Observations Suggesting the Use of Manganese-Rich Oxidized Clay Iron Stone Concretions for Iron Production During the Early Roman Imperial Period in the Inner Barbaricum—A Multi-Method Approach
Abstract
1. Introduction and Research Questions
1.1. Study Area and the Findings at the “Sehnde 9” Site
1.2. The Supposedly New Type of Iron Ore Used at the Sehnde 9 Site
1.3. Geological Situation and Iron Ore Occurrence
1.4. Genesis of OCISCs and SCISCs and Their Early Use in Central Europe
1.5. The Bloomery Smelting Process
1.6. Research Questions and Study Design
- How old are the bloomery smelting remains from the Sehnde 9 site?
- Do the slag remains originate from an iron smelting facility?
- Is the spatial distribution of the slag within the site homogeneous?
- Are fragments of OCISCs a useful ore source?
- What kind of ore was used in ancient times in Sehnde and where was it mined?
- What iron yield can be expected at the Sehnde 9 site?
2. Materials and Methods
2.1. Anthracology and Radiocarbon Dating
2.2. Energy Dispersive X-Ray Spectroscopy (EDS)
2.3. X-Ray Fluorescence Spectroscopy (XRF)
2.4. Laser-Induced Breakdown Spectroscopy (LIBS)
2.5. Experimental Bloomery Furnace Runs
3. Results
3.1. Anthracology and Radiocarbon Dating
3.2. Location of the Archaeological Slag and Ores at the Sehnde 9 Site
3.3. Occurrence of Recent Ore Deposits
3.4. Experimental Bloomery Smelting
3.5. Analytical Results
4. Discussion
4.1. How Old Are the Bloomery Smelting Remains from the Sehnde 9 Site?
4.2. Are the Slags Those of an Iron Smelting Workshop?
4.3. Is the Spatial Distribution of the Slags Within the Site Geochemically Homogeneous?
4.4. Are Fragments of OCISCs a Useful Ore Source?
4.5. Experimental Checks
4.6. Why Not Use Sideritic Clay Iron Stone Concretions (SCISCs) as Ore?
4.7. Which Kind of OCISC Ore Was Used in Ancient Times in Sehnde and Where Was It Mined?
4.8. Bloomery Furnace Mass Balance
4.9. Current Ore Abundance
4.10. What Iron Yield Can Be Expected at the Sehnde 9 Site?
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BSE | backscattered electron |
| CISC | clay iron stone concretion |
| EDS | energy dispersive X-ray spectroscopy |
| LIBS | laser-induced breakdown spectroscopy |
| LOI | loss on ignition |
| OCISC | oxidized clay iron stone concretion |
| RII | reducible iron index |
| RIOI | reducible iron ore index |
| SandISC | sand iron stone concretion |
| SEM | scanning electron microscope |
| SCISC | sideritic clay iron stone concretions |
| XRF | X-ray fluorescence spectroscopy |
Appendix A
| Finding | Number of Fragments | Description | Mass [g] | From Finding Complex |
|---|---|---|---|---|
| 99 | 92 | Slag fragments with vertical flow structures, medium grey, slightly porous | 2047 | bloomery furnace |
| 76 | 40 | Slag fragments with vertical flow structures, medium grey, slightly porous | 308 | pit |
| 78 | 80 | Slag fragments with vertical flow structures, medium grey, slightly porous, some with charcoal inclusions | 816 | bloomery furnace |
| 79 | 20 | Slag fragments with vertical flow structures, medium grey, slightly porous | 125 | bloomery furnace |
| 92 | 32 | Slag fragments with vertical flow structures, medium grey, slightly porous | 1948 | pit |
| 334 | 84 | Slag fragments with vertical flow structures, medium grey, slightly porous, some with charcoal inclusions | 1240 | bloomery furnace |
| 249 | 81 | Slag fragments with vertical flow structures, medium grey, slightly porous, some with charcoal inclusions | 561 | bloomery furnace |
| 250 | 32 | Slag fragments with vertical flow structures, medium grey, slightly porous | 261 | bloomery furnace |
| 251 | 89 | Slag fragments with vertical flow structures, medium grey, slightly porous, some with charcoal inclusions | 1549 | bloomery furnace |
| 6 | 51 | Slag fragments with vertical flow structures, medium grey, slightly porous | 3970 | bloomery furnace |
| 7 | 93 | Slag fragments with vertical flow structures, medium grey, slightly porous | 3206 | bloomery furnace |
| 8 | 5 | Slag fragments with vertical flow structures, medium grey, slightly porous | 56 | bloomery furnace |
| 9 | 24 | Slag fragments with vertical flow structures, medium grey, slightly porous | 1780 | bloomery furnace |
| 26 | 200 | Slag fragments with vertical flow structures, medium grey, slightly porous | 5352 | bloomery furnace |
| 10 | 78 | Slag fragments with vertical flow structures, medium grey, slightly porous | 2824 | bloomery furnace |
| 11 | 9 | Slag fragments with vertical flow structures, medium grey, slightly porous | 199 | bloomery furnace |
| 17 | 116 | Slag fragments with vertical flow structures, medium grey, slightly porous | 1039 | bloomery furnace |
| 17 | 2 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 783 | bloomery furnace |
| 15 | 57 | Slag fragments with vertical flow structures, medium grey, slightly porous, some with charcoal inclusions | 2041 | bloomery furnace |
| 24 | 201 | Slag fragments with vertical flow structures, medium grey, slightly porous | 1010 | bloomery furnace |
| 24 | 2 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 5430 | bloomery furnace |
| 26 | 65 | Slag fragments with vertical flow structures, medium grey, slightly porous | 4770 | bloomery furnace |
| 28 | 28 | Slag fragments with vertical flow structures, medium grey, slightly porous | 858 | bloomery furnace |
| 30 | 1 | Slag fragments with vertical flow structures, medium grey, slightly porous | 2685 | bloomery furnace |
| 42 | 1 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 1909 | pit |
| 21 | 42 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 3059 | pit house |
| 117 | 214 | Slag fragments with vertical flow structures, medium grey, slightly porous | 6243 | bloomery furnace |
| 117 | 1 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 1705 | bloomery furnace |
| 173 | 10 | Slag fragments with vertical flow structures, medium grey, slightly porous | 207 | bloomery furnace |
| 66 | 8 | Slag fragments with vertical flow structures, medium grey, slightly porous | 207 | pit house |
| 63 | 2 | Slag fragments with vertical flow structures, medium grey, slightly porous | 261 | pit |
| 257 | 6 | Slag fragments with vertical flow structures, medium grey, slightly porous | 590 | pit |
| 274 | 16 | Slag fragments with vertical flow structures, medium grey, slightly porous | 524 | pit |
| 306 | 1 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 73 | pit |
| 359 | 29 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 21,814 | pit house |
| 118 | 10 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 2076 | pit house |
| 153 | 4 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 305 | pit house |
| 173 | 12 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 193 | pit |
| 198 | 10 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 2892 | pit house |
| 198 | 2 | Slag fragments with vertical flow structures, medium grey, slightly porous | 75 | pit house |
| 235 | 10 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 4234 | pit house |
| 235 | 2 | Slag fragments with vertical flow structures, medium grey, slightly porous | 149 | pit house |
| 120 | 3 | Slag fragments with vertical flow structures, medium grey, slightly porous | 202 | pit house |
| 120 | 22 | Furnace slag fragments, compact, dark grey to black, no flow structures visible | 304 | pit house |
| Total mass of all slag fragments (g) | 91,880 | |||
| Total number of slag fragments | 1887 | |||
| Finding | Measuring Point, Characterization | Element | Concentration (wt. %, Normalized) | Concentration (at.%) | Compound (Oxid) | Concentration (wt. %, Normalized) |
|---|---|---|---|---|---|---|
| 15 | 1, fayalite | C | 0.00 | 0.00 | ||
| O | 31.70 | 56.80 | ||||
| Mg | 0.84 | 1.00 | MgO | 1.40 | ||
| Al | 1.49 | 1.58 | AL2O3 | 2.81 | ||
| Si | 12.64 | 12.91 | SiO2 | 27.05 | ||
| K | 0.23 | 0.17 | K2O | 0.28 | ||
| Ca | 1.38 | 0.99 | CaO | 1.94 | ||
| Mn | 1.13 | 0.59 | MnO | 1.46 | ||
| Fe | 50.57 | 25.96 | FeO | 65.06 | ||
| 15 | 2, glass matrix | C | 0.00 | 0.00 | ||
| O | 35.81 | 57.96 | ||||
| Na | 0.30 | 0.33 | Na2O | 0.40 | ||
| Mg | 0.15 | 0.16 | MgO | 0.25 | ||
| Al | 8.20 | 7.87 | Al2O3 | 15.49 | ||
| Si | 11.91 | 10.98 | SiO2 | 25.48 | ||
| P | 1.60 | 1.33 | P2O5 | 3.66 | ||
| K | 2.50 | 1.66 | K2O | 3.01 | ||
| Ca | 7.45 | 4.81 | CaO | 10.43 | ||
| Fe | 32.09 | 14.88 | FeO | 41.28 | ||
| 15 | 3, wustite | C | 0.00 | 0.00 | ||
| O | 25.63 | 52.69 | ||||
| Al | 1.67 | 2.03 | Al2O3 | 3.15 | ||
| Si | 3.80 | 4.45 | SiO2 | 8.13 | ||
| K | 0.21 | 0.18 | K2O | 0.26 | ||
| Ca | 0.79 | 0.65 | CaO | 1.10 | ||
| Fe | 67.90 | 40.00 | FeO | 87.35 | ||
| 15 | 4, wustite | C | 0.00 | 0.00 | ||
| O | 25.54 | 52.66 | ||||
| Al | 1.52 | 1.86 | Al2O3 | 2.87 | ||
| Si | 3.69 | 4.34 | SiO2 | 7.90 | ||
| K | 0.20 | 0.17 | K2O | 0.24 | ||
| Ca | 0.71 | 0.59 | CaO | 1.00 | ||
| Ti | 0.21 | 0.15 | TiO2 | 0.36 | ||
| Fe | 68.12 | 40.24 | FeO | 87.64 | ||
| 78 | 1, fayalite | C | 0.00 | 0.00 | ||
| O | 31.44 | 56.42 | ||||
| Mg | 0.60 | 0.71 | MgO | 0.99 | ||
| Al | 2.32 | 2.46 | Al2O3 | 4.38 | ||
| Si | 10.20 | 10.43 | SiO2 | 21.82 | ||
| P | 1.20 | 1.11 | P2O5 | 2.75 | ||
| K | 1.32 | 0.97 | K2O | 1.60 | ||
| Ca | 3.16 | 2.26 | CaO | 4.42 | ||
| Mn | 5.70 | 2.98 | MnO | 7.36 | ||
| Fe | 44.07 | 22.66 | FeO | 56.69 | ||
| 78 | 2, glass matrix | C | 0.00 | 0.00 | ||
| O | 32.81 | 56.99 | ||||
| Mg | 0.54 | 0.61 | MgO | 0.89 | ||
| Al | 3.37 | 3.47 | Al2O3 | 6.38 | ||
| Si | 10.60 | 10.49 | SiO2 | 22.68 | ||
| P | 1.89 | 1.69 | P2O5 | 4.32 | ||
| K | 2.20 | 1.56 | K2O | 2.64 | ||
| Ca | 4.90 | 3.40 | CaO | 6.85 | ||
| Mn | 5.33 | 2.70 | MnO | 6.89 | ||
| Fe | 38.36 | 19.09 | FeO | 49.35 | ||
| 251 | 1, fayalite | C | 0.00 | 0.00 | ||
| O | 29.92 | 55.43 | ||||
| Mg | 0.79 | 0.97 | MgO | 1.31 | ||
| Al | 2.72 | 2.98 | Al2O3 | 5.13 | ||
| Si | 8.82 | 9.31 | SiO2 | 18.87 | ||
| P | 0.25 | 0.24 | P2O5 | 0.57 | ||
| K | 0.79 | 0.60 | K2O | 0.95 | ||
| Ca | 1.54 | 1.14 | CaO | 2.16 | ||
| Mn | 4.52 | 2.44 | MnO | 5.83 | ||
| Fe | 50.66 | 26.89 | FeO | 65.17 | ||
| 251 | 2, glass matrix | C | 0.00 | 0.00 | ||
| O | 30.85 | 55.83 | ||||
| Mg | 0.83 | 0.99 | MgO | 1.38 | ||
| Al | 3.81 | 4.09 | AL2O3 | 7.21 | ||
| Si | 9.02 | 9.30 | SiO2 | 19.30 | ||
| P | 0.56 | 0.52 | P2O5 | 1.29 | ||
| K | 1.30 | 0.96 | K2O | 1.56 | ||
| Ca | 2.26 | 1.63 | CaO | 3.16 | ||
| Mn | 4.42 | 2.33 | MnO | 5.71 | ||
| Fe | 46.94 | 24.34 | FeO | 60.39 | ||
| 334 | 1, glass matrix | C | 0.00 | 0.00 | ||
| O | 32.31 | 57.20 | ||||
| Mg | 0.55 | 0.64 | MgO | 0.92 | ||
| Al | 2.72 | 2.86 | Al2O3 | 5.14 | ||
| Si | 10.94 | 11.03 | SiO2 | 23.41 | ||
| P | 1.41 | 1.29 | P2O5 | 3.23 | ||
| Ca | 2.65 | 1.87 | CaO | 3.71 | ||
| Mn | 6.21 | 3.20 | MnO | 8.02 | ||
| Fe | 43.20 | 21.91 | FeO | 55.57 | ||
| 334 | 2, fayalite | C | 0.00 | 0.00 | ||
| O | 31.47 | 56.73 | ||||
| Mg | 0.62 | 0.74 | MgO | 1.03 | ||
| Al | 1.44 | 1.54 | Al2O3 | 2.72 | ||
| Si | 11.25 | 11.55 | SiO2 | 24.06 | ||
| P | 0.93 | 0.87 | P2O5 | 2.14 | ||
| K | 0.45 | 0.33 | CaO | 0.54 | ||
| Ca | 1.93 | 1.39 | MnO | 2.70 | ||
| Mn | 6.85 | 3.59 | FeO | 8.84 | ||
| Fe | 45.06 | 23.27 | MgO | 57.97 |
References
- Arcontor Projekt GmbH. Bericht Zur Archäologischen Untersuchung vom 03.-11.05.2017 und 10.07.-17.11.2017: Unveröffentlichte Grabungsdokumentation; unpublished excavation documentation; State Office for Monument Preservation: Braunschweig, Germany, 2017. [Google Scholar]
- von Olberg, G. Gemeinde. Germanische Altertumskunde Online GAO Database 2010; De Gruyter Brill: Berlin, Germany, 2010. [Google Scholar]
- Graupner, A. Raseneisenstein in Niedersachsen: Entstehung, Vorkommen, Zusammensetzung und Verwendung; Forschungen zur niedersächsischen Landeskunde; Verlag Göttinger Tageblatt: Göttingen, Germany, 1982. [Google Scholar]
- Brumlich, M.; Meyer, M.; Lychatz, B. Archäologische und archäometallurgische Untersuchungen zur latènezeitlichen Eisenverhüttung im nördlichen Mitteleuropa. Praehist. Z. 2013, 87, 433–473. [Google Scholar] [CrossRef]
- Ganzelewski, M. Archäometallurgische Untersuchungen zur frühen Verhüttung von Raseneisenerzen am Kammberg bei Joldelund, Kreis Nordfriesland. In Frühe Eisengewinnung in Joldelund, Kr. Nordfriesland: Ein Beitrag zur Siedlungs- und Technikgeschichte Schleswig-Holstein. 2: Naturwissenschatliche Untersuchungen zur Metallurgie- und Vegetationsgeschichte; Haffner, A., Jöns, H., Reichstein, J., Eds.; Universitätsforschungen zur prähistorischen Archäologie; Habelt: Bonn, Germany, 2000; Volume 59, pp. 3–100. [Google Scholar]
- Jöns, H. Eisengewinnung im norddeutschen Flachland. Archäologie Dtschl. Sonderh. 1993, 1, 63–69. [Google Scholar]
- Thelemann, M.; Bebermeier, W.; Hoelzmann, P.; Lehnhardt, E. Bog iron ore as a resource for prehistoric iron production in Central Europe—A case study of the Widawa catchment area in Eastern Silesia, Poland. CATENA 2017, 149, 474–490. [Google Scholar] [CrossRef]
- Sitschick, H.; Ludwig, F.; Wetzel, E.; Luckert, J.; Höding, T. Raseneisenerz—Auch in Brandenburg ein mineralischer Rohstoff mit bedeutender wirtschaftlicher Vergangenheit. Brand. Geowiss. Beiträge 2005, 12, 119–128. [Google Scholar]
- Wu, Y.; Fang, M.; Lan, L.; Zhang, P.; Rao, K.V.; Bao, Z. Rapid and direct magnetization of goethite ore roasted by biomass fuel. Sep. Purif. Technol. 2012, 94, 34–38. [Google Scholar] [CrossRef]
- Khan, M.A.; Kerr, A.C.; Abdullah; Kakar, H.U.; Tariq, M.; Naeem, A. Major and trace elements geochemistry of Ziarat laterite deposits, Ziarat district, Western Pakistan. Implications for source rock materials and ore genesis. Carbonates Evaporites 2025, 40, 24. [Google Scholar] [CrossRef]
- Harms, F.-J. Der Sarstedt-Lehrter Salzstock: Zeitschrift für Paläontologen. Arbeitskreis Paläontologie Hann. 1973, 6, 1–8. [Google Scholar]
- Dietz, C. Lehrte: Erläuterungen zu Blatt Nr. 3625 Lehrte; Geologische Karte von Niedersachsen; hrsg. vom Niedersächsischen Landesamt für Bodenforschung: Hannover, Germany, 1973; Bl. 3625. [Google Scholar]
- Dietz, C. Lehrte: Erläuterungen zu Blatt Nr. 3625 Lehrte, Ergänzungsheft; Geologische Karte von Niedersachsen Lehrte; hrsg. vom Nds. Landesamt für Bodenforschung: Hannover, Germany, 1974; Bl. 3625. [Google Scholar]
- Stapf, K.R.G. Biogene fluvio-lakustrine Sedimentation im Rotliegend des permokarbonen Saar-Nahe-Beckens (SW-Deutschland). Facies 1989, 20, 169–197. [Google Scholar] [CrossRef]
- Kholodov, V.N.; Butuzova, G.Y. Problems of siderite formation and iron ore epochs: Communication 1. Types of siderite-bearing iron ore deposits. Lithol. Miner. Resour. 2004, 39, 389–411. [Google Scholar] [CrossRef]
- Okrusch, M.; Matthes, S. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 7., Vollständig Überarbeitete, Erweiterte und Aktualisierte Auflage; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Kholodov, V.N.; Butuzova, G.Y. Siderite formation and evolution of sedimentary iron ore deposition in the earth’s history. Geol. Ore Depos. 2008, 50, 299–319. [Google Scholar] [CrossRef]
- Kaczorek, D.; Sommer, M. Micromorphology, chemistry, and mineralogy of bog iron ores from Poland. CATENA 2003, 54, 393–402. [Google Scholar] [CrossRef]
- Marshall, J.D.; Pirrie, D. Carbonate concretions—Explained. Geol. Today 2013, 29, 53–62. [Google Scholar] [CrossRef]
- Lippmann, F. Ton, Geoden und Minerale des Barrême von Hoheneggelsen. Geol. Rundsch. 1955, 43, 475–503. [Google Scholar] [CrossRef]
- Gedenk, R.; Zimmerle, W. Bitumenimprägnation in Siderit-Konkretionen des Ober-Apt (Clansayes) von Lohne bei Hannover. Geol. Jahrb. 1982, 19, 147–157. [Google Scholar]
- Harms, F.-J. Die Grube Sehnde der Ziegelei Stoevesandt: Zeitschrift für Paläontologen. Arbeitskreis Paläontologie Hann. 1973, 6, 9–13. [Google Scholar]
- Leonowicz, P. Origin of siderites from the Lower Jurassic Ciechocinek formation from SW Poland. Geol. Q. 2007, 51, 67–78. [Google Scholar]
- Witkowska, M. Palaeoenvironmental significance of iron carbonate concretions from the Bathonian (Middle Jurassic) Ore-Bearing Clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geol. Pol. 2012, 62, 307–324. [Google Scholar] [CrossRef]
- Mutterlose, J. Die Unterkreide-Aufschlüsse (Valangin-Alb) im Raum Hannover-Braunschweig. In Mitteilungen aus dem Institut für Geologie und Paläontologie der Universität Hannover; Geologisches Institut der Universität Hannover: Hannover, Germany, 1984; Volume H. 24. [Google Scholar]
- Lehmann, J.; Friedrich, O.; Bargen, D.; Hemker, T. Early Aptian bay deposits at the southern margin of the Lower Saxony basin: Integrated stratigraphy, palaeoenvironment and Oae 1a. Acta Geol. Pol. 2012, 62, 35–62. [Google Scholar] [CrossRef]
- Curtis, C.D.; Pearson, M.J.; Somogyi, V.A. Mineralogy, chemistry, and origin of a concretionary siderite sheet (clay-ironstone band) in the Westphalian of Yorkshire. Mineral. Mag. 1975, 40, 385–393. [Google Scholar] [CrossRef]
- Oertel, G.; Curis, C.D. Clay-ironstone concretion preserving fabrics due to progressive compaction. Geol. Soc. Am. Bull. 1972, 83, 2597. [Google Scholar] [CrossRef]
- Bergwerkseigentum (Mine Property). Available online: https://nibis.lbeg.de/cardomap3/ (accessed on 25 August 2025).
- Paynter, S. Regional variations in bloomery smelting slag of the Iron Age and Romano-British periods. Archaeometry 2006, 48, 271–292. [Google Scholar] [CrossRef]
- Heliasz, Z.; Ostaficzuk, S. Historical residues of iron ore mining in environs of the Holy Cross Mountains (the Góry Świętokrzyskie) are recognizable on the Digital Terrain Elevation Model (DEM) derived from the LIDAR data. Gospod. Surowcami Miner.—Miner. Resour. Manag. 2023, 36, 161–186. [Google Scholar] [CrossRef]
- Wrona, P.; Różański, Z.; Pach, G.; Niewiadomski, A.P.; Veiga, J.P. Historical outline of iron mining and production in the area of present-day Poland. Minerals 2021, 11, 1136. [Google Scholar] [CrossRef]
- Pleiner, R. Iron in Archaeology: The European Bloomery Smelters; Archeologický ústav AVČR: Praha, Czech Republic, 2000. [Google Scholar]
- Joosten, I.; Jansen, J.B.H.; Kars, H. Geochemistry and the Past: Estimation of the Output of a Germanic Iron Production Site in the Netherlands. J. Geochem. Explor. 1998, 62, 129–137. [Google Scholar] [CrossRef]
- Yalcin, Ü. Zur Technologie der Eisenverhüttung. Arb.-Forschungsberichte Sächs. Bodendenkmalpfl. 2000, 42, 307–316. [Google Scholar]
- Charlton, M.F.; Crew, P.; Rehren, T.; Shennan, S.J. Explaining the evolution of ironmaking recipes—An example from Northwest Wales. J. Anthropol. Archaeol. 2010, 29, 352–367. [Google Scholar] [CrossRef]
- Kronz, A.; Eggers, T. Archäometallurgische Untersuchungen eisenzeitlicher Funde aus dem Hügelgräberfeld Hillesheim, Kreis Daun. Trier. Zeitschr. Gesch. Kunst Trier. Landes Seiner Nachbargeb. 2001, 64, 69–109. [Google Scholar]
- Paynter, S.; Crew, P.; Blakelock, E.; Hatton, G. Spinel-rich slag and slag inclusions from a bloomery smelting and smithing experiment with a sideritic ore. Hist. Metall. 2017, 49, 126–143. [Google Scholar]
- Cavallini, M. Thermodynamics applied to iron smelting techniques. Appl. Phys. A 2013, 113, 1049–1053. [Google Scholar] [CrossRef]
- Straube, H. Ferrum Noricum und die Stadt auf dem Magdalensberg; Springer: Vienna, Austria, 1996. [Google Scholar] [CrossRef]
- Zavyalov, V.I.; Terekhova, N.N. Bloomery process as the basis of ancient metallurgy. Teor. Prakt. Arkheologicheskikh Issled. 2023, 35, 23–41. [Google Scholar] [CrossRef]
- Kriete, C. Geochemische Untersuchungen der Rennfeuerschlacken aus dem Siedlungsgebiet der vorrömischen Eisenzeit und älteren Römischen Kaiserzeit von Salzgitter-Fredenberg im Hinblick auf die Herkunft der verwendeten Erze. Nachrichten Niedersachs. Urgesch. NNU 2009, 78, 37–56. [Google Scholar]
- Thomas, G.R.; Young, T.P. The Determination of bloomery furnace mass balance and efficiency. Geol. Soc. Lond. Spec. Publ. 1999, 165, 155–164. [Google Scholar] [CrossRef]
- Schweingruber, F.H. Microscopic Wood Anatomy, 3rd ed.; Verlag Kessel: Remagen, Germany, 2016. [Google Scholar]
- Kierdorf, U.; Stock, S.R.; Gomez, S.; Antipova, O.; Kierdorf, H. Distribution, structure, and mineralization of calcified cartilage remnants in hard antlers. Bone Rep. 2022, 16, 101571. [Google Scholar] [CrossRef] [PubMed]
- Helmreich, C.; Kobbe, F.; Sauerwein, M. Den Erzen auf der Spur—Experimentalarchäologische und archäometallurgische Untersuchungen zur Identifizierung der Ausgangserze von Eisenverhüttungsschlacken einer archäologischen Fundstelle in Niedersachsen. Bilanz 2021, 20, 196–209. [Google Scholar]
- Wegewitz, W. Ein Rennfeuerofen aus einer Siedlung der älteren Römerzeit in Scharmbeck (Kreis Harburg). Nachrichten Niedersachs Urgesch. NNU 1957, 26, 3–25. [Google Scholar]
- Osann, B. Rennstahlgewinnung in einer germanischen Siedlung beim heutigen Salzgitter-Lobmachtersen. Nachrichten Niedersachs Urgesch. NNU 1960, 29, 28–34. [Google Scholar]
- Reepen, B.; Drexler, H.-J. Rennofenversuche am Sachsenhof in Greven—Ein Erfahrungsbericht. In Experimentelle Archäologie in Europa. Bilanz 2004; Isensee F: Oldenburg, Germany, 2005; pp. 159–166. [Google Scholar]
- Paysen, A. Nachhaltige Energiewirtschaft? Ph.D. Thesis, Kiel University, Kiel, Germany, 2011. [Google Scholar]
- Hauptmann, A. Study of archaeometallurgical slag and metal. In The Archaeometallurgy of Copper; Hauptmann, A., Herrmann, B., Wagner, G.A., Eds.; Natural Science in Archaeology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 157–215. [Google Scholar] [CrossRef]
- Oeters, F.; Ottow, M.; Senk, D.; Beyzavi, A.; Güntner, J.; Lüngen, H.B.; Koltermann, M.; Buhr, A. Iron, 1. Fundamentals and principles of reduction processes. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 1–82. [Google Scholar] [CrossRef]
- Abreu, C.A.; Cantoni, M.; Coscione, A.R.; Paz-Ferreiro, J. Organic matter and barium absorption by plant species grown in an area Polluted with scrap metal residue. Appl. Environ. Soil Sci. 2012, 2012, 476821. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Geochemistry; Clarendon Press: Oxford, UK, 1954. [Google Scholar]
- Morel, M.; Serneels, V. Interpreting the chemical variability of iron smelting slag: A case Study from northeastern Madagascar. Minerals 2021, 11, 900. [Google Scholar] [CrossRef]
- Matthes, W.E.; Matthes, W. Grundlagen, Eigenschaften, Rezepte, Anwendung, Orig.-Ausg., 2. [Dr.]; Keramische Glasuren/Wolf Matthes; Müller: Köln, Germany, 1986. [Google Scholar]
- Speier, M. Vegetationskundliche und paläoökologische Untersuchungen zur Rekonstruktion prähistorischer und historischer Landnutzungen im südlichen Rothaargebirge; Abhandlungen aus dem Westfälischen Museum für Naturkunde; Westfälisches Museum für Naturkunde: Münster, Germany, 1994. [Google Scholar]
- Dörfler, W. Palynologische Untersuchungen zur Vegetations- und Landschaftsentwicklung von Joldelund, Kr. Nordfriesland. In Frühe Eisengewinnung in Joldelund, Kr. Nordfriesland: Ein Beitrag zur Siedlungs- und Technikgeschichte Schleswig-Holstein. 2: Naturwissenschatliche Untersuchungen zur Metallurgie- und Vegetationsgeschichte; Haffner, A., Jöns, H., Reichstein, J., Eds.; Universitätsforschungen zur prähistorischen Archäologie; Habelt: Bonn, Germany, 2000; Volume 59, pp. 147–208. [Google Scholar]
- Iles, L. The exploitation of manganese-rich ‘ore’ to smelt iron in Mwenge, western Uganda, from the mid second millennium AD. J. Archaeol. Sci. 2014, 49, 423–441. [Google Scholar] [CrossRef]
- Bronk, R.C. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]

















| Sample | A | B | C | D |
|---|---|---|---|---|
| source of the charcoal sample | finding 15 | finding 334 | finding 78 | finding 251 |
| wood taxon | Acer spec. | Prunus avium | Acer spec. | Quercus spec. |
| sample mass [g] | 0.019 | 0.028 | 0.083 | 0.046 |
| laboratory number | Beta-558501 | Beta-558502 | Beta-558504 | Beta-558503 |
| conventional age | 1940 ± 30 BP | 1930 ± 30 BP | 1940 ± 30 BP | 1920 ± 30 BP |
| cal. BP (probability %) | 1950–1820 (94.2%) | 1946–1820 (95.4%) | 1950–1820 (94.,2%) | 1947–1812 (95%) |
| cal. BP (probability %) | 1926–1864 (65%) | 1900–1861 (43.5%) | 1926–1864 (65%) | 1894–1825 (68.2%) |
| # | Sample Name | Remark | Fe2O3 | SiO2 | Al2O3 | CaO | MnO | TiO2 | P2O5 | MgO | K2O | Na2O | SO3 | LOI | Total | RIOI | V | Ce | Ba |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | P 42 OCISC fragm. roasted “Sehnde 9”-arch. find. 198 | 65.74 | 11.28 | 6.67 | 1.86 | 0.703 | 0.326 | 4.132 | 4.54 | 0.5 | bdl | bdl | 4.05 | 99.87 | 0.5 | 41 | bdl | 500 | |
| 2 | P 44 OCISC fragm. roasted “Sehnde 9”-arch. find. 120 | 59.25 | 16.06 | 5.22 | 2.32 | 0.656 | 0.246 | 3.823 | 1.15 | 0.62 | bdl | 0.09 | 10.41 | 99.92 | 0.7 | 46 | bdl | 280 | |
| 3 | P 45 OCISC fragm. roasted “Sehnde 9”-arch. find. 120 | 66.27 | 9.57 | 5.87 | 3.95 | 0.691 | 0.303 | 3.809 | 6.33 | 0.43 | bdl | bdl | 2.63 | 99.93 | 0.4 | 34 | 45 | 340 | |
| 4 | Probe 2 OCISC fragm. roasted “Sehnde 9”-arch. find. 120 | * | 55.71 | 15.38 | 4.88 | 5.31 | 0.832 | 0.233 | 6.14 | 1.57 | 0.61 | 0.12 | bdl | 8.79 | 99.84 | 0.7 | nm | nm | 880 |
| 5 | P 1 OCISC fragm. roasted “Sehnde 9”-arch. find. 120 | * | 59.55 | 13.46 | 4.54 | 5.14 | 1.21 | 0.241 | 6.3 | 1.07 | 0.62 | 0.13 | bdl | 7.47 | 99.84 | 0.6 | nm | nm | 1070 |
| 6 | P 2 OCISC fragm. roasted “Sehnde 9”-arch. find. 359 | * | 74.59 | 8.1 | 2.44 | 0.76 | 1.23 | 0.128 | 2.27 | 1.23 | 0.34 | 0.06 | bdl | 8.66 | 99.89 | 0.3 | nm | nm | 380 |
| 7 | Mean OCISC fragm. roasted arch. find site “Sehnde 9” | 63.5 | 12.3 | 4.9 | 3.2 | 0.9 | 0.2 | 4.5 | 2.6 | 0.5 | 0.1 | np | 7.0 | 99.88 | 0.5 | 40 | nm | 575 | |
| 8 | P 87 OCISC fragm. recent Sehnde jurass. Sinemur. | 72.25 | 8.04 | 2.06 | 0.52 | 2.2 | 0.16 | 0.19 | 0.64 | 0.29 | 0.15 | 0.14 | 13.26 | 99.91 | 0.3 | 35 | 115 | nm | |
| 9 | P 88 OCISC fragm. recent Sehnde jurass. Sinemur. | 71.07 | 8.16 | 2.96 | 0.55 | 3.01 | 0.14 | 0.32 | 0.45 | 0.37 | 0.13 | 0.08 | 12.68 | 99.91 | 0.3 | 32 | 41 | nm | |
| 10 | P 89 OCISC fragm. recent Sehnde jurass. Sinemur. | 62.59 | 9.27 | 2.11 | 1.37 | 3.97 | 0.084 | 0.31 | 1.22 | 0.35 | 0.15 | 0.07 | 18.41 | 99.92 | 0.4 | 25 | 47 | nm | |
| 11 | P 147 OCISC fragm. recent Sehnde jurass. Sinemur. | 57.55 | 13.05 | 2.82 | 3.26 | 7.24 | 0.113 | 2.16 | 0.54 | 0.59 | 0.34 | bdl | 12.09 | 99.75 | 0.5 | 43 | 186 | 708 | |
| 12 | P 148 OCISC fragm. recent Sehnde jurass. Sinemur. | 58.55 | 9.48 | 3.16 | 4.26 | 6.94 | 0.147 | 2.88 | 0.58 | 0.57 | 0.47 | bdl | 12.66 | 99.69 | 0.4 | 71 | 262 | 703 | |
| 13 | P 150 OCISC fragm. recent Sehnde jurass. Sinemur. | 68.53 | 5.48 | 2.04 | 0.78 | 8.29 | 0.079 | 0.419 | 0.43 | 0.28 | 0.37 | bdl | 13.15 | 99.84 | 0.2 | 31 | 90 | 629 | |
| 14 | P 151 OCISC fragm. recent Sehnde jurass. Sinemur. | 67.52 | 6.59 | 2.77 | 0.86 | 7.35 | 0.09 | 1.46 | 0.49 | 0.33 | 0.35 | bdl | 12.03 | 99.84 | 0.2 | 34 | 308 | 455 | |
| 15 | P 152 OCISC fragm. recent Sehnde jurass. Sinemur. | 69.85 | 7.43 | 3.55 | 0.71 | 1.95 | 0.143 | 1.61 | 0.64 | 0.37 | 0.38 | bdl | 13.29 | 99.92 | 0.3 | 92 | 105 | 87 | |
| 16 | P 153 OCISC fragm. recent Sehnde jurass. Sinemur. | 78.77 | 6.58 | 3.02 | 0.38 | 0.614 | 0.149 | 0.125 | 0.42 | 0.28 | 0.38 | bdl | 9.22 | 99.94 | 0.2 | 18 | 103 | 205 | |
| 17 | Mean OCISC fragm. recent Sehnde jurass. Sinemurian | 67.4 | 8.2 | 2.7 | 1.4 | 4.6 | 0.1 | 1.1 | 0.6 | 0.4 | 0.3 | 0.1 | 13.0 | 99.9 | 0.3 | 42 | 140 | 465 | |
| 18 | P 84 OCISC fragm. recent Sehnde jurass. Pliensb. | 43.98 | 8.94 | 4.08 | 16.71 | 0.32 | 0.2 | 11.06 | 0.64 | 0.52 | 0.41 | 0.41 | 12.28 | 99.52 | 0.5 | 135 | 722 | nm | |
| 19 | P 85 OCISC fragm. recent Sehnde jurass. Pliensb. | 64.17 | 7.21 | 2.95 | 2.88 | 0.77 | 0.14 | 1.55 | 1.92 | 0.35 | 0.19 | 0.2 | 17.6 | 99.94 | 0.3 | 111 | 80 | nm | |
| 20 | P 86 OCISC fragm. recent Sehnde jurass. Pliensb. | 48.41 | 21.19 | 8.53 | 2.66 | 1.37 | 0.4 | 1.58 | 1.15 | 1.33 | 0.22 | 0.92 | 12.12 | 99.86 | 1.1 | 162 | 195 | nm | |
| 21 | P 103 OCISC fragm. recent Sehnde jurass. Pliensb. | 50.74 | 19.35 | 7.76 | 2.85 | 1.3 | 0.356 | 1.68 | 1.13 | 1.22 | 0.23 | 0.83 | 12.38 | 99.84 | 1.0 | 159 | 198 | 211 | |
| 22 | P 104 OCISC fragm. recent Sehnde jurass. Pliensb. | 51.82 | 18.35 | 7.53 | 2.7 | 1.67 | 0.341 | 1.54 | 1.1 | 1.2 | 0.19 | 0.64 | 12.78 | 99.85 | 0.9 | 166 | 190 | 241 | |
| 23 | P 108 OCISC fragm. recent Sehnde jurass. Pliensb. | 72.64 | 6.29 | 2.54 | 1.79 | 0.75 | 0.135 | 1.32 | 0.66 | 0.3 | 0.18 | 0.11 | 13.06 | 99.79 | 0.2 | 85 | 74 | 57 | |
| 24 | P 109 OCISC fragm. recent Sehnde jurass. Pliensb. | 46.98 | 8.61 | 3.82 | 15.01 | 0.342 | 0.19 | 9.92 | 0.59 | 0.48 | 0.39 | 0.55 | 12.56 | 99.43 | 0.5 | 135 | 654 | 167 | |
| 25 | P 110 OCISC fragm. recent Sehnde jurass. Pliensb. | 58.37 | 8 | 2.92 | 9.68 | 0.655 | 0.159 | 2.74 | 0.7 | 0.39 | 0.21 | 0.08 | 15.99 | 99.9 | 0.4 | 133 | 137 | 99 | |
| 26 | P 149 OCISC fragm. recent Sehnde jurass. Pliensb. | 51.89 | 9.95 | 3.9 | 11.06 | 0.875 | 0.194 | 6.58 | 1.13 | 0.55 | 0.51 | bdl | 13.21 | 99.85 | 0.5 | 156 | 196 | 215 | |
| 27 | P 128 OCISC fragm. recent Sehnde jurass. Pliensb. | 41.86 | 14.06 | 6.18 | 18.31 | 0.972 | 0.213 | 0.33 | 0.99 | 0.72 | 0.26 | 0.05 | 15.89 | 99.83 | 0.9 | 348 | 90 | 289 | |
| 28 | P 129 OCISC fragm. recent Sehnde jurass. Pliensb. | 64.42 | 14.84 | 6.47 | 4.02 | 2.59 | 0.276 | 1.05 | 1.31 | 0.9 | 0.2 | 0.04 | 3.72 | 99.84 | 0.6 | 186 | 180 | 512 | |
| 29 | P 130 OCISC fragm. recent Sehnde jurass. Pliensb. | 74.95 | 10.46 | 3.93 | 2.63 | 1.97 | 0.194 | 1.84 | 0.94 | 0.58 | 0.24 | 0.1 | 2.09 | 99.92 | 0.4 | 157 | 150 | 204 | |
| 30 | Mean OCISC fragm. recent jurass. Pliensbachian | 55.9 | 12.3 | 5.1 | 7.5 | 1.1 | 0.2 | 3.4 | 1.0 | 0.7 | 0.3 | 0.4 | 12.0 | 99.80 | 0.6 | 161 | 239 | 222 | |
| 31 | P131 OCISC fragm. recent roasted WOB jurass. Pliensb. | 68.69 | 13.83 | 5.69 | 3.59 | 0.712 | 0.248 | 0.937 | 1.78 | 0.68 | 0.26 | 0.07 | 3.34 | 99.82 | 0.5 | 151 | 89 | 140 | |
| 32 | P132 OCISC fragm. recent roasted WOB jurass. Pliensb. | 45.21 | 32.68 | 15.43 | 0.38 | 0.381 | 0.523 | 0.282 | 1.52 | 1.54 | 0.32 | bdl | 1.42 | 99.86 | 1.9 | 401 | 165 | 266 | |
| 33 | P133 OCISC fragm. recent roasted WOB jurass. Pliensb. | 73.68 | 11.4 | 4.55 | 2.68 | 0.873 | 0.198 | 2.04 | 1.46 | 0.53 | 0.33 | 0.15 | 1.97 | 99.9 | 0.4 | 213 | 134 | 90 | |
| 34 | Mean OCISC fragm. recent roasted WOB jurass. Pliensbachian | 62.5 | 19.3 | 8.6 | 2.2 | 0.7 | 0.3 | 1.1 | 1.6 | 0.9 | 0.3 | 0.1 | 2.2 | 99.86 | 0.8 | 255 | 129 | 165 | |
| 35 | P 105 SISC fragm. recent Sehnde triass. Rhaetium | 4.73 | 88.97 | 2.72 | 0.15 | 0.153 | 0.358 | 0.033 | 0.14 | 0.75 | 0.23 | bdl | 1.61 | 99.84 | 48.2 | 27 | 40 | 174 | |
| 36 | P 106 SISC fragm. recent Sehnde triass. Rhaetium | 8.84 | 83.04 | 2.98 | 0.16 | 0.029 | 0.361 | 0.035 | 0.14 | 0.96 | 0.43 | 0.3 | 2.64 | 99.91 | 24.9 | bdl | bdl | 183 | |
| 37 | P 107 SISC fragm. recent Sehnde triass. Rhaetium | 4.96 | 88.58 | 2.88 | 0.14 | 0.108 | 0.332 | 0.036 | 0.16 | 0.78 | 0.22 | bdl | 1.69 | 99.88 | 46.3 | 29 | 38 | 156 | |
| 38 | Mean SISC fragm. recent Sehnde Norian-Hettangian | 6.2 | 86.9 | 2.9 | 0.2 | 0.1 | 0.4 | 0.0 | 0.1 | 0.8 | 0.3 | 0.3 | 2.0 | 99.88 | 36.7 | 28 | 39 | 171 | |
| 39 | P 82 Bog iron ore Sehnde Billerbach recent | 48.51 | 24.69 | 3.73 | 1.98 | 5.28 | 0.25 | 1.53 | 0.45 | 0.83 | 0.47 | 0.12 | 11.68 | 99.53 | 1.2 | 40 | 41 | nm | |
| 40 | P 83 Bog iron ore Sehnde Billerbach recent | 52.85 | 22.84 | 3.09 | 1.77 | 3.55 | 0.21 | 1.65 | 0.42 | 0.7 | 0.38 | 0.12 | 12.01 | 99.58 | 1.1 | 42 | 39 | nm | |
| 41 | P 46 Bog iron ore Sehnde Billerbach recent | 54.95 | 18.12 | 2.61 | 1.97 | 5.783 | 0.172 | 1.986 | 0.43 | 0.57 | 0.16 | 0.14 | 12.6 | 99.95 | 0.8 | 34 | 20 | 3830 | |
| 42 | P 8 Bog iron ore Sehnde Billerbach recent | * | 39.17 | 39.42 | 4.28 | 2.22 | 5.04 | 0.338 | 1.15 | 0.55 | 1.16 | 0.41 | 0.09 | 0.74 | 99.98 | 2.3 | 56 | nm | 3610 |
| 43 | P 4 Bog iron ore Sehnde Billerbach recent | * | 44.96 | 30.92 | 3.43 | 1.52 | 5.21 | 0.273 | 1.06 | 0.5 | 0.94 | 0.41 | 0.09 | 10.28 | 99.89 | 1.6 | 101 | nm | 2940 |
| 44 | P 9 Bog iron ore Sehnde Billerbach recent | * | 49.81 | 30.61 | 2.56 | 1.35 | 2.94 | 0.176 | 1.59 | 0.42 | 0.71 | 0.33 | 0.06 | 4.4 | 99.9 | 1.5 | 73 | nm | 1640 |
| 45 | Mean Bog iron ore Sehnde Billerbach recent | 48.4 | 27.8 | 3.3 | 1.8 | 4.6 | 0.2 | 1.5 | 0.5 | 0.8 | 0.4 | 0.1 | 8.6 | 99.81 | 1.4 | 58 | 33 | 3005 | |
| 46 | Probe 3 SCISC fragm. Arpke cretac. Aptian | * | 68.9 | 4.37 | 2.06 | 5.87 | 1.91 | 0.08 | 0.69 | 3.73 | 0.28 | 0.12 | 0.05 | 11.9 | 99.94 | 0.2 | nm | nm | nm |
| 47 | P 7 SCISC fragm. Arpke cretac. Aptian | * | 58.9 | 3.90 | 1.75 | 4.66 | 1.50 | 0.07 | 0.54 | 3.11 | 0.24 | 0.08 | 0.04 | 25.2 | 99.98 | 0.2 | nm | nm | nm |
| 48 | Mean SCISC fragm. Arpke cretac. Aptian | 63.88 | 4.14 | 1.91 | 5.27 | 1.71 | 0.07 | 0.61 | 3.42 | 0.26 | 0.10 | 0.05 | 18.55 | 99.96 | 0.2 | nm | nm | nm |
| # | Sample Name | Source | Fe2O3 | SiO2 | Al2O3 | CaO | MnO | TiO2 | P2O5 | MgO | K2O | Na2O | SO3 | LOI | Total | RII | V | Ce | Ba |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 49 | P 3 Sehnde 9-arch. find. 117, flow slag | * | 62.7 | 24.7 | 4.26 | 3.7 | 6.21 | 0.242 | 1.32 | 1.54 | 0.98 | 0.27 | bdl | −6.03 | 99.94 | 0.9 | 77 | nm | 260 |
| 50 | P 4 Sehnde 9-arch. find. 173, flow slag | * | 70.28 | 25.92 | 5.35 | 0.64 | 1.39 | 0.422 | 0.64 | 0.77 | 0.91 | 0.12 | bdl | −6.53 | 99.96 | 1.0 | 62 | nm | 120 |
| 51 | P 47 Sehnde 9-arch. find. 6, flow slag | 61.62 | 24.6 | 5.32 | 2.98 | 6.326 | 0.387 | 2.734 | 0.82 | 0.99 | bdl | bdl | −5.95 | 99.91 | 1.0 | 84 | bdl | 580 | |
| 52 | P 48 Sehnde 9-arch. find. 9, flow slag | 57.5 | 26.72 | 5.78 | 3.6 | 6.173 | 0.386 | 2.954 | 0.82 | 1.3 | 0.11 | bdl | −5.52 | 99.93 | 1.1 | 87 | bdl | 890 | |
| 53 | P 49 Sehnde 9-arch. find. 9, flow slag | 59.67 | 29.28 | 5.51 | 2.26 | 4.049 | 0.388 | 1.952 | 0.75 | 1.25 | bdl | bdl | −3.30 | 99.86 | 1.2 | 67 | 55 | 360 | |
| 54 | P 50 Sehnde 9-arch. find. 10, flow slag | 70.68 | 23.11 | 3.8 | 2.58 | 2.178 | 0.242 | 1.23 | 1.43 | 1.09 | 0.06 | bdl | −6.50 | 99.93 | 0.8 | 29 | 34 | 200 | |
| 55 | P 51 Sehnde 9-arch. find. 21, flow slag | 58.31 | 22.74 | 5.21 | 4.97 | 8.902 | 0.283 | 1.692 | 1.97 | 1.17 | 0.15 | 0.1 | −5.60 | 99.96 | 0.9 | 46 | 60 | 100 | |
| 56 | P 52 Sehnde 9-arch. find. 26, flow slag | 63.28 | 22.93 | 5.37 | 6.47 | 2.638 | 0.304 | 1.616 | 1.91 | 0.98 | 0.07 | 0.1 | −5.76 | 99.95 | 0.9 | 67 | 42 | 100 | |
| 57 | Probe 1 Sehnde 9-arch. find. 26, flow slag | * | 62.64 | 25.94 | 4.88 | 5.31 | 2.25 | 0.292 | 1.41 | 1.66 | 1.05 | 0.2 | 0.07 | −5.79 | 99.93 | 1.1 | 67 | nm | 280 |
| 58 | P 53 Sehnde 9-arch. find. 24, flow slag | 56.86 | 30.61 | 6.05 | 3.02 | 3.76 | 0.361 | 1.87 | 1.17 | 1.3 | 0.13 | bdl | −5.24 | 99.93 | 1.3 | 102 | 61 | 120 | |
| 59 | P 54 Sehnde 9-arch. find. 30, flow slag | 64.9 | 23.77 | 4.75 | 6.436 | 6.436 | 0.271 | 0.98 | 1.12 | 1.03 | 0.07 | bdl | −6.25 | 99.94 | 0.9 | 39 | 53 | 120 | |
| 60 | P 55 Sehnde 9, arch. find. 120, flow slag | 56.32 | 23.21 | 4.9 | 6.49 | 7.83 | 0.262 | 2.472 | 2.66 | 0.86 | 0.15 | 0.13 | −5.37 | 99.95 | 0.9 | 54 | bdl | bdl | |
| 61 | P 56 Sehnde 9-arch. find. 274, flow slag | 73.21 | 21.27 | 6.06 | 0.91 | 2.289 | 0.289 | 0.517 | 1.19 | 0.82 | bdl | bdl | −6.60 | 99.95 | 0.7 | 50 | bdl | bdl | |
| 62 | Mean Sehnde 9-arch. find. flow slag | 62.9 | 25.0 | 5.2 | 3.8 | 4.6 | 0.3 | 1.6 | 1.4 | 1.1 | 0.1 | 0.1 | −5.7 | 99.9 | 1.0 | 66 | 51 | 285 | |
| 63 | P 43 mantle slag “Sehnde 9”, find. 120 | 3.47 | 77.68 | 9.23 | 1.52 | 0.098 | 0.795 | 0.593 | 0.84 | 3.72 | 0.51 | bdl | 1.4 | 99.9 | 57.7 | 60 | 177 | 150 | |
| 64 | P 90 XP 10-1, flow slag | 62.6 | 27.44 | 6.69 | 2.7 | 1.54 | 0.31 | 2.7 | 1.54 | 2.07 | 0.19 | bdl | −5.82 | 99.89 | 1.1 | 55 | 57 | nm | |
| 65 | P 91 XP 10-2, flow slag | 75.78 | 22.63 | 5.31 | 2.08 | 1.25 | 0.23 | 2.08 | 1.38 | 1.74 | 0.17 | bdl | −11.11 | 99.92 | 0.8 | 49 | 67 | nm | |
| 66 | P 92 XP 10-3, flow slag | 70.85 | 27.28 | 6.76 | 3.68 | 1.19 | 0.34 | 3.68 | 1.49 | 2.61 | 0.18 | bdl | −14.97 | 99.9 | 1.0 | 76 | 82 | nm | |
| 67 | P 93 XP 10-4, flow slag | 41.28 | 42 | 10.12 | 4.4 | 2.46 | 0.47 | 4.4 | 2.53 | 3.96 | 0.26 | bdl | −7.91 | 99.85 | 2.5 | 103 | 100 | nm | |
| 68 | P 94 XP 10-5, flow slag | 62.79 | 26.88 | 8.28 | 2.42 | 1.33 | 0.36 | 0.45 | 1.39 | 1.83 | 0.17 | bdl | −5.98 | 99.91 | 1.1 | 62 | 79 | nm | |
| 69 | P 20 XP 10, flow slag, sample 9 | * | 52.2 | 29.57 | 6.34 | 8 | 1.87 | 0.323 | 3.21 | 1.37 | 1.53 | 0.26 | 0.13 | −5 | 99.8 | 1.4 | nm | nm | nm |
| 70 | P 17 XP 10, flow slag, sample 3 | * | 48.58 | 32.06 | 6.6 | 8.54 | 2.01 | 0.323 | 3.39 | 1.27 | 1.39 | 0.26 | 0.17 | −4.82 | 99.78 | 1.7 | nm | nm | nm |
| 71 | P 18 XP 10, flow slag, sample 11 | * | 54.73 | 30.23 | 5.66 | 7.05 | 1.93 | 0.289 | 3.31 | 1.15 | 1.16 | 0.25 | 0.07 | −6.04 | 99.78 | 1.4 | nm | nm | nm |
| 72 | P 23 XP 10, flow slag, sample 4 | * | 51.35 | 32.35 | 5.81 | 8 | 1.85 | 0.284 | 3.175 | 1.2 | 1.2 | 0.23 | bdl | −5.63 | 99.81 | 1.6 | nm | nm | nm |
| 73 | P 21 XP 10, flow slag, sample 6 | * | 54.09 | 28.62 | 6.09 | 7.94 | 1.85 | 0.3 | 3.26 | 1.27 | 1.4 | 0.25 | 0.05 | −5.34 | 99.77 | 1.4 | nm | nm | nm |
| 74 | P 22 XP 10, furnace slag, sample 10 | * | 53.25 | 31.08 | 5.69 | 7.48 | 1.99 | 0.297 | 3.201 | 1.28 | 1.12 | 0.25 | bdl | −5.85 | 99.79 | 1.5 | nm | nm | nm |
| 75 | Mean XP 10 slag from OCISC ore jurass. Sinemur. with BIO flux | 57.0 | 30.0 | 6.7 | 5.7 | 1.8 | 0.3 | 3.0 | 1.4 | 1.8 | 0.2 | 0.1 | −7.1 | 99.84 | 1.4 | 69 | 77 | ||
| 76 | P 120 XP 24-1 flow slag from Pliensb. OCISC Sehnde | 55.39 | 15.97 | 5.49 | 20.77 | 1.34 | 0.255 | 2.15 | 1.63 | 0.93 | 0.48 | bdl | −4.64 | 99.76 | 0.7 | 219 | 180 | 514 | |
| 77 | P 121 XP 24-2 flow slag from Pliensb. OCISC Sehnde | 55.84 | 15.6 | 5.43 | 20.86 | 1.36 | 0.235 | 2.12 | 1.6 | 0.93 | 0.47 | bdl | −4.63 | 99.81 | 0.7 | 218 | 202 | 492 | |
| 78 | P 122 XP 24-3 flow slag from Pliensb. OCISC Sehnde | 56.31 | 16.33 | 5.67 | 19.21 | 1.37 | 0.243 | 2.23 | 1.63 | 0.91 | 0.54 | bdl | −4.62 | 99.83 | 0.8 | 214 | 168 | 488 | |
| 79 | P 123 XP 24-4 flow slag from Pliensb. OCISC Sehnde | 55.98 | 15.69 | 5.46 | 20.42 | 1.36 | 0.241 | 2.1 | 1.66 | 0.92 | 0.56 | 0.04 | −4.6 | 99.83 | 0.7 | 221 | 184 | 509 | |
| 80 | P 124 XP 24-5 flow slag from Pliensb. OCISC Sehnde | 54.43 | 16.92 | 5.89 | 20.01 | 1.28 | 0.257 | 2.22 | 1.63 | 0.83 | 0.77 | 0.05 | −4.48 | 99.81 | 0.8 | 224 | 161 | 476 | |
| 81 | P 125 XP 24-6 flow slag from Pliensb. OCISC Sehnde | 75.11 | 13.08 | 4.7 | 20.42 | 1.15 | 0.247 | 2.51 | 2 | 0.92 | 0.37 | bdl | −20.74 | 99.76 | 0.5 | 364 | 233 | 685 | |
| 82 | P 126 XP 24-7 furnace slag from Pliensb. OCISC Sehnde | 52.68 | 18.5 | 6.22 | 19.9 | 1.22 | 0.266 | 2.28 | 1.57 | 0.91 | 0.82 | 0.05 | −4.57 | 99.84 | 0.9 | 215 | 170 | 501 | |
| 83 | P 127 XP 24-8 furnace slag from Pliensb. OCISC Sehnde | 54.28 | 11.77 | 4.75 | 22.78 | 1.14 | 0.232 | 7.19 | 1.16 | 0.074 | 0.52 | 0.07 | −4.83 | 99.8 | 0.6 | 207 | 385 | 529 | |
| 84 | Mean XP 24 slag from OCISC ore jurass. Pliensb. Sehnde | 57.5 | 15.5 | 5.5 | 20.5 | 1.3 | 0.2 | 2.9 | 1.6 | 0.8 | 0.6 | 0.1 | −6.6 | 99.81 | 0.7 | 235 | 210 | 524 | |
| 85 | P 135 XP 22-1 from OCISC ore jurass. Pliensbach. WOB | 63.91 | 18.16 | 6.07 | 9.98 | 0.839 | 0.283 | 2.24 | 2.57 | 1.25 | 0.37 | 0.08 | −5.89 | 99.86 | 0.7 | 174 | 159 | 691 | |
| 86 | P 136 XP 22-2 from OCISC ore jurass. Pliensbach. WOB | 49.3 | 26.29 | 6.95 | 14.04 | 0.776 | 0.326 | 2.53 | 2.14 | 1.6 | 0.37 | 0.13 | −4.57 | 99.88 | 1.4 | 236 | 282 | 385 | |
| 87 | P 137 XP 22-3 from OCISC ore jurass. Pliensbach. WOB | 63.79 | 18.22 | 6.09 | 9.99 | 0.832 | 0.286 | 2.24 | 2.58 | 1.22 | 0.33 | 0.12 | −5.84 | 99.85 | 0.7 | 175 | 176 | 668 | |
| 88 | P 138 XP 22-4 from OCISC ore jurass. Pliensbach. WOB | 62.94 | 18.93 | 6.07 | 9.98 | 0.825 | 0.282 | 2.23 | 2.53 | 1.24 | 0.35 | 0.19 | −5.7 | 99.85 | 0.8 | 172 | 157 | 663 | |
| 89 | P 139 XP 22-5 from OCISC ore jurass. Pliensbach. WOB | 63.92 | 18.08 | 6.04 | 10 | 0.833 | 0.277 | 2.24 | 2.53 | 1.23 | 0.35 | 0.24 | −5.89 | 99.85 | 0.7 | 175 | 158 | 674 | |
| 90 | Mean XP 22 slag from OCISC ore jurass. Pliensb. WOB | 60.8 | 19.9 | 6.2 | 10.8 | 0.8 | 0.3 | 2.3 | 2.5 | 1.3 | 0.4 | 0.2 | −5.6 | 99.86 | 0.9 | 186 | 186 | 616 |
| FeO | SiO2 | Al2O3 | CaO | MnO | TiO2 | P2O5 | MgO | K2O | ||
| mean of measured flow slag “Sehnde 9”-arch. findings | 56.62 | 24.98 | 5.17 | 3.80 | 4.65 | 0.32 | 1.65 | 1.37 | 1.06 | Percentage shares |
| mean of measured ore OCISC Sehnde jurass. Sinemurian | 76.07 | 10.35 | 3.02 | 1.55 | 5.81 | 0.15 | 1.32 | 0.76 | 0.48 | |
| measured mantle slag “Sehnde 9”, arch. find. 120 | 3.12 | 77.68 | 9.23 | 1.52 | 0.10 | 0.80 | 0.59 | 0.84 | 3.72 | |
| measured ash (*) | 1.39 | 6.82 | 2.76 | 54.27 | 2.03 | 0.11 | 8.73 | 6.47 | 13.9 | |
| calculated influence ore | 8.38 | 2.44 | 1.26 | 4.70 | 0.12 | 1.07 | 0.62 | 0.39 | 81.0 | |
| calculated influence mantle slag “Sehnde 9”, arch. find. 120 | 12.82 | 1.52 | 0.25 | 0.02 | 0.13 | 0.10 | 0.14 | 0.61 | 16.5 | |
| calculated influence ash | 0.17 | 0.07 | 1.36 | 0.05 | 0.00 | 0.22 | 0.16 | 0.35 | 2.5 | |
| sum | 21.37 | 4.03 | 2.87 | 4.77 | 0.26 | 1.38 | 0.92 | 1.35 | factor 1.17 | |
| calculated slag composition | 25.00 | 4.72 | 3.35 | 5.58 | 0.30 | 1.62 | 1.07 | 1.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmreich, C.; Kobbe, F.; Kierdorf, H.; Kierdorf, U.; Sauerwein, M. Observations Suggesting the Use of Manganese-Rich Oxidized Clay Iron Stone Concretions for Iron Production During the Early Roman Imperial Period in the Inner Barbaricum—A Multi-Method Approach. Minerals 2025, 15, 1274. https://doi.org/10.3390/min15121274
Helmreich C, Kobbe F, Kierdorf H, Kierdorf U, Sauerwein M. Observations Suggesting the Use of Manganese-Rich Oxidized Clay Iron Stone Concretions for Iron Production During the Early Roman Imperial Period in the Inner Barbaricum—A Multi-Method Approach. Minerals. 2025; 15(12):1274. https://doi.org/10.3390/min15121274
Chicago/Turabian StyleHelmreich, Christian, Florian Kobbe, Horst Kierdorf, Uwe Kierdorf, and Martin Sauerwein. 2025. "Observations Suggesting the Use of Manganese-Rich Oxidized Clay Iron Stone Concretions for Iron Production During the Early Roman Imperial Period in the Inner Barbaricum—A Multi-Method Approach" Minerals 15, no. 12: 1274. https://doi.org/10.3390/min15121274
APA StyleHelmreich, C., Kobbe, F., Kierdorf, H., Kierdorf, U., & Sauerwein, M. (2025). Observations Suggesting the Use of Manganese-Rich Oxidized Clay Iron Stone Concretions for Iron Production During the Early Roman Imperial Period in the Inner Barbaricum—A Multi-Method Approach. Minerals, 15(12), 1274. https://doi.org/10.3390/min15121274

