Comparative Study on Pore Characteristics and Methane Adsorption Capacity of Shales with Different Levels of Tectonic Deformation: A Case Study of Longmaxi Shales in Fuling Field
Abstract
1. Introduction
2. Geological Setting and Samples


3. Experimental Methods
3.1. TOC Content
3.2. X-Ray Diffraction (XRD)
3.3. Field Emission Scanning Electron Microscopy (FE-SEM)
3.4. Low-Pressure Gas Adsorption
3.5. High-Pressure Methane Adsorption
3.5.1. Excess Methane Adsorption
3.5.2. Calculation of Absolute Methane Adsorption
4. Results
4.1. Shale Lithofacies
4.2. Pore Characteristics
4.2.1. Pore Types
4.2.2. Isotherms of CO2 Adsorption
4.2.3. Isotherms of N2 Adsorption and Desorption
4.3. Methane Adsorption Isotherms
5. Discussion
5.1. Effects of Tectonic Deformation on Pore Characteristics of Shales
5.1.1. Pore Volume and Surface Area Characteristics
5.1.2. Conceptual Model for Development of Pores in Shales
5.2. Effects of Tectonic Deformation on MAC of Shales
5.2.1. Effects of Internal Rock Composition
5.2.2. Effects of External Tectonic Deformation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 2007, 91, 475–499. [Google Scholar] [CrossRef]
- Pollastro, R.M. Total petroleum system assessment of undiscovered resources in the giant Barnett Shale continuous (unconventional) gas accumulation, Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 551–578. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, S.J.; Li, J.Z.; Li, X.J.; Wang, Y.M.; Li, D.H.; Cheng, K.M. Geological characteristics and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L.; Wang, S.F.; Guan, Q.Z.; Zhang, C.C.; Wang, H.Y.; Liu, H.L.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Zou, C.N.; Dong, D.Z.; Wang, Y.M.; Li, X.J.; Huang, J.L.; Wang, S.F.; Guan, Q.Z.; Zhang, C.C.; Wang, H.Y.; Liu, H.L.; et al. Shale gas in China: Characteristics, challenges and prospects (II). Pet. Explor. Dev. 2016, 43, 182–196. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Hill, D.G.; Nelson, C.R. Gas productive fractured shales: An overview and update. Gas Tips 2000, 6, 4–13. [Google Scholar]
- Bowker, K.A. Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Hammes, U.; Hamlin, H.S.; Ewing, T.E. Geologic analysis of the Upper Jurassic Haynesville Shale in east Texas and west Louisiana. AAPG Bull. 2011, 95, 1643–1666. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Wang, P.F.; Jiang, Z.X.; Chen, L.; Yin, L.S.; Li, Z.; Zhang, C.; Tang, X.L.; Wang, G.Z. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis. Mar. Pet. Geol. 2016, 77, 1323–1337. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Yi, J.Z.; Hu, Q.H. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry. Mar. Pet. Geol. 2016, 70, 27–45. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, Q.X.; Jiang, S.; Liu, K.Y.; Tan, J.Q.; Gao, F.L. Mechanism of shale gas occurrence: Insights from comparative study on pore structures of marine and lacustrine shales. Mar. Pet. Geol. 2019, 104, 200–216. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.S.; Pan, Z.J.; Niu, X.L.; Yu, Y.; Meng, S.Z. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China. Fuel 2019, 241, 417–431. [Google Scholar] [CrossRef]
- Ma, X.; Guo, S.B.; Shi, D.S.; Zhou, Z.; Liu, G.H. Investigation of pore structure and fractal characteristics of marine-continental transitional shales from Longtan Formation using MICP, gas adsorption, and NMR (Guizhou, China). Mar. Pet. Geol. 2019, 107, 555–571. [Google Scholar] [CrossRef]
- He, D.F.; Li, D.S.; Zhang, G.W.; Zhao, L.Z.; Fan, C.; Lu, R.Q.; Wen, Z. Formation and evolution of multi-cycle superposed Sichuan Basin, China. Chin. J. Geol. 2011, 46, 589–606, (In Chinese with English abstract). [Google Scholar]
- Liu, S.G.; Deng, B.; Zhong, Y.; Ran, B.; Yong, Z.Q.; Sun, W.; Yang, D.; Jiang, L.; Ye, Y.H. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Sci. Front. 2016, 23, 11–28, (In Chinese with English abstract). [Google Scholar]
- Wang, P.F.; Jiang, Z.X.; Yin, L.S.; Chen, L.; Li, Z.; Zhang, C.; Li, T.W.; Huang, P. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and gas adsorption analysis. J. Pet. Sci. Eng. 2017, 156, 307–321. [Google Scholar] [CrossRef]
- Li, Y.F.; Schieber, J.; Fan, T.L.; Wei, X.J. Pore characterization and shale facies analysis of the Ordovian-Silurian transition of northern Guizhou, South China: The controls of shale facies on pore distribution. Mar. Pet. Geol. 2018, 92, 697–718. [Google Scholar] [CrossRef]
- Yang, W.; Zuo, R.S.; Jiang, Z.X.; Chen, D.X.; Song, Y.; Luo, Q.; Wang, Q.Y.; Zhu, H.J. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China. Mar. Pet. Geol. 2018, 98, 746–762. [Google Scholar] [CrossRef]
- Zhang, L.C.; Lu, S.F.; Jiang, S.; Xiao, D.S.; Chen, L.; Liu, Y.; Zhang, Y.Y.; Li, B.; Gong, C. Effect of shale lithofacies on pore structure of the Wufeng-Longmaxi shale in Southeast Chongqing, China. Energy Fuels 2018, 32, 6603–6618. [Google Scholar] [CrossRef]
- Guo, X.W.; Qin, Z.J.; Yang, R.; Dong, T.; He, S.; Hao, F.; Yi, J.Z.; Shu, Z.G.; Bao, H.Y.; Liu, K.Y. Comparison of pore systems of clay-rich and silica-rich gas shales in the lower Silurian Longmaxi formation from the Jiaoshiba area in the eastern Sichuan Basin, China. Mar. Pet. Geol. 2019, 101, 265–280. [Google Scholar] [CrossRef]
- Yang, F.; Xu, S.; Hao, F.; Hu, B.Y.; Zhang, B.Q.; Shu, Z.G.; Long, S.Y. Petrophysical characteristics of shales with different lithofacies in Jiaoshiba area, Sihuan Basin, China: Implications for shale gas accumulation mechanism. Mar. Pet. Geol. 2019, 109, 394–407. [Google Scholar] [CrossRef]
- Wang, X.M.; Liu, L.F.; Wang, Y.; Sheng, Y.; Zheng, S.S.; Wu, W.W.; Luo, Z.H. Comparison of the pore structures of Lower Silurian Longmaxi Formation shales with different lithofacies in the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 81, 103419. [Google Scholar] [CrossRef]
- Xu, S.; Hao, F.; Shu, Z.G.; Zhang, A.H.; Yang, F. Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China. J. Asian Earth Sci. 2020, 193, 104271. [Google Scholar] [CrossRef]
- Yang, W.; He, S.; Iglauer, S.; Guo, X.W.; Zhai, G.Y.; Zhou, Z.; Dong, T.; Tao, Z.; Wei, S.L. Porosity characteristics of different lithofacies in marine shale: A case study of Neoproterozoic Sinian Doushantuo formation in Yichang area, China. J. Pet. Sci. Eng. 2020, 187, 106856. [Google Scholar] [CrossRef]
- Lu, X.C.; Li, F.C.; Watson, A.T. Adsorption measurements in Devonian shales. Fuel 1995, 74, 599–603. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada. Int. J. Coal Geol. 2007, 70, 223–239. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M. Lower Cretaceous gas shales in northeastern British Columbia, Part I: Geological controls on methane sorption capacity. Bull. Can. Pet. Geol. 2008, 56, 1–21. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bull. Can. Pet. Geol. 2007, 55, 51–75. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Zhang, T.W.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R.S. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.Y.; Lu, Y.C. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Wang, S.B.; Song, Z.G.; Cao, T.T.; Song, X. The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar. Pet. Geol. 2013, 44, 112–119. [Google Scholar] [CrossRef]
- Ji, W.M.; Song, Y.; Jiang, Z.X.; Wang, X.Z.; Bai, Y.Q.; Xing, J.Y. Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin, China. Int. J. Coal Geol. 2014, 134–135, 61–73. [Google Scholar] [CrossRef]
- Ji, W.M.; Song, Y.; Jiang, Z.X.; Chen, L.; Li, Z.; Yang, X.; Meng, M.M. Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China. Mar. Pet. Geol. 2015, 68, 94–106. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.F.; Zhang, R.; Zhao, H.W.; Krooss, B.M. Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China. Int. J. Coal Geol. 2015, 146, 104–117. [Google Scholar] [CrossRef]
- Ibad, S.M.; Padmanabhan, E. Methane sorption capacities and geochemical characterization of Paleozoic shale Formations from Western Peninsula Malaysia: Implication of shale gas potential. Int. J. Coal Geol. 2020, 224, 103480. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Fan, M.J.; Lu, Y.C.; Guo, X.S.; Hu, H.Y.; Chen, L.; Wang, C.; Liu, X.C. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation. Mar. Pet. Geol. 2016, 75, 291–309. [Google Scholar] [CrossRef]
- Huang, H.Y.; He, D.F.; Li, Y.Q.; Li, J.; Zhang, L. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions. Mar. Pet. Geol. 2018, 92, 403–423. [Google Scholar] [CrossRef]
- Dai, J.X.; Zou, C.N.; Liao, S.M.; Dong, D.Z.; Ni, Y.Y.; Huang, J.L.; Wu, W.; Gong, D.Y.; Huang, S.P.; Hu, G.Y. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, T.W.; Ellis, G.S.; Shao, D.Y. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 466, 252–264. [Google Scholar] [CrossRef]
- Yi, J.Z.; Bao, H.Y.; Zheng, A.W.; Zhang, B.Q.; Shu, Z.G.; Li, J.Q.; Wang, C. Main factors controlling marine shale gas enrichment and high-yield wells in South China: A case study of the Fuling shale gas field. Mar. Pet. Geol. 2019, 103, 114–125. [Google Scholar] [CrossRef]
- Nie, H.K.; Li, D.H.; Liu, G.X.; Lu, Z.Y.; Wang, H.; Wang, R.Y.; Zhang, G.R. An overview of the geology and production of the Fuling shale gas field, Sichuan Basin, China. Energy Geosci. 2020, 1, 147–164. [Google Scholar] [CrossRef]
- Guo, X.S. Major factors controlling the shale gas accumulations in Wufeng-Longmaxi Formation of the Pingqiao Shale Gas Field in Fuling Area, Sichuan Basin, China. J. Nat. Gas Geosci. 2019, 4, 129–138. [Google Scholar] [CrossRef]
- Xu, S.; Gou, Q.Y.; Hao, F.; Zhang, B.Q.; Shu, Z.G.; Lu, Y.B.; Wang, Y.X. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Mar. Pet. Geol. 2020, 114, 104211. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Slatt, R.M.; O’Brien, N.R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Gasparik, M.; Ghanizadeh, A.; Bertier, P.; Gensterblum, Y.; Bouw, S.; Krooss, B.M. High-pressure methane sorption isotherms of black shales from the Netherlands. Energy Fuels 2012, 26, 4995–5004. [Google Scholar] [CrossRef]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M.; Littke, R. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Rexer, T.F.; Benham, M.J.; Aplin, A.C.; Thomas, K.M. Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy Fuels 2013, 27, 3099–3109. [Google Scholar] [CrossRef]
- Rexer, T.F.; Mathia, E.J.; Aplin, A.C.; Thomas, K.M. High-Pressure methane adsorption and characterization of pores in Posidonia shales and isolated kerogens. Energy Fuels 2014, 28, 2886–2901. [Google Scholar] [CrossRef]
- Tan, J.Q.; Weniger, P.; Krooss, B.; Merkel, A.; Horsfield, B.; Zhang, J.C.; Boreham, C.J.; Graas, G.V.; Tocher, B.A. Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II: Methane sorption capacity. Fuel 2014, 129, 204–218. [Google Scholar] [CrossRef]
- Tian, H.; Li, T.F.; Zhang, T.W.; Xiao, X.M. Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. Int. J. Coal Geol. 2016, 156, 36–49. [Google Scholar] [CrossRef]
- Wu, L.Y.; Hu, D.F.; Lu, Y.C.; Liu, R.B.; Liu, X.F. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China. Pet. Explor. Dev. 2016, 43, 208–217. [Google Scholar] [CrossRef]
- Wu, L.Y.; Lu, Y.B.; Jiang, S.; Lu, Y.C.; Liu, X.F.; Hu, H.Y. Pore structure characterization of different lithofacies in marine shale: A case study of the Upper Ordovician Wufeng-Lower Silurian Longmaxi formation in the Sichuan Basin, SW China. J. Nat. Gas Sci. Eng. 2018, 57, 203–215. [Google Scholar] [CrossRef]
- Zhu, H.J.; Ju, Y.W.; Qi, Y.; Huang, C.; Zhang, L. Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel 2018, 228, 272–289. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, Y.M.; Wang, Y.; Chen, S.B.; Jiang, Z.F. Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FE-SEM, gas adsorption, and SAXS. J. Pet. Sci. Eng. 2022, 209, 109877. [Google Scholar] [CrossRef]
- Allan, A.M.; Vanorio, T.; Dahl, J.E.P. Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales. Geophysics 2014, 79, 41–53. [Google Scholar] [CrossRef]
- Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A review. J. Struct. Geol. 2014, 69, 377–394. [Google Scholar] [CrossRef]
- Ougier-Simonin, A.; Renard, F.; Boehm, C.; Vidal-Gilbert, S. Microfracturing and microporosity in shales. Earth-Sci. Rev. 2016, 162, 198–226. [Google Scholar] [CrossRef]
- Guo, X.S.; Hu, D.F.; Wei, X.F.; Li, Y.P. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin. Oil Gas Geol. 2016, 37, 799–808, (In Chinese with English abstract). [Google Scholar]
- Wang, X.M.; Jiang, Z.X.; Wang, S.C.; Chen, L.; Wei, K.; Gao, F.L. Characteristics of natural fractures in shale and their control effect on shale gas accumulation and development. Sci. Technol. Eng. 2018, 18, 34–42, (In Chinese with English abstract). [Google Scholar]
- Zhang, X.M.; Shi, W.Z.; Hu, Q.H.; Zhai, G.Y.; Wang, R.; Xu, X.F.; Meng, F.L.; Liu, Y.Z.; Bai, L.H. Developmental characteristics and controlling factors of natural fractures in the lower paleozoic marine shales of the upper Yangtze Platform, southern China. J. Nat. Gas Sci. Eng. 2020, 76, 103191. [Google Scholar] [CrossRef]
- Zhang, X.M.; Wang, R.; Shi, W.Z.; Hu, Q.H.; Xu, X.F.; Shu, Z.G.; Yang, Y.; Feng, Q. Structure- and lithofacies-controlled natural fracture developments in shale: Implications for shale gas accumulation in the Wufeng-Longmaxi Formations, Fuling Field, Sichuan Basin, China. Geoenergy Sci. Eng. 2023, 223, 211572. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area, and Porosity, 2nd ed.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.F.; Zheng, S.S.; Luo, Z.H.; Sheng, Y.; Wang, X.M. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale. J. Nat. Gas Sci. Eng. 2019, 67, 134–146. [Google Scholar] [CrossRef]
- Mosher, K.; He, J.J.; Liu, Y.Y.; Rupp, E.; Wilcox, J. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 2013, 109–110, 36–44. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wang, Z.X.; Cao, Z.Y. Experimental study on the relationship between brittle deformation, fracturing and gas adsorption capacity. In Proceedings of the Project Annual Conference, Beijing, China, 9–10 December 2016. [Google Scholar]











| Well | Sample ID | Depth (m) | TOC (%) | Minerals (%) | Lithofacies | Location | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Quartz | Feldspar | Calcite | Dolomite | Pyrite | Total Clays | ||||||
| JYA | JYA-1 | 2271.72 | 0.71 | 34.9 | 5.1 | 0.0 | 0.0 | 2.0 | 58.0 | OL CM-1 | Stable region |
| JYA-2 | 2277.59 | 0.50 | 37.3 | 6.2 | 0.0 | 1.8 | 2.0 | 52.7 | OL CM-1 | ||
| JYA-3 | 2310.84 | 1.81 | 35.7 | 9.7 | 2.6 | 9.6 | 4.7 | 37.7 | OM M-2 | ||
| JYA-4 | 2315.71 | 1.36 | 31.0 | 12.3 | 4.9 | 8.9 | 2.8 | 40.1 | OM M-2 | ||
| JYA-5 | 2341.34 | 2.56 | 49.0 | 9.3 | 7.4 | 3.0 | 5.4 | 25.9 | OR S-3 | ||
| JYA-6 | 2350.30 | 3.85 | 50.1 | 7.2 | 2.7 | 3.6 | 11.1 | 25.3 | OR S-3 | ||
| JYB | JYB-1 | 3409.31 | 1.32 | 30.7 | 4.4 | 2.7 | 2.1 | 2.4 | 57.6 | OL CM-1 | Deformed region |
| JYB-2 | 3416.82 | 1.45 | 27.4 | 4.6 | 2.6 | 3.4 | 3.2 | 58.8 | OL CM-1 | ||
| JYB-3 | 3453.83 | 1.38 | 37.5 | 8.6 | 2.3 | 8.8 | 4.0 | 38.8 | OM M-2 | ||
| JYB-4 | 3473.20 | 1.75 | 33.6 | 4.3 | 0.0 | 19.3 | 2.7 | 40.1 | OM M-2 | ||
| JYB-5 | 3494.21 | 3.34 | 52.7 | 3.7 | 4.6 | 4.5 | 5.0 | 29.5 | OR S-3 | ||
| JYB-6 | 3499.78 | 3.34 | 55.3 | 4.6 | 3.5 | 5.7 | 4.2 | 26.7 | OR S-3 | ||
| Well | Sample ID | Langmuir VL (cm3/g) | Langmuir PL (MPa) | Correlation Coefficient (R2) | Lithofacies | Location |
|---|---|---|---|---|---|---|
| JYA | JYA-1 | 1.48 | 5.95 | 0.9953 | OL CM-1 | Stable region |
| JYA-2 | 2.34 | 1.41 | 0.9948 | OL CM-1 | ||
| JYA-3 | 3.66 | 4.15 | 0.9945 | OM M-2 | ||
| JYA-4 | 2.81 | 3.61 | 0.9944 | OM M-2 | ||
| JYA-5 | 4.18 | 3.43 | 0.9986 | OR S-3 | ||
| JYA-6 | 5.52 | 3.93 | 0.9988 | OR S-3 | ||
| JYB | JYB-1 | 2.51 | 0.67 | 0.9898 | OL CM-1 | Deformed region |
| JYB-2 | 3.50 | 3.89 | 0.9913 | OL CM-1 | ||
| JYB-3 | 3.52 | 3.87 | 0.9938 | OM M-2 | ||
| JYB-4 | 3.77 | 4.35 | 0.9985 | OM M-2 | ||
| JYB-5 | 4.25 | 3.53 | 0.9988 | OR S-3 | ||
| JYB-6 | 4.12 | 2.90 | 0.9990 | OR S-3 |
| Well | Sample ID | Pore Volumes (cm3/g) | Lithofacies | Location | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Micropore | Percent | Mesopore | Percent | Macropore | Percent | Total | ||||
| JYA | JYA-1 | 0.00575 | 27.91 | 0.00800 | 38.81 | 0.00686 | 33.28 | 0.02062 | OL CM-1 | Stable region |
| JYA-2 | 0.00665 | 28.04 | 0.00914 | 38.55 | 0.00792 | 33.41 | 0.02370 | OL CM-1 | ||
| JYA-3 | 0.00775 | 32.01 | 0.01058 | 43.66 | 0.00589 | 24.32 | 0.02422 | OM M-2 | ||
| JYA-4 | 0.00745 | 30.50 | 0.01015 | 41.55 | 0.00683 | 27.95 | 0.02442 | OM M-2 | ||
| JYA-5 | 0.00916 | 28.91 | 0.01319 | 41.63 | 0.00933 | 29.46 | 0.03168 | OR S-3 | ||
| JYA-6 | 0.01022 | 31.82 | 0.01443 | 44.93 | 0.00747 | 23.25 | 0.03211 | OR S-3 | ||
| JYB | JYB-1 | 0.00544 | 23.33 | 0.00927 | 39.76 | 0.00860 | 36.91 | 0.02331 | OL CM-1 | Deformed region |
| JYB-2 | 0.00633 | 26.59 | 0.00868 | 36.48 | 0.00879 | 36.93 | 0.02379 | OL CM-1 | ||
| JYB-3 | 0.00570 | 22.30 | 0.00926 | 36.26 | 0.01059 | 41.44 | 0.02555 | OM M-2 | ||
| JYB-4 | 0.00661 | 24.84 | 0.00982 | 36.93 | 0.01017 | 38.23 | 0.02659 | OM M-2 | ||
| JYB-5 | 0.00787 | 26.05 | 0.01060 | 35.13 | 0.01172 | 38.82 | 0.03019 | OR S-3 | ||
| JYB-6 | 0.00798 | 30.86 | 0.01127 | 43.59 | 0.00661 | 25.55 | 0.02586 | OR S-3 | ||
| Well | Sample ID | Pore Surface Areas (m2/g) | Lithofacies | Location | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Micropore | Percent | Mesopore | Percent | Macropore | Percent | Total | ||||
| JYA | JYA-1 | 16.683 | 75.60 | 5.149 | 23.33 | 0.235 | 1.06 | 22.068 | OL CM-1 | Stable region |
| JYA-2 | 19.141 | 74.30 | 6.366 | 24.71 | 0.254 | 0.99 | 25.761 | OL CM-1 | ||
| JYA-3 | 22.415 | 75.69 | 6.979 | 23.57 | 0.222 | 0.75 | 29.616 | OM M-2 | ||
| JYA-4 | 21.084 | 75.28 | 6.696 | 23.91 | 0.229 | 0.82 | 28.009 | OM M-2 | ||
| JYA-5 | 25.602 | 74.08 | 8.654 | 25.04 | 0.306 | 0.89 | 34.562 | OR S-3 | ||
| JYA-6 | 30.060 | 75.38 | 9.540 | 23.92 | 0.279 | 0.70 | 39.879 | OR S-3 | ||
| JYB | JYB-1 | 16.606 | 73.01 | 5.859 | 25.76 | 0.279 | 1.23 | 22.744 | OL CM-1 | Deformed region |
| JYB-2 | 18.784 | 76.30 | 5.564 | 22.60 | 0.272 | 1.10 | 24.620 | OL CM-1 | ||
| JYB-3 | 16.775 | 73.14 | 5.846 | 25.49 | 0.314 | 1.37 | 22.935 | OM M-2 | ||
| JYB-4 | 20.420 | 75.60 | 6.282 | 23.26 | 0.310 | 1.15 | 27.012 | OM M-2 | ||
| JYB-5 | 23.909 | 75.96 | 7.232 | 22.98 | 0.335 | 1.06 | 31.476 | OR S-3 | ||
| JYB-6 | 24.511 | 76.03 | 7.502 | 23.27 | 0.226 | 0.70 | 32.239 | OR S-3 | ||
| Well | Sample ID | TOC (%) | Langmuir VL (cm3/g) | Maximum Vexc (cm3/g) | Langmuir VL/TOC (cm3/g TOC) | Maximum Vexc/TOC (cm3/g TOC) | Lithofacies | Location |
|---|---|---|---|---|---|---|---|---|
| JYA | JYA-1 | 0.71 | 1.48 | 0.79 | 208.45 | 111.27 | OL CM-1 | Stable region |
| JYA-2 | 0.50 | 2.34 | 1.71 | 468.00 | 342.00 | OL CM-1 | ||
| JYA-3 | 1.81 | 3.66 | 2.23 | 202.21 | 123.20 | OM M-2 | ||
| JYA-4 | 1.36 | 2.81 | 1.78 | 206.62 | 130.88 | OM M-2 | ||
| JYA-5 | 2.56 | 4.18 | 2.59 | 163.28 | 101.17 | OR S-3 | ||
| JYA-6 | 3.85 | 5.52 | 3.28 | 143.38 | 85.19 | OR S-3 | ||
| JYB | JYB-1 | 1.32 | 2.51 | 2.15 | 190.15 | 162.88 | OL CM-1 | Deformed region |
| JYB-2 | 1.45 | 3.50 | 2.20 | 241.38 | 151.72 | OL CM-1 | ||
| JYB-3 | 1.38 | 3.52 | 2.18 | 255.07 | 157.97 | OM M-2 | ||
| JYB-4 | 1.75 | 3.77 | 2.19 | 215.43 | 125.14 | OM M-2 | ||
| JYB-5 | 3.34 | 4.25 | 2.59 | 127.25 | 77.54 | OR S-3 | ||
| JYB-6 | 3.34 | 4.12 | 2.62 | 123.35 | 78.44 | OR S-3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Han, C.; Chen, L.; Hu, Q.; Shu, Z.; Wang, D.; Wang, X.; Feng, Q.; Liu, Y. Comparative Study on Pore Characteristics and Methane Adsorption Capacity of Shales with Different Levels of Tectonic Deformation: A Case Study of Longmaxi Shales in Fuling Field. Minerals 2025, 15, 1315. https://doi.org/10.3390/min15121315
Zhang X, Han C, Chen L, Hu Q, Shu Z, Wang D, Wang X, Feng Q, Liu Y. Comparative Study on Pore Characteristics and Methane Adsorption Capacity of Shales with Different Levels of Tectonic Deformation: A Case Study of Longmaxi Shales in Fuling Field. Minerals. 2025; 15(12):1315. https://doi.org/10.3390/min15121315
Chicago/Turabian StyleZhang, Xiaoming, Changcheng Han, Lanpu Chen, Qinhong Hu, Zhiguo Shu, Di Wang, Xidong Wang, Qian Feng, and Yuzuo Liu. 2025. "Comparative Study on Pore Characteristics and Methane Adsorption Capacity of Shales with Different Levels of Tectonic Deformation: A Case Study of Longmaxi Shales in Fuling Field" Minerals 15, no. 12: 1315. https://doi.org/10.3390/min15121315
APA StyleZhang, X., Han, C., Chen, L., Hu, Q., Shu, Z., Wang, D., Wang, X., Feng, Q., & Liu, Y. (2025). Comparative Study on Pore Characteristics and Methane Adsorption Capacity of Shales with Different Levels of Tectonic Deformation: A Case Study of Longmaxi Shales in Fuling Field. Minerals, 15(12), 1315. https://doi.org/10.3390/min15121315

