Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Analysis
3. Results
3.1. Ζeta Potential of Colloidal Particles Under Simulated Archaean Seawater Chemistry
3.1.1. Zeta Potential of SiO2 Colloids Under Anoxic Conditions
3.1.2. Zeta Potential of SiO2–Fe2+ Colloidal Complexes Under Anoxic Conditions
3.1.3. Ζeta Potential of SiO2–Fe2+ Colloids as a Function of Dissolved Oxygen
3.1.4. Evolution of Colloidal Particle Size
3.2. Morphological Changes of SiO2–Fe2+ Colloidal Particles During Dehydration
3.3. Structural Characterization of SiO2–Fe2+ Colloidal Particles
3.3.1. FT-IR Analysis of SiO2–Fe2+ Colloids
3.3.2. X-Ray Photoelectron Spectroscopy (XPS) of SiO2–Fe2+ Colloidal Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ζ | Zeta/zeta-potential; |
| GOE | Great Oxidation Event; |
| AFM | Atomic force microscopy; |
| FTIR | Fourier transform infrared spectrometry; |
| TEM | Transmission electron microscopy; |
| XPS | X-ray photoelectron spectroscopy; |
| XAFS | X-ray absorption fine structure. |
References
- Siever, R. The silica cycle in the precambrian. Geochim. Cosmochim. Acta 1992, 56, 3265–3272. [Google Scholar] [CrossRef]
- Maliva, R.G.; Knoll, A.H.; Simonson, B.M. Secular change in the precambrian silica cycle: Insights from chert petrology. GSA Bull. 2005, 117, 835–845. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Planaysky, N.J.; Hardisty, D.S.; Robbins, L.J.; Warchola, T.J.; Haugaard, R.; Lalonde, S.V.; Partin, C.A.; Oonk, P.B.H.; Tsikos, H.; et al. Iron formations: A global record of neoarchaean to palaeoproterozoic environmental history. Earth-Sci. Rev. 2017, 172, 140–177. [Google Scholar] [CrossRef]
- Catling, D.C.; Zahnle, K.J. The archean atmosphere. Sci. Adv. 2020, 6, eaax1420. [Google Scholar] [CrossRef]
- Hessler, A.M.; Lowe, D.R.; Jones, R.L.; Bird, D.K. A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 2004, 428, 736–738. [Google Scholar] [CrossRef]
- Bekker, A.; Slack, J.F.; Planavsky, N.; Krapez, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef]
- Stein, M.; Hofmann, A.W. Mantle plumes and episodic crustal growth. Nature 1994, 372, 63–68. [Google Scholar] [CrossRef]
- Isson, T.T.; Planavsky, N.J. Reverse weathering as a long-term stabilizer of marine ph and planetary climate. Nature 2018, 560, 471–475. [Google Scholar] [CrossRef]
- Tosca, N.J.; Guggenheim, S.; Pufahl, P.K. An authigenic origin for precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. GSA Bull. 2016, 128, 511–530. [Google Scholar] [CrossRef]
- Stefurak, E.J.T.; Lowe, D.R.; Zentner, D.; Fischer, W.W. Primary silica granules-a new mode of paleoarchean sedimentation. Geology 2014, 42, 283–286. [Google Scholar] [CrossRef]
- Robbins, L.J.; Lalonde, S.V.; Planaysky, N.J.; Partin, C.A.; Reinhard, C.T.; Kendall, B.; Scott, C.; Hardisty, D.S.; Gill, B.C.; Alessi, D.S.; et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Sci. Rev. 2016, 163, 323–348. [Google Scholar] [CrossRef]
- Tosca, N.J.; Jiang, C.Z.; Rasmussen, B.; Muhling, J. Products of the iron cycle on the early earth. Free Radic. Biol. Med. 2019, 140, 138–153. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Cole, D.B.; Isson, T.T.; Reinhard, C.T.; Crockford, P.W.; Sheldon, N.D.; Lyons, T.W. A case for low atmospheric oxygen levels during earth’s middle history. Emerg. Top. Life Sci. 2018, 2, 149–159. [Google Scholar]
- Poulton, S.W.; Canfield, D.E. Ferruginous conditions: A dominant feature of the ocean through earth’s history. Elements 2011, 7, 107–112. [Google Scholar] [CrossRef]
- Scott, C.; Lyons, T.W.; Bekker, A.; Shen, Y.; Poulton, S.W.; Chu, X.; Anbar, A.D. Tracing the stepwise oxygenation of the proterozoic ocean. Nature 2008, 452, 456–459. [Google Scholar] [CrossRef]
- Rasmussen, B.; Meier, D.B.; Krapez, B.; Muhling, J.R. Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations. Geology 2013, 41, 435–438. [Google Scholar] [CrossRef]
- Johnson, J.E.; Muhling, J.R.; Cosmidis, J.; Rasmussen, B.; Templeton, A.S. Low-Fe(III) greenalite was a primary mineral from neoarchean oceans. Geophys. Res. Lett. 2018, 45, 3182–3192. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Amskold, L.; Lalonde, S.V.; Posth, N.R.; Kappler, A.; Anbar, A. Decoupling photochemical Fe(II) oxidation from shallow-water bif deposition. Earth Planet. Sci. Lett. 2007, 258, 87–100. [Google Scholar] [CrossRef]
- Lalonde, S.V.; Konhauser, K.O. Benthic perspective on earth’s oldest evidence for oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 2015, 112, 995–1000. [Google Scholar] [CrossRef]
- Crowe, S.A.; Jones, C.; Katsev, S.; Magen, C.; O’Neill, A.H.; Sturm, A.; Canfield, D.E.; Haffner, G.D.; Mucci, A.; Sundby, B.; et al. Photoferrotrophs thrive in an archean ocean analogue. Proc. Natl. Acad. Sci. USA 2008, 105, 15938–15943. [Google Scholar] [CrossRef] [PubMed]
- He, H.P.; Wu, X.; Xian, H.Y.; Zhu, J.X.; Yang, Y.P.; Lv, Y.; Li, Y.L.; Konhauser, K.O. An abiotic source of archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat. Commun. 2021, 12, 6611. [Google Scholar] [CrossRef]
- He, H.P.; Wu, X.; Zhu, J.X.; Lin, M.; Lv, Y.; Xian, H.Y.; Yang, Y.P.; Lin, X.J.; Li, S.; Li, Y.L.; et al. A mineral-based origin of earth?S initial hydrogen peroxide and molecular oxygen. Proc. Natl. Acad. Sci. USA 2023, 120, e2221984120. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, J.X.; He, H.P.; Xian, H.Y.; Yang, Y.P.; Ma, L.Y.; Liang, X.L.; Lin, X.J.; Li, S.; Konhauser, K.O.; et al. Geodynamic oxidation of archean terrestrial surfaces. Commun. Earth Environ. 2023, 4, 132. [Google Scholar] [CrossRef]
- Planavsky, N.J.; McGoldrick, P.; Scott, C.T.; Li, C.; Reinhard, C.T.; Kelly, A.E.; Chu, X.L.; Bekker, A.; Love, G.D.; Lyons, T.W. Widespread iron-rich conditions in the mid-proterozoic ocean. Nature 2011, 477, 448–451. [Google Scholar] [CrossRef]
- Paytan, A. Earth history—Sulfate clues for the early history of atmospheric oxygen. Science 2000, 288, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E. The early history of atmospheric oxygen: Homage to robert M. Garrels. Annu. Rev. Earth Planet. Sci. 2005, 33, 1–36. [Google Scholar] [CrossRef]
- Bekker, A.; Holland, H.D. Oxygen overshoot and recovery during the early paleoproterozoic. Earth Planet. Sci. Lett. 2012, 317, 295–304. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Schott, J.; Garges, F.; Hazemann, J.L. Iron (iii)-silica interactions in aqueous solution: Insights from x-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 3559–3573. [Google Scholar] [CrossRef]
- Doelsch, E.; Rose, J.; Masion, A.; Bottero, J.Y.; Nahon, D.; Bertsch, P.M. Speciation and crystal chemistry of iron(iii) chloride hydrolyzed in the presence of SiO4 ligands. 1. An fek-edge exafs study. Langmuir 2000, 16, 4726–4731. [Google Scholar] [CrossRef]
- Swedlund, P.J.; Webster, J.G. Adsorption and polymerisation of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res. 1999, 33, 3413–3422. [Google Scholar] [CrossRef]
- Schwertmann, U.; Thalmann, H. Influence of Fe(II), Si, and pH on formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner. 1976, 11, 189–200. [Google Scholar] [CrossRef]
- Kaegi, R.; Voegelin, A.; Folini, D.; Hug, S.J. Effect of phosphate, silicate, and ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. Geochim. Cosmochim. Acta 2010, 74, 5798–5816. [Google Scholar] [CrossRef]
- Mayer, T.D.; Jarrell, W.M. Formation and stability of iron(II) oxidation products under natural concentrations of dissolved silica. Water Res. 1996, 30, 1208–1214. [Google Scholar] [CrossRef]
- Halevy, I.; Bachan, A. The geologic history of seawater ph. Science 2017, 355, 1069–1071. [Google Scholar] [CrossRef] [PubMed]
- Izawa, M.R.M.; Nesbitt, H.W.; MacRae, N.D.; Hoffman, E.L. Composition and evolution of the early oceans: Evidence from the tagish lake meteorite. Earth Planet. Sci. Lett. 2010, 298, 443–449. [Google Scholar] [CrossRef]
- Blättler, C.L.; Kump, L.R.; Fischer, W.W.; Paris, G.; Kasbohm, J.J.; Higgins, J.A. Constraints on ocean carbonate chemistry and pco2 in the archaean and palaeoproterozoic. Nat. Geosci. 2017, 10, 41–45. [Google Scholar] [CrossRef]
- Riley, J.P.; Chester, R. Introduction to Marine Chemistry; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Jones, C.; Nomosatryo, S.; Crowe, S.A.; Bjerrum, C.J.; Canfield, D.E. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 2015, 43, 135–138. [Google Scholar] [CrossRef]
- Pate, K.; Safier, P. 13-chemical metrology methods for cmp quality. In Advances in Chemical Mechanical Planarization (CMP), 2nd ed.; Babu, S., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 355–383. [Google Scholar]
- Németh, Z.; Csóka, I.; Jazani, R.S.; Sipos, B.; Haspel, H.; Kozma, G.; Kónya, Z.; Dobó, D.G. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 2022, 14, 1798. [Google Scholar] [CrossRef]
- Saini, R.; Garg, A.; Barz, D.P.J. Streaming potential revisited: The influence of convection on the surface conductivity. Langmuir 2014, 30, 10950–10961. [Google Scholar] [CrossRef]
- Ripoll, L.; Bordes, C.; Marote, P.; Etheve, S.; Elaissari, A.; Fessi, H. Electrokinetic properties of bare or nanoparticle-functionalized textile fabrics. Colloids Surf. A-Physicochem. Eng. Asp. 2012, 397, 24–32. [Google Scholar] [CrossRef]
- Kosmulski, M. pH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 2009, 337, 439–448. [Google Scholar] [CrossRef]
- Stefurak, E.J.T.; Lowe, D.R.; Zentner, D.; Fischer, W.W. Sedimentology and geochemistry of archean silica granules. GSA Bull. 2015, 127, 1090–1107. [Google Scholar] [CrossRef]
- Hinz, I.L.; Nims, C.; Theuer, S.; Templeton, A.S.; Johnson, J.E. Ferric iron triggers greenalite formation in simulated archean seawater. Geology 2021, 49, 905–910. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Rimstidt, J.D.; Barnes, H.L. The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 1980, 44, 1683–1699. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Rouxel, O.J.; Bekker, A.; Lalonde, S.V.; Konhauser, K.O.; Reinhard, C.T.; Lyons, T.W. The evolution of the marine phosphate reservoir. Nature 2010, 467, 1088–1090. [Google Scholar] [CrossRef]
- Liu, H.S.; Kaya, H.; Lin, Y.T.; Ogrinc, A.; Kim, S.H. Vibrational spectroscopy analysis of silica and silicate glass networks. J. Am. Ceram. Soc. 2022, 105, 2355–2384. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in xps analysis of first row transition metals, oxides and hydroxides: Sc, ti, v, cu and zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S. Resolving surface chemical states in xps analysis of first row transition metals, oxides and hydroxides: Cr, mn, fe, co and ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]







| Sample Name | [SiO2] (mM) | [Fe2+] (mM) | DO (mg L−1) |
|---|---|---|---|
| Low-silica concentration group | 1 | 0 | 0 |
| Medium-silica concentration group | 2 | 0 | 0 |
| High-silica concentration group | 4 | 0 | 0 |
| Low-SiO2-Fe2+ gel concentration group | 1 | 1 | 0 |
| Medium-SiO2-Fe2+ gel concentration group | 2 | 2 | 0 |
| High-SiO2-Fe2+ gel concentration group | 4 | 4 | 0 |
| Mildly oxidized SiO2-Fe2+ gel group | 2 | 2 | 3 |
| Adequately oxidized SiO2-Fe2+ gel group | 2 | 2 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Wu, X.; Yang, H.; Fu, J.; Zeng, Q.; Li, S.; Luo, R.; Yang, Y.; Lin, X.; Zhu, J. Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater. Minerals 2025, 15, 1123. https://doi.org/10.3390/min15111123
Jiang W, Wu X, Yang H, Fu J, Zeng Q, Li S, Luo R, Yang Y, Lin X, Zhu J. Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater. Minerals. 2025; 15(11):1123. https://doi.org/10.3390/min15111123
Chicago/Turabian StyleJiang, Weiming, Xiao Wu, Hongmei Yang, Juan Fu, Qirui Zeng, Sizhe Li, Ruiyao Luo, Yiping Yang, Xiaoju Lin, and Jianxi Zhu. 2025. "Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater" Minerals 15, no. 11: 1123. https://doi.org/10.3390/min15111123
APA StyleJiang, W., Wu, X., Yang, H., Fu, J., Zeng, Q., Li, S., Luo, R., Yang, Y., Lin, X., & Zhu, J. (2025). Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater. Minerals, 15(11), 1123. https://doi.org/10.3390/min15111123

