Application of Nanobubbles in the Flotation of Sulfide Minerals from Chilean Copper Porphyry Deposits
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Description and Preparation
2.2. Flotation Tests
2.3. Nanobubble Generation
2.4. X-Ray Diffraction (XRD) Analysis
2.5. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDS)
3. Results
3.1. Chemical and Mineralogical Characterization of the Samples
3.2. Flotation Test with and Without Nanobubbles
3.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Favvas, E.P.; Kyzas, G.Z.; Efthimiadou, E.K.; Mitropoulos, A.C. Bulk Nanobubbles, Generation Methods and Potential Applications. Curr. Opin. Colloid Interface Sci. 2021, 54, 101455. [Google Scholar] [CrossRef]
- Calgaroto, S.; Azevedo, A.; Rubio, J. Separation of Amine-Insoluble Species by Flotation with Nano and Microbubbles. Miner. Eng. 2016, 89, 24–29. [Google Scholar] [CrossRef]
- Etchepare, R.; Oliveira, H.; Azevedo, A.; Rubio, J. Separation of Emulsified Crude Oil in Saline Water by Dissolved Air Flotation with Micro and Nanobubbles. Sep. Purif. Technol. 2017, 186, 326–332. [Google Scholar] [CrossRef]
- Etchepare, R.; Azevedo, A.; Calgaroto, S.; Rubio, J. Removal of Ferric Hydroxide by Flotation with Micro and Nanobubbles. Sep. Purif. Technol. 2017, 184, 347–353. [Google Scholar] [CrossRef]
- Seki, M.; Ishikawa, T.; Terada, H.; Nashimoto, M. Microbicidal Effects of Stored Aqueous Ozone Solution Generated by Nano-Bubble Technology. In Vivo 2017, 31, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Hu, L.; Kusaba, S.; Song, D. Remediation of TCE Contaminated Site by Ozone Micro-Nano-Bubbles. Environ. Sci. Eng. 2019, 1, 796–803. [Google Scholar] [CrossRef]
- Xia, Z.; Hu, L. Treatment of Organics Contaminated Wastewater by Ozone Micro-Nano-Bubbles. Water 2018, 11, 55. [Google Scholar] [CrossRef]
- Zhan, L.; Chen, Y.; Bouazza, A. (Eds.) Proceedings of the 8th International Congress on Environmental Geotechnics Volume 1: Towards a Sustainable Geoenvironment; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Gupta, G.; Thakur, H.; Dhar, A.; Garg, S. Effect of Nanobubble Injector–Based Aeration on the Performance of Wastewater Treatment Plant. J. Environ. Eng. 2024, 150, 04024006. [Google Scholar] [CrossRef]
- Ahmadi, M.; Nabi Bidhendi, G.; Torabian, A.; Mehrdadi, N. Effects of Nanobubble Aeration in Oxygen Transfer Efficiency and Sludge Production in Wastewater Biological Treatment. J. Adv. Environ. Health Res. 2018, 6, 225–233. [Google Scholar] [CrossRef]
- Zhang, X.; Kumar, A.; Scales, P.J. Effects of Solvency and Interfacial Nanobubbles on Surface Forces and Bubble Attachment at Solid Surfaces. Langmuir 2011, 27, 2484–2491. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Xing, Y.; Zhang, H.; Peuker, U.A. Efficient Separation of Fine Coal Assisted by Surface Nanobubbles. Sep. Purif. Technol. 2020, 249, 117163. [Google Scholar] [CrossRef]
- Fan, M.; Tao, D.; Honaker, R.; Luo, Z. Nanobubble Generation and Its Applications in Froth Flotation (Part IV): Mechanical Cells and Specially Designed Column Flotation of Coal. Min. Sci. Technol. 2010, 20, 641–671. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Zhang, H. Efficient Separation of High-Ash Fine Coal by the Collaboration of Nanobubbles and Polyaluminum Chloride. Fuel 2020, 260, 116325. [Google Scholar] [CrossRef]
- Tao, D.; Fan, M.; Wu, Z.; Zhang, X.; Wang, Q.; Li, Z. Investigation of Effects of Nanobubbles on Phosphate Ore Flotation. Int. J. Georesour. Environ. 2018, 4, 133–140. [Google Scholar] [CrossRef]
- Chipakwe, V.; Jolsterå, R.; Chelgani, S.C. Nanobubble-Assisted Flotation of Apatite Tailings: Insights on Beneficiation Options. ACS Omega 2021, 6, 13888–13894. [Google Scholar] [CrossRef]
- Wu, Z.; Tao, D.; Tao, Y.; Ma, G. New Insights into Mechanisms of Pyrite Flotation Enhancement by Hydrodynamic Cavitation Nanobubbles. Miner. Eng. 2023, 201, 108222. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, C.; Lv, H.; Zhao, B.; Liu, K.; Ou, L. Nanobubbles Heterogeneous Nucleation Induced by Temperature Rise and Its Influence on Minerals Flotation. Appl. Surf. Sci. 2020, 508, 145282. [Google Scholar] [CrossRef]
- Tao, D.; Wu, Z.; Sobhy, A. Investigation of Nanobubble Enhanced Reverse Anionic Flotation of Hematite and Associated Mechanisms. Powder Technol. 2021, 379, 12–25. [Google Scholar] [CrossRef]
- Ahmadi, R.; Khodadadi, D.A.; Abdollahy, M.; Fan, M. Nano-Microbubble Flotation of Fine and Ultrafine Chalcopyrite Particles. Int. J. Min. Sci. Technol. 2014, 24, 559–566. [Google Scholar] [CrossRef]
- Heidari, H.; Azizi, A.; Hassanzadeh, A. A New Insight into the Mechanism of MNB-Assisted Flotation of Copper: A Link between Chalcopyrite and Its-Bearing Bulk Ore. Miner. Eng. 2024, 216, 108882. [Google Scholar] [CrossRef]
- Nguyen, A.V. Liquid Drainage in Single Plateau Borders of Foam. J. Colloid Interface Sci. 2002, 249, 194–199. [Google Scholar] [CrossRef]
- Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A Review of Entrainment: Mechanisms, Contributing Factors and Modelling in Flotation. Miner. Eng. 2015, 70, 77–91. [Google Scholar] [CrossRef]
- Knüpfer, P.; Ditscherlein, L.; Peuker, U.A. Nanobubble Enhanced Agglomeration of Hydrophobic Powders. Colloids Surf. A Physicochem. Eng. Asp. 2017, 530, 117–123. [Google Scholar] [CrossRef]
- Sobhy, A.; Tao, D. Nanobubble Column Flotation of Fine Coal Particles and Associated Fundamentals. Int. J. Miner. Process 2013, 124, 109–116. [Google Scholar] [CrossRef]
- Gutierrez, L.; Betancourt, F.; Uribe, L.; Maldonado, M. Influence of Seawater on the Degree of Entrainment in the Flotation of a Synthetic Copper Ore. Minerals 2020, 10, 615. [Google Scholar] [CrossRef]
- Lei, W.; Zhang, M.; Zhang, Z.; Zhan, N.; Fan, R. Effect of Bulk Nanobubbles on the Entrainment of Kaolinite Particles in Flotation. Powder Technol. 2020, 362, 84–89. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Madrid, A.; Araya, N.; Gutierrez, L.; Soto, C.; Melipichún, C. Application of Nanobubbles in the Flotation of Sulfide Minerals from Chilean Copper Porphyry Deposits. Minerals 2025, 15, 1124. https://doi.org/10.3390/min15111124
Ramírez-Madrid A, Araya N, Gutierrez L, Soto C, Melipichún C. Application of Nanobubbles in the Flotation of Sulfide Minerals from Chilean Copper Porphyry Deposits. Minerals. 2025; 15(11):1124. https://doi.org/10.3390/min15111124
Chicago/Turabian StyleRamírez-Madrid, Andrés, Nicolás Araya, Leopoldo Gutierrez, Cristian Soto, and Cristian Melipichún. 2025. "Application of Nanobubbles in the Flotation of Sulfide Minerals from Chilean Copper Porphyry Deposits" Minerals 15, no. 11: 1124. https://doi.org/10.3390/min15111124
APA StyleRamírez-Madrid, A., Araya, N., Gutierrez, L., Soto, C., & Melipichún, C. (2025). Application of Nanobubbles in the Flotation of Sulfide Minerals from Chilean Copper Porphyry Deposits. Minerals, 15(11), 1124. https://doi.org/10.3390/min15111124

