deep convolutional neural network for 3D mineral identification and liberation analysis. Miner. Eng. 2022, 183, 107592. [Google Scholar] [CrossRef]
- Młynarczuk, M.; Górszczyk, A.; Ślipek, B. The application of pattern recognition in the automatic classification of microscopic rock images. Comput. Geosci. 2013, 60, 126–133. [Google Scholar] [CrossRef]
- Ismail, M.J.; Ettensohn, F.R.; Handhal, A.M.; Al-Abadi, A. Facies analysis of the Middle Cretaceous Mishrif Formation in southern Iraq borehole image logs and core thin-sections as a tool. Mar. Pet. Geol. 2021, 133, 105324. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, F.; Wang, Q.; Liu, X.; Wang, Z.; Jiang, S.; Wu, G.; Li, C.; Xu, T.; et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model. Earth-Sci. Rev. 2021, 214, 103545. [Google Scholar] [CrossRef]
- Pszonka, J.; Godlewski, P.; Fheed, A.; Dwornik, M.; Schulz, B.; Wendorff, M. Identification and quantification of intergranular volume using SEM automated mineralogy. Mar. Pet. Geol. 2024, 162, 106708. [Google Scholar] [CrossRef]
- Liu, H.; Ren, Y.L.; Li, X.; Hu, Y.X.; Wu, J.P.; Li, B.; Luo, L.; Tao, Z.; Liu, X.; Liang, J.; et al. Rock thin-section analysis and identification based on artificial intelligent technique. Pet. Sci. 2022, 19, 1605–1621. [Google Scholar] [CrossRef]
- Shi, H.; Ma, W.; Xu, Z.; Lin, P. A novel integrated strategy of easy pruning, parameter searching, and re-parameterization for lightweight intelligent lithology identification. Expert Syst. Appl. 2023, 231, 120657. [Google Scholar] [CrossRef]
- Chen, C.; Luo, Y.; Liu, J.; Yi, Y.; Zeng, W.; Wang, S.; Yao, G. Joint sound denoising with EEMD and improved wavelet threshold for real-time drilling lithology identification. Measurement 2024, 238, 115363. [Google Scholar] [CrossRef]
- Kadyrov, R.; Statsenko, E.; Nguyen, T.H. Integrating μCT imaging of core plugs and transfer learning for automated reservoir rock characterization and tomofacies identification. Mar. Pet. Geol. 2024, 168, 107014. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y. Advanced petrographic thin section segmentation through deep learning-integrated adaptive GLFIF. Comput. Geosci. 2024, 193, 105713. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, Z.; Tang, H.; Cheng, G.; Liu, Z.; Zhou, K. Natural Fractures in Tight Sandstone Gas Condensate Reservoirs and Their Influence on Production in the Dina 2 Gas Field in the Kuqa Depression, Tarim Basin, China. Energies 2024, 17, 4488. [Google Scholar] [CrossRef]
- Esmaeili, B.; Hosseinzadeh, S.; Kadkhodaie, A.; Wood, D.A.; Akbarzadeh, S. Simulating reservoir capillary pressure curves using image processing and classification machine learning algorithms applied to petrographic thin sections. J. Afr. Earth Sci. 2024, 209, 105098. [Google Scholar] [CrossRef]
- Lu, G.; Zeng, L.; Dong, S.; Huang, L.; Liu, G.; Ostadhassan, M.; He, W.; Du, X.; Bao, C. Lithology identification using graph neural network in continental shale oil reservoirs: A case study in Mahu Sag, Junggar Basin, Western China. Mar. Pet. Geol. 2023, 150, 106168. [Google Scholar] [CrossRef]
- Luo, X.; Xiang, C.; Wu, C.; Gao, W.; Ke, W.; Zeng, J.; Li, W.; Xue, S. Geochemical fractionation and potential release behaviour of heavy metals in lead–zinc smelting soils. J. Environ. Sci. 2024, 139, 1–11. [Google Scholar] [CrossRef]
- Goodall, W.R.; Scales, P.J.; Butcher, A.R. The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores. Miner. Eng. 2005, 18, 877–886. [Google Scholar] [CrossRef]
- Van Rythoven, A.D.; Pfaff, K.; Clark, J.G. Use of QEMSCAN® to characterize oxidized REE ore from the Bear Lodge carbonatite, Wyoming, USA. Ore Energy Resour. Geol. 2020, 2–3, 100005. [Google Scholar] [CrossRef]
- Mason, J.; Lin, E.; Grono, E.; Denham, T. QEMSCAN® analysis of clay-rich stratigraphy associated with early agricultural contexts at Kuk Swamp, Papua New Guinea. J. Archaeol. Sci. Rep. 2022, 42, 103356. [Google Scholar] [CrossRef]
- Ehsan, M.; Gu, H.; Ahmad, Z.; Akhtar, M.M.; Abbasi, S.S. A Modified Approach for VolumetricEvaluation of Shaly Sand Formations from Conventional Well Logs: A Case Study from theTalhar Shale, Pakistan. Arab. J. Sci. Eng. 2019, 44, 417–428. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Li, D.; Wang, S.; Sun, Q.; Lai, J.; Han, Z.; Li, Y.; Shen, Y.; Wu, K. Characteristics and Controlling Factors of Natural Fractures in Lacustrine Mixed Shale Oil Reservoirs: The Upper Member of the Lower Ganchaigou Formation in the Ganchaigou Area, Qaidam Basin, Western China. Energies 2024, 17, 5996. [Google Scholar] [CrossRef]
- SY/T 5368-2016; Identifcation for Thin Section of Rocks. Society of Petroleum Engineers of China: Beijing, China, 2016.
- Li, L.; Huang, B.; Li, Y.; Hu, R.; Li, X. Multi-scale modeling of shale laminas and fracture networks in the Yanchang formation, Southern Ordos Basin, China. Eng. Geol. 2018, 243, 231–240. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Qi, S.; Meng, Q. Estimation of rock core indices for development of underground infrastructure using non-invasive geophysical methods. Int. J. Rock Mech. Min. Sci. 2024, 180, 105816. [Google Scholar] [CrossRef]
- Koh, E.J.Y.; Amini, E.; Spier, C.A.; McLachlan, G.J.; Xie, W.; Beaton, N. A mineralogy characterisation technique for copper ore in flotation pulp using deep learning machine vision with optical microscopy. Miner. Eng. 2024, 205, 108481. [Google Scholar] [CrossRef]
- De Castro, B.; Benzaazoua, M.; St-Jean, A.; Scortino, M.; Plante, B.; Bélisle, B.; Cloutier, R. Automated mineralogy using optical microscopy in a geometallurgical context: A comparative study on Dumont nickel project ores, Amos, Quebec. Miner. Eng. 2023, 198, 108089. [Google Scholar] [CrossRef]
- Baudet, E.; Giles, D.; Tiddy, C.; Asamoah, R.; Hill, S. Mineralogy as a proxy to characterise geochemical dispersion processes: A study from the Eromanga Basin over the Prominent Hill IOCG deposit, South Australia. J. Geochem. Explor. 2020, 210, 106447. [Google Scholar] [CrossRef]
- Santoro, L.; Boni, M.; Rollinson, G.K.; Mondillo, N.; Balassone, G.; Clegg, A.M. Mineralogical characterization of the Hakkari nonsulfide Zn(Pb) deposit (Turkey): The benefits of QEMSCAN®. Miner. Eng. 2014, 69, 29–39. [Google Scholar] [CrossRef]
- Knappett, C.; Pirrie, D.; Power, M.R.; Nikolakopoulou, I.; Hilditch, J.; Rollinson, G.K. Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): A pilot study on LB I pottery from Akrotiri, Thera. J. Archaeol. Sci. 2011, 38, 219–232. [Google Scholar] [CrossRef]
- Han, T.; Clennell, M.B.; Pervukhina, M. Modelling the low-frequency electrical properties of pyrite-bearing reservoir sandstones. Mar. Pet. Geol. 2015, 68 Pt A, 341–351. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Adenutsi, C.D. Genesis of authigenic clay minerals and their impacts on reservoir quality in tight conglomerate reservoirs of the Triassic Baikouquan formation in the Mahu Sag, Junggar Basin, Western China. Mar. Pet. Geol. 2023, 148, 106041. [Google Scholar] [CrossRef]
- Busch, B.; Böcker, J.; Hilgers, C. Improved reservoir quality assessment by evaluating illite grain coatings, quartz cementation, and compaction—Case study from the Buntsandstein, Upper Rhine Graben, Germany. Geoenergy Sci. Eng. 2024, 241, 213141. [Google Scholar] [CrossRef]
- Kassem, M.K.O.; Zaidi, K.F.; Alamri, Y.; Al-Hashim, M. Structural evolution and Microstructural analysis for al Faydh area, southern Arabian shield, Saudi Arabia. J. Afr. Earth Sci. 2022, 195, 104645. [Google Scholar] [CrossRef]
Silt | Mud | Calcite | Dolomite | Lithology |
---|---|---|---|---|
100%~90% | 0%~<10% | Siltstone | ||
<90%~75% | 10%~<25% | Mud-bearing Siltstone | ||
<75%~50% | 25%~<50% | Muddy Siltstone | ||
<50%~25% | 50%~<75% | Silty Mudstone | ||
<25%~10% | 75%~<90% | Silt-bearing Mudstone | ||
<10%~0% | 90%~100% | Mudstone | ||
0%~<10% | 100%~90% | Limestone | ||
10%~<25% | <90%~75% | Mud-bearing Limestone | ||
25%~<50% | <75%~50% | Argillaceous Limestone | ||
50%~<75% | <50%~25% | Calcareous Mudstone | ||
75%~<90% | <25%~10% | Calcareous-bearing Mudstone | ||
90%~100% | <10%~0% | Mudstone | ||
0%~<10% | 100%~90% | Dolostone | ||
10%~<25% | <90%~75% | Mud-bearing Dolomite | ||
25%~<50% | <75%~50% | Muddy Dolomite | ||
50%~<75% | <50%~25% | Dolomitic Mudstone | ||
75%~<90% | <25%~10% | Dolomite-bearing Mudstone | ||
90%~100% | <10%~0% | Mudstone |
Dolomitic Mudstone | Dolomite Bearing Mudstone | Calcite Sandstone | Argillaceous Limestone | Mudstone | Calcite Mudstone | |
---|---|---|---|---|---|---|
Quartz | 0.6039 | 0.3545 | 0.4503 | 0.119 | 0.2389 | 0.2253 |
Albite | 0.0243 | 0.191 | 0.1494 | 0.1505 | 0.3858 | 0.2493 |
Chlorite | 0.007 | 0.0196 | 0.0086 | 0.01 | 0.0253 | 0.0338 |
Pores | 0.0072 | 0.0025 | 0.0029 | 0.0099 | 0.0127 | 0.0006 |
Muscovite | 0.0014 | 0.028 | 0.0072 | 0.0076 | 0.0323 | 0.0126 |
Orthoclase | 0.0061 | 0.1075 | 0.0233 | 0.0343 | 0.1025 | 0.0609 |
Illite | 0.0051 | 0.0906 | 0.0242 | 0.0536 | 0.1242 | 0.082 |
Rutile | 0 | 0.0011 | 0.0002 | 0.0002 | 0.0005 | 0.0006 |
Apatite | 0 | 0.0006 | 0.0001 | 0.0002 | 0.0005 | 0.0004 |
Pyrite | 0.0029 | 0.0266 | 0.0142 | 0.0163 | 0.0436 | 0.0275 |
Saponite | 0 | 0 | 0 | 0 | 0 | 0.0889 |
Dolomite | 0.3408 | 0.1778 | 0.0549 | 0.0084 | 0.0175 | 0.016 |
Calcite | 0.0014 | 0.0003 | 0.2648 | 0.5901 | 0.0162 | 0.2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Jin, Y.; Pang, H.; Liang, Y.; Guo, X. Advancing Continuous and Refined Lithology Identification: A Similarity Image Recognition Approach for Enhanced Accuracy and Efficiency. Minerals 2025, 15, 118. https://doi.org/10.3390/min15020118
Sun Z, Jin Y, Pang H, Liang Y, Guo X. Advancing Continuous and Refined Lithology Identification: A Similarity Image Recognition Approach for Enhanced Accuracy and Efficiency. Minerals. 2025; 15(2):118. https://doi.org/10.3390/min15020118
Chicago/Turabian StyleSun, Zhengxin, Yan Jin, Huiwen Pang, Yu Liang, and Xuyang Guo. 2025. "Advancing Continuous and Refined Lithology Identification: A Similarity Image Recognition Approach for Enhanced Accuracy and Efficiency" Minerals 15, no. 2: 118. https://doi.org/10.3390/min15020118
APA StyleSun, Z., Jin, Y., Pang, H., Liang, Y., & Guo, X. (2025). Advancing Continuous and Refined Lithology Identification: A Similarity Image Recognition Approach for Enhanced Accuracy and Efficiency. Minerals, 15(2), 118. https://doi.org/10.3390/min15020118