Assessment of Biotite-Based Thermobarometers in Porphyry Systems: A Case Study from the Julong Cu–Polymetallic District of Tibet, China
Abstract
1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Sampling and Methods
- Enrichments of F and Cl in biotite [5]
- Halogen fugacities of the coexisting melt [6]
4. Results
4.1. Biotite
4.2. Amphibole
5. Discussion
5.1. Comparison of Different Methods for Estimating the Structural Formula and Physicochemical Conditions of Magmatic Biotite
5.1.1. Classification of Biotite
5.1.2. Estimation of Temperature and Pressure
5.1.3. Estimation of Halogen and Oxygen Fugacity
5.2. The Physicochemical Conditions During the Emplacement of the Ore-Related Intrusive Suite in the Julong Deposit
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobs, D.C.; Parry, W.T. A comparison of the geochemistry of biotite from some basin and range stocks. Econ. Geol. 1976, 71, 1029–1035. [Google Scholar] [CrossRef]
- Gorbatschev, R.D. Biotites in granites, biotites in gneisses, and the status of biotite as a one-mineral environment indicator. Bull. Geol. Soc. Finl. 1970, 42, 23–32. [Google Scholar] [CrossRef]
- Saha, R.; Upadhyay, D.; Mishra, B. Discriminating Tectonic Setting of Igneous Rocks Using Biotite Major Element chemistry—A Machine Learning Approach. Geochem. Geophy. Geosy. 2021, 22, e2021GC010053. [Google Scholar] [CrossRef]
- Šegvić, B.; Girardclos, S.; Zanoni, G.; Arbiol González, C.; Steimer-Herbet, T.; Besse, M. Origin and paleoenvironmental significance of Fe-Mn nodules in the Holocene perialpine sediments of Geneva Basin, western Switzerland. Appl. Clay Sci. 2018, 160, 22–39. [Google Scholar] [CrossRef]
- Muñoz, J.L. F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Rev. Mineral. 1984, 13, 469–493. [Google Scholar]
- Muñoz, J.L. Calculation of HF and HCl fugacities from biotite compositions: Revised equations. Geol. Soc. Am. Abstr. Programs 1992, 24, A221. [Google Scholar]
- Luhr, J.F.; Carmichael, I.S.E.; Varekamp, J.C. The 1982 eruptions of El Chichón Volcano, Chiapas Mexico: Mineralogy and petrology of the anhydrite-bearing pumices. J. Volcanol. Geoth. Res. 1984, 23, 69–108. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V.; Thomson, J.A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am. Mineral. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Uchida, E.; Endo, S.; Makino, M. Relationship Between Solidifi cation Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits. Resour. Geol. 2007, 57, 47–56. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, C.; Behrens, H.; Holtz, F. Calculating biotite formula fromelectron microprobe analysis data using a machine learning method based on principal components regression. Lithos 2020, 356–357, 105371. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, C. Machine Learning Thermobarometry for Biotite-Bearing Magmas. J. Geophys. Res.-Solid. Earth 2022, 127, e2022JB024137. [Google Scholar] [CrossRef]
- Li, C.H.; Shen, P.; Pan, H.D.; Seitmuratova, E. Control on the size of porphyry copper reserves in the North Balkhash–West Junggar Metallogenic Belt. Lithos 2019, 328–329, 244–261. [Google Scholar] [CrossRef]
- Azadbakht, Z.; Lentz, D.R.; McFarlane, C.R.M.; Whalen, J.B. Using magmatic biotite chemistry to differentiate barren and mineralized Silurian–Devonian granitoids of New Brunswick, Canada. Contrib. Mineral. Petrol. 2020, 175, 69. [Google Scholar] [CrossRef]
- Yu, K.L.; Li, G.M.; Zhao, J.X.; Evans, N.J.; Li, J.X.; Jiang, G.W.; Zou, X.Y.; Qin, K.Z.; Guo, H. Biotite composition as a tracer of fluid evolution and mineralization center: A case study at the Qulong porphyry Cu-Mo deposit, Tibet. Miner. Depos. 2022, 57, 1047–1069. [Google Scholar] [CrossRef]
- Li, W.K.; Yang, Z.M.; Cao, K.; Lu, Y.J.; Sun, M.Y. Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China. Contrib. Mineral. Petrol. 2019, 174, 12. [Google Scholar] [CrossRef]
- Yavuz, F.; Öztaş, T. BIOTERM—A program for evaluating and plotting microprobe analyses of biotite from barren and mineralized magmatic suites. Comput. Geosci. 1997, 23, 897–907. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Zhang, L.P.; Ding, X.; Li, C.Y.; Zartman, R.E.; et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. In Economic Geology 100th Anniversary; Society of Economic Geologists: Littleton, CO, USA, 2005; Volume 29, pp. 251–298. [Google Scholar]
- Shen, P.; Hattori, K.; Pan, H.D.; Jackson, S.; Seitmuratova, E. Oxidation Condition and Metal Fertility of GraniticMagmas: Zircon Trace-Element Data from Porphyry Cu Deposits in the Central Asian Orogenic Belt. Econ. Geol. 2015, 110, 1861–1878. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Cook, N.J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol. Rev. 2009, 36, 2–24. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Sun, X.; Gao, S.B.; Wu, S.; Xu, J.; Jiang, J.S.; Chen, X.; Zhao, Z.Y.; Liu, Y. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. J. Asian Earth Sci. 2015, 103, 23–39. [Google Scholar] [CrossRef]
- Yang, Z.M.; Cooke, D.R. Porphyry Copper Deposits in China. SEG Spec. Publ. 2019, 22, 133–187. [Google Scholar]
- Xiao, B.; Qin, K.Z.; Li, G.M.; Li, J.X.; Xia, D.X.; Chen, L.; Zhao, J.X. Highly oxidizedmagma and fluid evolution of Miocene Qulong Giant Porphyry Cu-Mo Deposit, Southern Tibet, China. Resour. Geol. 2012, 62, 4–18. [Google Scholar] [CrossRef]
- Yang, Z.M.; Lu, Y.J.; Hou, Z.Q.; Chang, Z.S. High-Mg diorite from Qulong in Southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. J. Petrol. 2015, 56, 227–254. [Google Scholar] [CrossRef]
- Zhao, J.X.; Qin, K.Z.; Xiao, B.; McInnes, B.; Li, G.M.; Evans, N.; Cao, M.J.; Li, J.X. Thermal history of the giant Qulong Cu-Mo deposit, Gangdese metallogenic belt, Tibet: Constraints on magmatic-hydrothermal evolution and exhumation. Gondwana Res. 2016, 36, 390–409. [Google Scholar] [CrossRef]
- Li, Q.Y.; Yang, Z.M.; Wang, R.; Sun, M.Y.; Qu, H.C. Zircon trace elemental and Hf-O isotopic compositions of the Miocene magmatic suite in the giant Qulong porphyry copper deposit, southern Tibet. Acta Petrol. Mineral. 2021, 40, 1023–1048, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.B.; Wang, Y.W.; Lin, S.H.; Long, L.L.; Geng, J. Location prediction of porphyry copper polymetallic metallogenic system. Miner. Depos. 2025, 44, 279–298, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Z.M.; Ding, H.X.; Dong, X.; Tian, Z.L. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrol. Sin. 2019, 35, 275–294, (In Chinese with English Abstract). [Google Scholar]
- Hou, Z.Q.; Mo, X.X.; Yang, Z.M.; Wang, A.J.; Pan, G.T.; Qu, X.M.; Nie, F.J. Metallogeneses in the collisional orogen of the Qinghai—Tibet Plateau: Tectonic setting, Tempo—Spatial distribution and ore deposit types. Geol. China 2006, 33, 340–451, (In Chinese with English Abstract). [Google Scholar]
- Ma, X.X.; Xu, Z.Q.; Liu, F.; Zhao, Z.B.; Li, H.B. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geol. Sin. 2021, 95, 107–123, (In Chinese with English Abstract). [Google Scholar]
- Chung, S.L.; Liu, D.Y.; Ji, J.Q.; Chu, M.F.; Lee, H.Y.; Wen, D.J.; Lo, C.H.; Lee, T.Y.; Qian, Q.; Zhang, Q. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology 2003, 31, 1021–1024. [Google Scholar] [CrossRef]
- Wang, R.; Richards, J.P.; Hou, Z.Q.; Yang, Z.M.; Gou, Z.B.; DuFrane, S.A. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo ± Au Mineralization. Econ. Geol. 2014, 109, 1943–1965. [Google Scholar] [CrossRef]
- Geng, Q.R.; Pan, G.T.; Wang, L.Q.; Zhu, D.C.; Liao, Z.L. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone, Xizang. Sediment. Geol. Tethyan Geol. 2006, 26, 1–7, (In Chinese with English Abstract). [Google Scholar]
- Dong, Y.H.; Xu, J.F.; Zeng, Q.G.; Wang, Q.; Mao, G.Z.; Li, J. Is there a Neo-Tethys’ subduction record earlier than arc volcanic rocks in the Sangri Group? Acta Petrol. Sin. 2006, 22, 661–668, (In Chinese with English Abstract). [Google Scholar]
- Zeng, Z.C.; Liu, D.M.; Wang, M.Z.; Zeren, Z.X.; Nima, C.R.; Zhang, R.Y.; Chen, N.; Zhu, W.P. Tectonic—Magmatic Evolution and Mineralization of the Qulong—Jiama Areas in Eastern Section of Gangdese Mountains, Xizang(Tibet). Geol. Rev. 2016, 62, 663–678, (In Chinese with English Abstract). [Google Scholar]
- Chen, W.; Ma, C.Q.; Bian, Q.J.; Hu, Y.Q.; Long, T.C.; Yu, S.L.; Chen, D.M.; Tu, J.H. Evidences from Geochemistry and Zircon U-Pb Geochronology of Volcanic Rocks of Yeba Formation in Demingding Area, the East of Middle Gangdise, Tibet. Geol. Sci. Technol. Inf. 2009, 28, 31–40, (In Chinese with English Abstract). [Google Scholar]
- Zhu, D.C.; Pan, G.T.; Chung, S.L.; Liao, Z.L.; Wang, L.Q.; Li, G.M. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. Int. Geol. Rev. 2008, 50, 442–471. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hou, Z.Q.; White, N.C.; Chang, Z.S.; Li, Z.Q.; Song, Y.C. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol. Rev. 2009, 36, 133–159. [Google Scholar] [CrossRef]
- Xiao, B.; Li, G.M.; Qin, K.Z.; Li, J.X.; Zhao, J.X.; Liu, X.B.; Xia, D.X.; Wu, X.B.; Peng, Z.W. Magmatic intrusion center and mineralization center of Qulong porphyry Cu-Mo deposit in Tibet: Evidence from fissure-veinlets and mineralization intensity. Miner. Depos. 2008, 27, 200–208, (In Chinese with English Abstract). [Google Scholar]
- Xu, J.; Zheng, Y.Y.; Sun, X.; Shen, Y.H. Geochronology and petrogenesis of Miocene granitic intrusions related to the Zhibula Cu skarn deposit in the Gangdese belt, southern Tibet. J. Asian Earth Sci. 2016, 120, 100–116. [Google Scholar] [CrossRef]
- Wang, L.L.; Mo, X.X.; Li, B.; Dong, G.C.; Zhao, Z.D. Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet. Acta Petrol. Sin. 2006, 22, 1001–1008, (In Chinese with English Abstract). [Google Scholar]
- Yang, Z.M. The Qulong Giant Porphyry Copper Deposit in Tibet: Magmatism and Mineralization. Ph.D Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2008. (In Chinese with English Abstract). [Google Scholar]
- Hu, Y.B.; Liu, J.Q.; Ling, M.X.; Ding, W.; Liu, Y.; Zartman, R.E.; Ma, X.F.; Liu, D.Y.; Zhang, C.C.; Sun, S.J.; et al. The formation of Qulong adakites and their relationship with porphyry copper deposit: Geochemical constraints. Lithos 2015, 220–223, 60–80. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Gao, Y.F.; Qu, X.M.; Rui, Z.Y.; Mo, X.X. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet. Sc. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Mo, J.H.; Liang, H.Y.; Yu, H.X.; Xie, Y.W.; Zhang, Y.Q. Comparison of ELA-ICP-MS and SHRIMP U-Pb zircon ages of the Chongjiang and Qulong ore-bearing porphyries in the Gangdese porphyry copper belt. Geotecton. Metallog. 2006, 30, 504–509, (In Chinese with English Abstract). [Google Scholar]
- Meng, X.J.; Hou, Z.Q.; Gao, Y.F.; Huang, W.; Qu, X.M.; Qu, W.J. Re-Os dating for molybdenite from Qulong porphyry copper deposit in Gangdese Metallogenic Belt, Xizang and its metallogenic significance. Geol. Rev. 2003, 49, 660–666, (In Chinese with English Abstract). [Google Scholar]
- Li, G.M.; Rui, Z.Y. Diagenetic and mineralization ages for the porphyry copper deposits in the Gangdise metallogenic belt, southern Xizang. Geotecton. Metallog. 2004, 28, 165–170, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Selby, D.; Condon, D.; Tapster, S. Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit. Econ. Geol. 2017, 112, 1419–1440. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wang, C.M.; Li, X.H. Temporal-spatial coincidence may not always discern causality: Insights from two skarn deposits in Anqing and Zhibula, China. Ore Geol. Rev. 2022, 146, 104951. [Google Scholar] [CrossRef]
- Locock, A.J. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 2014, 62, 1–11. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Puerini, M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction related volcanoes. Contrib. Mineral. Petrol. 2010, 160, 45–66. [Google Scholar] [CrossRef]
- Schmidt, M.W. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol. 1992, 110, 304–310. [Google Scholar] [CrossRef]
- Shao, T.B.; Xia, Y.; Ding, X.; Cai, Y.F.; Song, M.S. Zircon saturation model in silicate melts: A review and update. Acta Geochim. 2020, 39, 387–403. [Google Scholar] [CrossRef]
- Li, Y.; Selby, D.; Feely, M.; Costanzo, A.; Li, X.H. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet. Miner. Depos. 2017, 52, 137–158. [Google Scholar] [CrossRef]
- Nachit, H.; Ibhi, A.; Abia, E.H.; Ben Ohoud, M. Discrimination between primary magmatic biotites, equilibrated biotites and neoformed biotites. Comptes Rendus Geosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.F.M. Nature of biotites from alkaline, calc-alkaline, and pera-luminous magmas. J. Petrol. 1994, 35, 525–541. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Rieder, M.; Cavazzini, G.; D’Yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guoggenheim, S.; Koval, P.V.; Muller, G.; Neiva, A.M.R.; Radoslovich, E.W.; et al. Nomenclature of the micas. Can. Mineral. 1998, 36, 41–48. [Google Scholar] [CrossRef]
- Tischendorf, G.; Gottesmann, B.; Förster, H.J.; Trumbull, R.D. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag. 1997, 61, 809–834. [Google Scholar] [CrossRef]
- Foster, M.D. Interpretation of the composition of trioctahedral micas. U.S. Geol. Surv. Prof. Pap. B 1960, 354, 11–49. [Google Scholar]
- Xu, H.X.; Wang, Y. Can biotite geothermometer be used to estimate the crystallization temperature of granitic intrusive rocks? Acta Petrol. Mineral. 2024, 43, 37–46, (In Chinese with English Abstract). [Google Scholar]
- Cao, K.; Yang, Z.M.; White, N.C.; Hou, Z.Q. Generation of the Giant Porphyry Cu-Au Deposit by Repeated Recharge of Mafic Magmas at Pulang in Eastern Tibet. Econ. Geol. 2022, 117, 57–90. [Google Scholar] [CrossRef]
- Richards, J.P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econ. Geol. 2011, 106, 1075–1081. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Chi, G.X.; Diamond, L.W.; Lu, H.Z.; Lai, J.Q.; Chu, H.X. Common problems and pitfalls in fluid inclu-sion study: A review and discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Li, C.H.; Shen, P.; Seltmann, R.; Zhang, D.; Pan, H.D.; Seitmuratova, E. Quartz textures, trace elements, fluid inclusions, and in situ oxygen isotopes from Aktogai porphyry Cu deposit, Kazakhstan. Am. Mineral. 2025, 110, 272–292. [Google Scholar] [CrossRef]
- Erdmann, S.; Martel, C.; Pichavant, M.; Kushnir, A. Amphibole as an archivist of magmatic crystallization conditions: Problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib. Mineral. Petrol. 2014, 167, 1016. [Google Scholar] [CrossRef]
- Putirka, K. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am. Mineral. 2016, 101, 841–858. [Google Scholar] [CrossRef]
- Cao, M.J.; Hollings, P.; Cooke, D.R.; Evans, N.J.; McInnes, B.I.A. Physicochemical Processes in the Magma Chamber under the Black Mountain Porphyry Cu-Au Deposit, Philippines: Insights from Mineral Chemistry and Implications for Mineralization. Econ. Geol. 2018, 113, 63–82. [Google Scholar] [CrossRef]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Heinrich, C.A. The Chain of Processes Forming Porphyry Copper Deposits—An Invited Paper. Econ. Geol. 2024, 119, 741–769. [Google Scholar] [CrossRef]
- Zhu, C.; Sverjensky, D.A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochim. Cosmochim. Acta 1991, 55, 1837–1858. [Google Scholar] [CrossRef]
- Zhu, C.; Sverjensky, D.A. F-Cl-OH partitioning between biotite and apatite. Geochim. Cosmochim. Acta 1992, 56, 3435–3467. [Google Scholar] [CrossRef]
- Richards, J.P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos 2015, 233, 27–45. [Google Scholar] [CrossRef]
- Wones, D.R.; Eugster, H.P. Stability of biotite—Experiment theory and application. Am. Mineral. 1965, 50, 1228–1272. [Google Scholar]
- Tso, J.L.; Gilbert, M.C.; Craig, J.R. Sulfidation of synthetic biotites. Am. Mineral. 1979, 64, 304–316. [Google Scholar]
- Moine, B.; de Parseval, P.; Rakotondrazafy, M.; Ramambazafy, A. Fluorine-controlled composition of biotite in granulites of Madagascar: The effect of fluorine on thermometry of biotite-garnet gneisses. Contrib. Mineral. Petrol. 2019, 174, 75. [Google Scholar] [CrossRef]
- Wu, C.T. Petrogenesis of Adakites and Its Potential for Porphyry Copper Mineralization in Gangdese Belt, Tibet. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Zheng, Y.Y.; Chen, X.; Luo, S.J.C.; Ci, Q.; Zhang, L.; Wei, J.G.; Gao, S.B.; Lin, H. A modified genetic model for multiple pulsed mineralized processes at the giant Qulong porphyry Cu-Mo mineralization system. Am. Mineral. 2024, 109, 1705–1716. [Google Scholar] [CrossRef]
- Zhong, R.C.; Brugger, J.; Chen, Y.J.; Li, W.B. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol. 2015, 395, 154–164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Long, L.; Zhang, Z.; Šegvić, B.; Guan, Y.; Pan, D.; Geng, J.; Wang, Y.; Zhang, H.; Li, Q. Assessment of Biotite-Based Thermobarometers in Porphyry Systems: A Case Study from the Julong Cu–Polymetallic District of Tibet, China. Minerals 2025, 15, 1029. https://doi.org/10.3390/min15101029
Li C, Long L, Zhang Z, Šegvić B, Guan Y, Pan D, Geng J, Wang Y, Zhang H, Li Q. Assessment of Biotite-Based Thermobarometers in Porphyry Systems: A Case Study from the Julong Cu–Polymetallic District of Tibet, China. Minerals. 2025; 15(10):1029. https://doi.org/10.3390/min15101029
Chicago/Turabian StyleLi, Changhao, Lingli Long, Zhichao Zhang, Branimir Šegvić, Yuchun Guan, Deng Pan, Jian Geng, Yuwang Wang, Huiqiong Zhang, and Qingzhe Li. 2025. "Assessment of Biotite-Based Thermobarometers in Porphyry Systems: A Case Study from the Julong Cu–Polymetallic District of Tibet, China" Minerals 15, no. 10: 1029. https://doi.org/10.3390/min15101029
APA StyleLi, C., Long, L., Zhang, Z., Šegvić, B., Guan, Y., Pan, D., Geng, J., Wang, Y., Zhang, H., & Li, Q. (2025). Assessment of Biotite-Based Thermobarometers in Porphyry Systems: A Case Study from the Julong Cu–Polymetallic District of Tibet, China. Minerals, 15(10), 1029. https://doi.org/10.3390/min15101029