Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton
Abstract
1. Introduction
2. Wafangdian Kimberlite and Sampling
3. Analytic Methods
4. Petrography
5. Bulk-Rock Geochemistry
5.1. Major Elements
5.2. Trace Elements
5.3. Whole-Rock Sr-Nd Isotopes
6. Discussion
6.1. Low-Temperature Alteration
6.2. Crustal Contamination
6.3. Fractional Crystallization
6.4. Macrocryst Entrainment
6.5. Close-to-Primary Magma Composition
6.6. Partial Melting Models
6.7. Source for the Transitional Kimberlites
7. Conclusions
- The HFSE and REE concentrations remain robust indicators of primary magmatic processes, whereas alkali and alkaline earth elements show evidence of disturbance during these late-stage alteration processes. Samples exhibiting elevated SiO2, HREE, and Pb abundances are identified as having experienced crustal contamination, distinguishing them from uncontaminated samples.
- Composition variations in aphanitic kimberlites are consistent with up to 32% fractionation of olivine plus phlogopite, whereas those shown in macrocrystic kimberlites are consistent with up to 35% entrainment of mantle lherzolite. The close-to-primary kimberlite magma contains ~29.5 wt.% SiO2, 29.5 wt.% MgO, Mg# ~85, ~5 wt.% Al2O3, ~1.3 wt.%TiO2, ~1.3 wt.% K2O, ~7 wt.% CaO, and 950 ppm Ni.
- Forward modeling of mantle melting processes indicates that the Wafangdian kimberlites were generated by approximately 1% partial melting of a carbonated garnet lherzolite source.
- The combined geochemical evidence supports a model where the Wafangdian kimberlites originated from low-degree melting of convective upper mantle. Critically, this mantle source was contaminated by subducted oceanic crust material prior to kimberlite magma generation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, R.H.; Giuliani, A.; O’Brien, H. What is a Kimberlite? Petrology and Mineralogy of Hypabyssal Kimberlites. Elements 2019, 15, 381–386. [Google Scholar] [CrossRef]
- Giuliani, A.; Pearson, D.G. Kimberlites: From Deep Earth to Diamond Mines. Elements 2019, 15, 377–380. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; Januszczak, N.; Stiefenhofer, J. Diamond Exploration and Resource Evaluation of Kimberlites. Elements 2019, 15, 411–416. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the Geology of Mantle Carbon. In Reviews in Mineralogy & Geochemistry; Carbon in Earth; Hazen, R.M., Jones, A.P., Baross, J.A., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2013; Volume 75, pp. 355–421. [Google Scholar]
- Stachel, T.; Aulbach, S.; Harris, J.W. Mineral Inclusions in Lithospheric Diamonds. Rev. Mineral. Geochem. 2022, 88, 307–391. [Google Scholar] [CrossRef]
- Giuliani, A.; Pearson, D.G.; Soltys, A.; Dalton, H.; Phillips, D.; Foley, S.F.; Lim, E.; Goemann, K.; Griffin, W.L.; Mitchell, R.H. Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv. 2020, 6, eaaz0424. [Google Scholar] [CrossRef]
- Giuliani, A.; Schmidt, M.W.; Torsvik, T.H.; Fedortchouk, Y. Genesis and evolution of kimberlites. Nat. Rev. Earth Environ. 2023, 4, 738–753. [Google Scholar] [CrossRef]
- Becker, M.; le Roex, A.P. Geochemistry of South African on-and off-craton, Group I and Group II kimberlites: Petrogenesis and source region evolution. J. Petrol. 2006, 47, 673–703. [Google Scholar] [CrossRef]
- Russell, J.K.; Porritt, L.A.; Lavallée, Y.; Dingwell, D.B. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 2012, 481, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Oliver, M.; Giuliani, A.; Griffin, W.L.; O’Reilly, S.Y.; Drysdale, R.N.; Abersteiner, A.; Thomassot, E.; Li, X.H. New constraints on the source, composition, and post-emplacement modification of kimberlites from in situ C–O–Sr-isotope analyses of carbonates from the Benfontein sills (South Africa). Contr. Miner. Petrol. 2020, 175, 33. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; Pearson, D.G.; Tappe, S.; Nowell, G.M.; Dowall, D.P. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: Comparisons to a global database and applications to the parent magma problem. Lithos 2009, 112, 236–248. [Google Scholar] [CrossRef]
- le Roex, A.P.; Bell, D.R.; Davis, P. Petrogenesis of group I kimberlites from Kimberley, South Africa: Evidence from bulk-rock geochemistry. J. Petrol. 2003, 44, 2261–2286. [Google Scholar] [CrossRef]
- Stamm, N.; Schmidt, M.W.; Szymanowski, D.; von Quadt, A.; Mohapi, T.; Fourie, A. Primary petrology, mineralogy and age of the Letšeng-la-Terae kimberlite (Lesotho, Southern Africa) and parental magmas of Group-I kimberlites. Contr. Miner. Petrol. 2018, 173, 76. [Google Scholar] [CrossRef]
- Giuliani, A.; Soltys, A.; Phillips, D.; Kamenetsky, V.S.; Maas, R.; Goemann, K.; Woodhead, J.D.; Drysdale, R.N.; Griffin, W.L. The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem. Geol. 2017, 455, 342–356. [Google Scholar] [CrossRef]
- Soltys, A.; Giuliani, A.; Phillips, D.; Kamenetsky, V.S. Kimberlite Metasomatism of the Lithosphere and the Evolution of Olivine in Carbonate-rich Melts—Evidence from the Kimberley Kimberlites (South Africa). J. Petrol. 2020, 61, egaa062. [Google Scholar] [CrossRef]
- Price, S.E.; Russell, J.K.; Kopylova, M.G. Primitive magma from the Jericho pipe, N.W.T., Canada: Constraints on primary kimberlite melt chemistry. J. Petrol. 2000, 1, 789–808. [Google Scholar] [CrossRef]
- Nielsen, T.F.D.; Sand, K.K. The Majuagaa kimberlite dike, Maniitsoq region, West Greenland: Constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk compositions. Can. Mineral. 2008, 46, 1043–1061. [Google Scholar] [CrossRef]
- Soltys, A.; Giuliani, A.; Phillips, D. A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 2018, 304–307, 1–15. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Grütter, H.; Kamenetsky, M.B.; Gömann, K. Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem. Geol. 2013, 353, 96–111. [Google Scholar] [CrossRef]
- Woodhead, J.; Hergt, J.; Giuliani, A.; Maas, R.; Phillips, D.; Pearson, D.G.; Nowell, G. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature 2019, 573, 578–581. [Google Scholar] [CrossRef]
- Currie, C.A.; Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 2011, 303, 59–70. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; Heaman, L.M.; Sarkar, C.; Pearson, D.G. The North America mid-Cretaceous kimberlite corridor: Wet, edge-driven decompression melting of an OIB-type deep mantle source. Geochem. Geophys. Geosyst. 2017, 18, 2727–2747. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, A.; Pankaj, P.; Pandit, D.; Chakrabarti, R.; Rao, N.V.C. Petrology and Sr-Nd isotope systematics of the Ahobil kimberlite (Pipe-16) from the Wajrakarur field, Eastern Dharwar craton, southern India. Geosci. Front. 2019, 10, 1167–1186. [Google Scholar] [CrossRef]
- Tappe, S.; Smart, K.; Torsvik, T.; Massuyeau, M.; de Wit, M. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 2018, 484, 1–14. [Google Scholar] [CrossRef]
- Pearson, D.G.; Woodhead, J.; Janney, P.E. Kimberlites as Geochemical Probes of Earth’s Mantle. Elements 2019, 15, 387–392. [Google Scholar] [CrossRef]
- Smith, C.B. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 1983, 304, 51–54. [Google Scholar] [CrossRef]
- Tompkins, L.A.; Meyer, S.P.; Han, Z.; Hu, S. Petrology and Geochemistry of Kimberlites from Shandong and Liaoning Provinces, China. In Proceedings of 7th International Kimberlite Conference; Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H., Eds.; University of Cape Town: Cape Town, South Africa, 1999; pp. 872–887. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Wang, G.G.; Ding, J.Y.; Kang, N. Temperature and oxygen state of kimberlite magma from the North China Craton and their implication for diamond survival. Miner. Depos. 2022, 57, 301–318. [Google Scholar] [CrossRef]
- Chalapathi Rao, N.V.; Dongre, A.; Kamde, G.; Srivastava, R.K.; Sridhar, M.; Kaminsky, F.V. Petrology, geochemistry and genesis of newly discovered Mesoproterozoic highly magnesian, calcite-rich kimberlites from Siddanpalli, Eastern Dharwar Craton, Southern India: Products of subduction-related magmatic sources? Mineral. Petrol. 2010, 98, 313–328. [Google Scholar] [CrossRef]
- Chalapathi Rao, N.V.; Dongre, A.N. Mineralogy and geochemistry of kimberlites NK–2 and KK–6, Narayanpet kimerlite field, eastern Dharwar Craton, Southern India: Evidence for a transitional kimberlite signature. Can. Mineral. 2009, 47, 1117–1135. [Google Scholar]
- Beard, A.D.; Downes, H.; Hegner, E.; Sablukov, S.M. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: Evidence for transitional kimberlite magma types. Lithos 2000, 51, 47–73. [Google Scholar] [CrossRef]
- Sarkar, S.; Giuliani, A.; Dalton, H.; Phillips, D.; Ghosh, S.; Misev, S.; Maas, R. Derivation of Lamproites and Kimberlites from a Common Evolving Source in the Convective Mantle: The Case for Southern African ‘Transitional Kimberlites’. J. Petrol. 2023, 64, egad043. [Google Scholar] [CrossRef]
- Skinner, E.M.W.; Apter, D.B.; Morelli, C.; Smithson, N.K. Kimberlites of the Man craton, West Africa. Lithos 2004, 76, 233–259. [Google Scholar] [CrossRef]
- Chi, J.S.; Lu, F.X.; Liu, Y.S.; Hu, S.J.; Zhao, C.H.; Ye, D.L. The Study of Formation Conditions of Primary Diamond Deposits in China; China University of Geosciences Press: Beijing, China, 1996. [Google Scholar]
- Yang, Y.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M.; Zhang, Y.B.; Xie, L.W.; Yang, J.H. In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem. Geol. 2009, 264, 24–42. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhou, M.F.; Sun, M.; Zhou, X.H. The origin of Mengyin and Fuxian diamondiferous kimberlites from the North China Craton: Implication for Palaeozoic subducted oceanic slab–mantle interaction. J. Asian Earth Sci. 2010, 37, 425–437. [Google Scholar] [CrossRef]
- Li, Q.L.; Wu, F.Y.; Li, X.H.; Qiu, Z.L.; Liu, Y.; Yang, Y.H.; Tang, G.Q. Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos 2011, 126, 127–134. [Google Scholar] [CrossRef]
- Dobbs, P.N.; Duncan, D.J.; Hu, S.; Shee, S.R.; Colgan, E.A.; Brown, M.A.; Smith, C.B.; Allsopp, H.L. The Geology of the Mengyin Kimberlites, Shandong, China. In The 5th International Kimberlite Conference: Extended Abstracts; Companhia de Pesquisa de Recursos Minerais (CPRM): Brasília, Brazil, 1991. [Google Scholar]
- Li, D.; Wu, Z.; Sun, X.; Shuai, S.; Fu, Y.; Li, D.; Chen, H.; Lu, Y.; Hong, L. Emplacement ages of diamondiferous kimberlites in the Wafangdian District, North China Craton: New evidence from LA-ICP-MS U-Pb geochronology of andradite-rich garnet. Gondwana Res. 2022, 109, 493–517. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Wang, G.G.; Ding, J.Y.; Fan, M.S.; Ma, Y.G. Geochronology, geochemistry and petrogenesis of the Laozhaishan dolerite sills in the southeastern margin of the North China Craton and their geological implication. Gondwana Res. 2019, 67, 131–146. [Google Scholar] [CrossRef]
- Fu, H.T.; Wan, F.L.; Jiang, L.L.; Xu, H.; Li, Y.X.; Yang, L. Geological Characteristics of Kimberlites in Wafangdian Diamond Orefield, Liaoning Province. Acta Geosci. Sin. 2021, 42, 859–867. (In Chinese) [Google Scholar]
- Zhu, R.Z.; Ni, P.; Ding, J.Y.; Wang, G.G.; Fan, M.S.; Li, S.N. Metasomatic processes in the lithospheric mantle beneath the No. 30 kimberlite (Wafangdian Region, North China Craton). Can. Mineral. 2019, 57, 499–517. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Ding, J.Y.; Wang, D.Z.; Ju, Y.; Kang, N.; Wang, G.G. Petrography, chemical composition, and Raman spectra of chrome spinel: Constraints on the diamond potential of the No. 30 pipe kimberlite in Wafangdian, North China Craton. Ore Geol. Rev. 2017, 91, 896–905. [Google Scholar] [CrossRef]
- Zhu, R.Z.; Ni, P.; Ding, J.Y.; Wang, G.G. Geochemistry of magmatic and xenocrystic spinel in the No.30 kimberlite pipe (Liaoning Province, North China Craton): Constraints on diamond potential. Minerals 2019, 9, 382. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, G.; Fu, H.; Wang, H.; Liu, Z.; Liu, J.; Wu, Z.; Gao, F.; Gao, Y.; Pan, Y.; et al. Deep kimberlite prospecting and thrust-nappe structure: Analysis of diamond metallogenic belt in Wafangdian, China. Int. Geol. Rev. 2022, 65, 807–822. [Google Scholar] [CrossRef]
- Pu, W.; Gao, J.F.; Zhao, K.D.; Ling, H.F.; Jiang, S.Y. Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA. J. Nanjing Univ. (Nat. Sci.) 2005, 4, 16. [Google Scholar]
- Clement, C.R.; Skinner, E.M.W. Textural genetic clasification of kimberlites. Trans. Geol. Soc. S. Afr. 1979, 88, 403–410. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Dev. Geochem. 1984, 2, 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yang, Y.H. Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrol. Sin. 2007, 23, 285–294. (In Chinese) [Google Scholar]
- Zhang, H.F.; Goldstein, S.L.; Zhou, X.H.; Sun, M.; Zheng, J.P.; Cai, Y. Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contr Miner. Petrol. 2008, 155, 271–293. [Google Scholar] [CrossRef]
- Tovey, M.; Giuliani, A.; Phillips, D.; Pearson, D.G.; Sarkar, C.; Nowicki, T.; Carlson, J. The spatial and temporal evolution of primitive melt compositions within the Lac de Gras kimberlite field, Canada: Source evolution vs lithospheric mantle assimilation. Lithos 2021, 392–393, 106142. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry and Petrology; Plenum: New York, NY, USA, 1986; 442p. [Google Scholar]
- Sparks, R.S.; Brooker, R.A.; Field, M.; Kavanagh, J.; Schumacher, J.C.; Walter, M.J.; White, J. The nature of erupting kimberlite melts. Lithos 2009, 112, 429–438. [Google Scholar] [CrossRef]
- Sparks, R.S.J. Kimberlite Volcanism. Annu. Rev. Earth Planet. Sci. 2013, 41, 497–528. [Google Scholar] [CrossRef]
- Giuliani, A. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 2018, 312–313, 322–342. [Google Scholar] [CrossRef]
- Clement, C.R. A Comparative Geological Study of Some Major Kimberlite Pipes in Northern Cape and Orange Free State; University of Cape Town: Cape Town, South Africa, 1982. [Google Scholar]
- Taylor, W.R.; Tompkins, L.A.; Haggerty, S.E. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin. Geochim. Cosmochim. Acta 1994, 58, 4017–4037. [Google Scholar] [CrossRef]
- Coe, N.; le Roex, A.; Gurney, J.; Pearson, D.G.; Nowell, G. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: Constraints from whole rock geochemistry. Contr Miner. Petrol. 2008, 156, 627. [Google Scholar] [CrossRef]
- Hart, S.R.; Davis, K.E. Nickel partitioning between olivine and silicate melt. Earth Planet. Sci. Lett. 1978, 40, 203–219. [Google Scholar] [CrossRef]
- Grégoire, M.; Bell, D.; le Roex, A. Garnet lherzolites from the Kaapvaal Craton (South Africa): Trace element evidence for a metasomatic history. J. Petrol. 2003, 44, 629–657. [Google Scholar] [CrossRef]
- Zheng, J.; Griffin, W.L.; O’Reilly, S.Y.; Yang, J.; Li, T.; Zhang, M.; Zhang, R.Y.; Liou, J.G. Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. J. Petrol. 2006, 47, 2233–2256. [Google Scholar] [CrossRef]
- Dalton, J.A.; Presnall, D.C. The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: Data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J. Petrol. 1998, 39, 1953–1964. [Google Scholar] [CrossRef]
- Dalton, J.A.; Presnall, D.C. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contr. Miner. Petrol. 1998, 131, 123–135. [Google Scholar] [CrossRef]
- Gudfinnson, G.H.; Presnall, D.C. Continuous Gradations among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa. J. Petrol. 2005, 46, 1645–1659. [Google Scholar] [CrossRef]
- Foley, S.F.; Yaxley, G.M.; Rosenthal, A.; Buhre, S.; Kiseeva, E.S.; Rapp, R.P.; Jacob, D.E. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 2009, 112, 274–283. [Google Scholar] [CrossRef]
- Brey, G.P.; Bulatov, V.K.; Girnis, A.V.; Lahaye, Y. Experimental Melting of Carbonated Peridotite at 6–10 GPa. J. Petrol. 2008, 49, 797–821. [Google Scholar] [CrossRef]
- Tappe, S.; Graham Pearson, D.; Kjarsgaard, B.A.; Nowell, G.; Dowall, D. Mantle transition zone input to kimberlite magmatism near a subduction zone: Origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada. Earth Planet. Sci. Lett. 2013, 371–372, 235–251. [Google Scholar] [CrossRef]
- Giuliani, A.; Jackson, M.; Fitzpayne, A.; Dalton, H. Remnants of early Earth differentiation in the deepest mantle-derived lavas. Proc. Natl. Acad. Sci. USA 2021, 118, e2015211118. [Google Scholar] [CrossRef] [PubMed]
- Jaques, A.; Lewis, J.; Smith, C. The Kimberlites and Lamproites of Western Australia: Geological Survey of Western Australia Bulletin; Australian National University: Canberra, Australia, 1986. [Google Scholar]
Pipe | L30 Pipe | L40 Pipe | L1 Pipe | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | L30-1 | L30-2 | L30-3 | L30-4 | L30-5 | L30-6 | L42-1 | L42-2 | L42-3 | L42-4 | L42-5 | L42-6 | L1-1 | L1-2 | L1-3 |
Texture | aph | aph | aph | macro | aph | aph | aph | aph | macro | macro | macro | macro | macro | macro | aph |
Major elements | |||||||||||||||
SiO2 | 29.33 | 34.61 | 34.12 | 35.43 | 34.45 | 29.10 | 35.42 | 34.72 | 37.18 | 36.58 | 35.97 | 36.10 | 31.12 | 30.55 | 29.88 |
TiO2 | 1.23 | 1.45 | 1.51 | 1.40 | 1.42 | 1.14 | 2.03 | 1.95 | 2.19 | 2.05 | 2.06 | 2.21 | 1.30 | 1.27 | 1.38 |
Al2O3 | 4.67 | 5.15 | 4.64 | 4.62 | 4.75 | 4.46 | 4.78 | 4.90 | 4.63 | 4.94 | 4.40 | 4.38 | 4.81 | 4.51 | 3.91 |
Fe2O3 | 11.23 | 10.05 | 10.73 | 10.33 | 9.83 | 9.55 | 7.14 | 7.31 | 7.62 | 8.65 | 8.77 | 9.23 | 9.61 | 9.91 | 12.64 |
MnO | 0.13 | 0.16 | 0.14 | 0.13 | 0.13 | 0.14 | 0.17 | 0.18 | 0.25 | 0.26 | 0.25 | 0.20 | 0.34 | 0.33 | 0.11 |
MgO | 25.91 | 27.49 | 28.20 | 27.38 | 28.20 | 25.98 | 28.37 | 28.10 | 31.42 | 31.23 | 31.51 | 29.31 | 30.43 | 30.66 | 27.64 |
CaO | 7.54 | 6.14 | 5.72 | 4.46 | 5.81 | 8.79 | 5.40 | 6.14 | 2.32 | 1.68 | 2.23 | 2.73 | 7.08 | 7.49 | 6.76 |
K2O | 1.89 | 2.13 | 2.12 | 2.91 | 1.26 | 2.15 | 0.92 | 1.01 | 0.83 | 0.72 | 0.85 | 2.23 | 1.70 | 1.52 | 1.38 |
Na2O | 0.38 | 0.33 | 0.39 | 0.39 | 0.38 | 0.35 | 0.24 | 0.25 | 0.32 | 0.27 | 0.33 | 0.28 | 0.34 | 0.34 | 0.38 |
P2O5 | 0.87 | 0.47 | 0.76 | 0.32 | 0.46 | 0.51 | 0.72 | 0.81 | 0.95 | 0.78 | 0.75 | 1.09 | 1.05 | 0.61 | 1.37 |
SO3 | 0.02 | 0.04 | 0.08 | 0.07 | 0.06 | 0.10 | 0.02 | 0.03 | 0.17 | 0.03 | 0.01 | 0.02 | 0.18 | 0.11 | 0.03 |
Cr2O3 | 0.25 | 0.21 | 0.21 | 0.20 | 0.21 | 0.21 | 0.19 | 0.18 | 0.20 | 0.18 | 0.18 | 0.19 | 0.21 | 0.19 | 0.18 |
LOI | 16.33 | 11.75 | 10.95 | 11.38 | 12.99 | 17.15 | 14.42 | 13.74 | 12.39 | 12.44 | 12.47 | 11.86 | 12.04 | 11.82 | 14.32 |
SUM | 99.78 | 99.98 | 99.57 | 99.02 | 99.95 | 99.63 | 99.82 | 99.32 | 100.47 | 99.81 | 99.77 | 99.83 | 100.21 | 99.31 | 99.98 |
Mg# | 81.9 | 84.3 | 83.7 | 83.9 | 84.9 | 84.2 | 88.6 | 88.3 | 89.0 | 87.6 | 87.6 | 86.2 | 86.1 | 85.8 | 81.1 |
C.I. | 1.16 | 1.26 | 1.21 | 1.22 | 1.29 | 1.12 | 1.34 | 1.32 | 1.27 | 1.28 | 1.23 | 1.21 | 1.07 | 1.05 | 1.12 |
Trace elements | |||||||||||||||
Zr | 252 | 176 | 251 | 281 | 343 | 282 | 345 | 338 | 365 | 359 | 346 | 357 | 329 | 218 | 294 |
Nb | 300 | 173 | 288 | 192 | 198 | 320 | 171 | 160 | 181 | 165 | 172 | 175 | 306 | 207 | 321 |
Y | 15.6 | 15.0 | 18.2 | 13.5 | 13.9 | 16.6 | 19.9 | 19.5 | 19.1 | 21.8 | 20.0 | 18.0 | 16.1 | 12.7 | 17.7 |
Rb | 127 | 375 | 273 | 259 | 276 | 152 | 57 | 60 | 50 | 43 | 51 | 128 | 133 | 170 | 97 |
Ba | 3160 | 4500 | 3310 | 3130 | 3260 | 4660 | 793 | 896 | 669 | 525 | 691 | 1825 | 4170 | 2180 | 2250 |
Sr | 780 | 393 | 419 | 414 | 591 | 1015 | 273 | 262 | 344 | 285 | 248 | 647 | 665 | 441 | 915 |
Co | 54 | 63 | 69 | 72 | 69 | 69 | 64 | 77 | 41 | 39 | 42 | 39 | 64 | 77 | 49 |
Cr | 1100 | 1030 | 1130 | 1090 | 1080 | 1060 | 900 | 869 | 942 | 928 | 962 | 999 | 1340 | 1293 | 1040 |
Ni | 584 | 740 | 829 | 855 | 821 | 880 | 695 | 739 | 875 | 679 | 689 | 777 | 1129 | 1021 | 521 |
V | 110 | 76 | 107 | 78 | 100 | 100 | 265 | 305 | 219 | 245 | 250 | 289 | 65 | 130 | 60 |
Sc | 17 | 20 | 19 | 18 | 19 | 12 | 17 | 17 | 18 | 18 | 18 | 17 | 25 | 25 | 25 |
Th | 64 | 32 | 48 | 36 | 35 | 66 | 22.8 | 22.4 | 23.8 | 23.4 | 22.1 | 24 | 68 | 33 | 65 |
U | 6.7 | 2.94 | 5.9 | 4.4 | 4.4 | 9.4 | 4.6 | 4.6 | 5.1 | 4.9 | 4.8 | 5.1 | 5.3 | 5.1 | 9.8 |
Pb | 36 | 33 | 56 | 39 | 33 | 47 | 60 | 34 | 32 | 38 | 52 | 116 | 33 | 28 | 59 |
Ta | 17.9 | 12.2 | 17.6 | 13.8 | 13.7 | 18.8 | 10.6 | 10.6 | 11.8 | 10.9 | 10.9 | 11.7 | 18.3 | 12.5 | 17.1 |
Hf | 6.0 | 4.1 | 5.7 | 6.1 | 7.4 | 6.2 | 8.0 | 8.2 | 8.9 | 8.5 | 8.0 | 9.3 | 7.1 | 4.6 | 7.1 |
La | 256 | 176 | 297 | 196 | 209 | 307 | 92 | 102 | 138 | 161 | 200 | 87 | 218 | 193 | 352 |
Ce | 485 | 304 | 485 | 331 | 345 | 579 | 228 | 245 | 292 | 300 | 371 | 229 | 388 | 319 | 595 |
Pr | 46 | 27.9 | 44 | 30 | 31 | 54 | 26.8 | 28.8 | 31 | 32 | 35 | 27.6 | 37 | 28.1 | 54 |
Nd | 140 | 87 | 128 | 92 | 91 | 165 | 96 | 101 | 102 | 104 | 115 | 96 | 115 | 82 | 161 |
Sm | 15.2 | 10.6 | 14.7 | 10.5 | 10.6 | 19.8 | 14.2 | 14.4 | 14.0 | 14.4 | 14.7 | 14.1 | 13.8 | 9.2 | 17.6 |
Eu | 4.6 | 2.55 | 3.8 | 3.1 | 3.0 | 5.4 | 2.91 | 2.87 | 4.7 | 4.0 | 4.0 | 3.9 | 3.2 | 2.71 | 4.4 |
Gd | 8.3 | 6.4 | 8.4 | 6.4 | 6.2 | 9.7 | 8.4 | 8.8 | 8.6 | 8.9 | 8.7 | 9.0 | 7.9 | 5.3 | 9.4 |
Tb | 0.86 | 0.70 | 0.93 | 0.70 | 0.69 | 0.98 | 0.89 | 0.90 | 0.92 | 0.98 | 0.96 | 0.95 | 0.89 | 0.60 | 0.99 |
Dy | 3.9 | 3.4 | 4.5 | 3.4 | 3.2 | 4.5 | 4.3 | 4.3 | 4.4 | 4.7 | 4.4 | 4.5 | 4.0 | 2.90 | 4.5 |
Ho | 0.57 | 0.55 | 0.68 | 0.56 | 0.49 | 0.67 | 0.71 | 0.71 | 0.75 | 0.79 | 0.73 | 0.75 | 0.64 | 0.48 | 0.67 |
Er | 1.29 | 1.33 | 1.75 | 1.33 | 1.26 | 1.55 | 1.69 | 1.79 | 1.66 | 1.86 | 1.72 | 1.76 | 1.49 | 1.11 | 1.56 |
Tm | 0.16 | 0.16 | 0.21 | 0.17 | 0.16 | 0.19 | 0.22 | 0.23 | 0.21 | 0.24 | 0.22 | 0.22 | 0.19 | 0.15 | 0.19 |
Yb | 0.84 | 0.86 | 1.22 | 0.93 | 0.91 | 1.07 | 1.27 | 1.38 | 1.24 | 1.37 | 1.28 | 1.23 | 1.16 | 0.79 | 1.01 |
Lu | 0.11 | 0.12 | 0.16 | 0.14 | 0.13 | 0.14 | 0.19 | 0.21 | 0.17 | 0.20 | 0.19 | 0.18 | 0.17 | 0.12 | 0.14 |
La/Nb | 0.85 | 1.01 | 1.03 | 1.02 | 1.06 | 0.96 | 0.54 | 0.63 | 0.76 | 0.98 | 1.16 | 0.50 | 0.71 | 0.93 | 1.10 |
La/Th | 3.99 | 5.42 | 6.16 | 5.46 | 5.92 | 4.63 | 4.05 | 4.53 | 5.80 | 6.86 | 9.03 | 3.63 | 3.21 | 5.85 | 5.46 |
Ba/Nb | 10.53 | 26.01 | 11.49 | 16.30 | 16.46 | 14.56 | 4.64 | 5.60 | 3.70 | 3.19 | 4.03 | 10.46 | 13.63 | 10.53 | 7.01 |
Th/Nb | 0.21 | 0.19 | 0.17 | 0.19 | 0.18 | 0.21 | 0.13 | 0.14 | 0.13 | 0.14 | 0.13 | 0.14 | 0.22 | 0.16 | 0.20 |
Nb/Th | 4.68 | 5.34 | 5.98 | 5.36 | 5.61 | 4.83 | 7.50 | 7.14 | 7.61 | 7.03 | 7.76 | 7.27 | 4.50 | 6.29 | 4.98 |
Ce/Pb | 13.47 | 9.21 | 8.66 | 8.49 | 10.45 | 12.32 | 3.80 | 7.21 | 9.13 | 7.89 | 7.13 | 1.97 | 11.76 | 11.39 | 10.08 |
Nb/U | 45.11 | 58.84 | 48.98 | 44.14 | 45.00 | 33.90 | 37.42 | 34.93 | 35.49 | 33.92 | 36.03 | 34.35 | 58.29 | 40.99 | 32.72 |
Nb/Th | 4.68 | 5.34 | 5.98 | 5.36 | 5.61 | 4.83 | 7.50 | 7.14 | 7.61 | 7.03 | 7.76 | 7.27 | 4.50 | 6.29 | 4.98 |
Pipe | L1 Pipe | L50 Pipe | Primary Magma | ||||||||||||
Sample | L1-4 | L1-5 | L1-6 | L1-7 | L1-8 | L1-9 | L1-10 | L50-1 | L50-2 | L50-3 | L50-4 | L50-5 | L50-6 | ||
Texture | aph | aph | aph | aph | aph | aph | aph | aph | macro | macro | macro | macro | macro | ||
Major elements | |||||||||||||||
SiO2 | 27.70 | 29.99 | 30.86 | 30.62 | 29.51 | 29.56 | 29.73 | 33.68 | 34.74 | 32.19 | 30.67 | 32.66 | 29.86 | 33.59 | |
TiO2 | 1.37 | 1.35 | 1.25 | 1.22 | 1.27 | 1.20 | 1.32 | 1.43 | 1.28 | 1.24 | 1.39 | 1.22 | 1.35 | 1.77 | |
Al2O3 | 4.18 | 5.19 | 4.75 | 4.69 | 4.83 | 4.63 | 5.22 | 1.87 | 2.13 | 2.66 | 2.61 | 2.70 | 4.93 | 4.91 | |
Fe2O3 | 10.77 | 10.99 | 11.03 | 10.81 | 10.33 | 10.70 | 10.14 | 11.35 | 8.84 | 8.66 | 10.13 | 10.12 | 10.09 | 9.31 | |
MnO | 0.20 | 0.22 | 0.23 | 0.27 | 0.27 | 0.27 | 0.22 | 0.20 | 0.24 | 0.34 | 0.20 | 0.33 | 0.33 | 0.24 | |
MgO | 23.95 | 28.40 | 29.12 | 28.72 | 29.55 | 28.19 | 29.66 | 28.28 | 32.88 | 30.75 | 30.20 | 31.45 | 29.73 | 29.91 | |
CaO | 11.78 | 9.34 | 5.97 | 7.95 | 6.73 | 7.80 | 6.56 | 5.28 | 3.91 | 5.89 | 6.13 | 5.41 | 6.83 | 5.83 | |
K2O | 1.40 | 2.22 | 1.34 | 1.38 | 1.42 | 1.29 | 1.62 | 0.69 | 0.65 | 0.45 | 0.54 | 0.70 | 0.78 | 1.53 | |
Na2O | 0.32 | 0.31 | 0.30 | 0.28 | 0.29 | 0.27 | 0.34 | 0.30 | 0.35 | 0.31 | 0.29 | 0.30 | 0.29 | 0.32 | |
P2O5 | 1.22 | 0.26 | 0.30 | 0.64 | 0.44 | 0.62 | 0.87 | 0.94 | 0.73 | 0.32 | 0.09 | 0.57 | 0.42 | 0.61 | |
SO3 | 0.01 | 0.09 | 0.02 | 0.09 | 0.01 | 0.06 | 0.08 | 0.08 | 0.08 | 0.05 | 0.04 | 0.00 | 0.06 | 0.13 | |
Cr2O3 | 0.18 | 0.24 | 0.21 | 0.19 | 0.28 | 0.19 | 0.22 | 0.37 | 0.31 | 0.31 | 0.39 | 0.29 | 0.32 | 0.22 | |
LOI | 16.85 | 10.82 | 14.02 | 12.67 | 14.56 | 15.54 | 13.59 | 15.02 | 13.57 | 16.61 | 17.79 | 15.02 | 14.12 | 11.61 | |
SUM | 99.92 | 99.42 | 99.40 | 99.53 | 99.49 | 100.32 | 99.57 | 99.49 | 99.71 | 99.78 | 100.47 | 100.77 | 99.11 | 99.95 | |
Mg# | 81.3 | 83.5 | 83.8 | 83.9 | 84.9 | 83.8 | 85.2 | 83.0 | 87.9 | 87.4 | 85.4 | 85.9 | 85.2 | 86.3 | |
C.I. | 1.20 | 1.08 | 1.13 | 1.13 | 1.07 | 1.12 | 1.07 | 1.21 | 1.09 | 1.11 | 1.07 | 1.09 | 1.12 | 1.18 | |
Trace elements | |||||||||||||||
Zr | 275 | 267 | 259 | 312 | 336 | 291 | 147 | 296 | 272 | 241 | 291 | 251 | 281 | 316 | |
Nb | 254 | 309 | 280 | 295 | 346 | 295 | 234 | 168 | 163 | 139 | 167 | 139 | 155 | 245 | |
Y | 19.9 | 17.6 | 17.9 | 17.5 | 23.1 | 16.3 | 13.5 | 8.6 | 8.1 | 6.8 | 9.5 | 10.0 | 11.1 | 18.4 | |
Rb | 166 | 182 | 95 | 106 | 128 | 87 | 177 | 67 | 61 | 38 | 39 | 49 | 51 | 116 | |
Ba | 4190 | 3890 | 1200 | 3660 | 3040 | 2460 | 3040 | 3630 | 2400 | 962 | 342 | 1365 | 1250 | 2280 | |
Sr | 966 | 339 | 759 | 1050 | 371 | 926 | 498 | 576 | 445 | 257 | 194 | 417 | 380 | 342 | |
Co | 55 | 71 | 50 | 60 | 56 | 58 | 71 | 88 | 107 | 98 | 73 | 68 | 65 | 56 | |
Cr | 794 | 1230 | 1120 | 986 | 1270 | 1020 | 1090 | 1790 | 1570 | 1480 | 1450 | 1510 | 1220 | 1086 | |
Ni | 597 | 720 | 801 | 670 | 933 | 846 | 936 | 1440 | 1590 | 1400 | 1290 | 1430 | 950 | 797.5 | |
V | 71 | 65 | 58 | 70 | 125 | 85 | 130 | 115 | 100 | 29 | 30 | 35 | 30 | 142 | |
Sc | 23 | 23 | 24 | 26 | 26 | 26 | 26 | 16 | 14 | 14 | 16 | 15 | 15 | 20.5 | |
Th | 60 | 75 | 68 | 57 | 68 | 58 | 34 | 22.3 | 19.8 | 19.85 | 23.1 | 21.2 | 23.4 | 50 | |
U | 9.1 | 8.4 | 10.8 | 9.8 | 8.9 | 9.4 | 5.1 | 4.0 | 4.0 | 3.3 | 3.7 | 3.9 | 4.5 | 6.8 | |
Pb | 63 | 44 | 48 | 47 | 46 | 55 | 33 | 42 | 14 | 19 | 17 | 22 | 16 | 38 | |
Ta | 16.9 | 20.5 | 18.0 | 15.6 | 18.7 | 15.0 | 14.3 | 10.2 | 9.2 | 9.0 | 11.2 | 9.3 | 10.5 | 16.2 | |
Hf | 6.9 | 6.8 | 6.5 | 7.0 | 7.2 | 6.3 | 2.9 | 6.3 | 5.7 | 5.6 | 6.9 | 6.1 | 6.9 | 7.9 | |
La | 356 | 367 | 341 | 327 | 268 | 337 | 229 | 101 | 87 | 104 | 146 | 150 | 177 | 253 | |
Ce | 604 | 645 | 599 | 560 | 474 | 550 | 386 | 194 | 160 | 195 | 279 | 282 | 327 | 469 | |
Pr | 55 | 60 | 55 | 49 | 44 | 49 | 35 | 19.1 | 16.0 | 19.8 | 29.2 | 27.5 | 31 | 45 | |
Nd | 160 | 178 | 162 | 146 | 132 | 141 | 101 | 61 | 52 | 64 | 94 | 90 | 103 | 140 | |
Sm | 18.4 | 17.9 | 17.6 | 16.3 | 17.6 | 15.3 | 11.6 | 8.0 | 6.9 | 8.4 | 11.5 | 11.1 | 13.1 | 15.9 | |
Eu | 5.0 | 5.2 | 4.8 | 4.2 | 4.8 | 3.9 | 3.4 | 2.03 | 1.87 | 2.36 | 3.0 | 2.82 | 3.1 | 4.9 | |
Gd | 10.2 | 9.1 | 9.2 | 8.7 | 10.9 | 7.9 | 6.6 | 4.4 | 4.0 | 4.4 | 6.2 | 6.0 | 7.1 | 8.8 | |
Tb | 1.06 | 0.95 | 0.93 | 0.88 | 1.15 | 0.83 | 0.71 | 0.48 | 0.44 | 0.48 | 0.63 | 0.60 | 0.63 | 0.94 | |
Dy | 4.8 | 4.3 | 4.3 | 4.2 | 5.2 | 3.9 | 3.3 | 2.22 | 2.03 | 2.02 | 2.73 | 2.72 | 3.0 | 4.3 | |
Ho | 0.76 | 0.64 | 0.67 | 0.66 | 0.82 | 0.59 | 0.52 | 0.33 | 0.31 | 0.29 | 0.39 | 0.40 | 0.46 | 0.70 | |
Er | 1.68 | 1.45 | 1.45 | 1.54 | 1.81 | 1.31 | 1.19 | 0.69 | 0.69 | 0.60 | 0.80 | 0.82 | 0.96 | 1.56 | |
Tm | 0.21 | 0.18 | 0.17 | 0.19 | 0.23 | 0.16 | 0.15 | 0.08 | 0.08 | 0.07 | 0.09 | 0.10 | 0.10 | 0.20 | |
Yb | 1.19 | 1.01 | 0.97 | 1.07 | 1.20 | 0.91 | 0.81 | 0.43 | 0.41 | 0.35 | 0.45 | 0.52 | 0.50 | 1.13 | |
Lu | 0.17 | 0.14 | 0.13 | 0.15 | 0.17 | 0.12 | 0.11 | 0.06 | 0.05 | 0.04 | 0.06 | 0.06 | 0.06 | 0.16 | |
La/Nb | 1.40 | 1.19 | 1.22 | 1.11 | 0.77 | 1.14 | 0.98 | 0.60 | 0.53 | 0.75 | 0.87 | 1.08 | 1.14 | 1.03 | |
La/Th | 5.93 | 4.87 | 5.02 | 5.75 | 3.94 | 5.84 | 6.74 | 4.53 | 4.39 | 5.21 | 6.30 | 7.08 | 7.56 | 5.10 | |
Ba/Nb | 16.50 | 12.59 | 4.29 | 12.41 | 8.79 | 8.34 | 12.99 | 21.61 | 14.72 | 6.95 | 2.05 | 9.86 | 8.06 | 9.30 | |
Th/Nb | 0.24 | 0.24 | 0.24 | 0.19 | 0.20 | 0.20 | 0.15 | 0.13 | 0.12 | 0.14 | 0.14 | 0.15 | 0.15 | 0.20 | |
Nb/Th | 4.23 | 4.10 | 4.12 | 5.18 | 5.09 | 5.11 | 6.88 | 7.53 | 8.23 | 6.98 | 7.23 | 6.53 | 6.62 | 4.94 | |
Ce/Pb | 9.59 | 14.66 | 12.48 | 11.91 | 10.30 | 10.00 | 11.70 | 4.62 | 11.43 | 10.26 | 16.41 | 12.82 | 20.44 | 12.33 | |
Nb/U | 27.82 | 36.61 | 25.93 | 30.01 | 38.83 | 31.28 | 45.88 | 41.90 | 41.27 | 42.35 | 45.38 | 35.79 | 34.83 | 36.19 | |
Nb/Th | 4.23 | 4.10 | 4.12 | 5.18 | 5.09 | 5.11 | 6.88 | 7.53 | 8.23 | 6.98 | 7.23 | 6.53 | 6.62 | 4.94 |
Sample | Rb | Sr | 87Rb | 87Sr/ | 2s | 87Sr/ | Sm | Nd | 147Sm | 143Nd | 2s | 143Nd | εNd(t) | TDM1 | fSm/Nd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(ppm) | (ppm) | 86Sr | 86Sr | 86Srt | (ppm) | (ppm) | 144Nd | 144Nd | 144Ndt | (Ma) | ||||||
L30 pipe | L30-1 | 127 | 780 | 0.4691 | 0.707195 | 0.000005 | 0.70399 | 15.25 | 140 | 0.0661 | 0.512146 | 0.000003 | 0.51194 | −1.59 | 1036 | −0.66 |
L30-2 | 375 | 393 | 2.7626 | 0.715871 | 0.000005 | 0.69698 | 10.55 | 87 | 0.0732 | 0.512054 | 0.000003 | 0.51182 | −3.83 | 1188 | −0.63 | |
L30-3 | 273 | 419 | 1.8865 | 0.716917 | 0.000004 | 0.70401 | 14.65 | 128 | 0.0692 | 0.512078 | 0.000006 | 0.51186 | −3.10 | 1130 | −0.65 | |
L30-4 | 259 | 414 | 1.8112 | 0.715917 | 0.000008 | 0.70353 | 10.5 | 92 | 0.0693 | 0.512090 | 0.000010 | 0.51187 | −2.89 | 1119 | −0.65 | |
L30-5 | 276 | 591 | 1.3520 | 0.715201 | 0.000004 | 0.70596 | 10.55 | 91 | 0.0697 | 0.512059 | 0.000005 | 0.51184 | −3.51 | 1154 | −0.65 | |
L30-6 | 152 | 1015 | 0.4318 | 0.706837 | 0.000007 | 0.70388 | 19.8 | 165 | 0.0725 | 0.512131 | 0.000004 | 0.51190 | −2.27 | 1099 | −0.63 | |
L42 pipe | L42-1 | 57 | 273 | 0.6008 | 0.708010 | 0.000003 | 0.70390 | 14.2 | 96 | 0.0891 | 0.512145 | 0.000004 | 0.51186 | −3.03 | 1229 | −0.55 |
L42-2 | 60 | 262 | 0.6628 | 0.712139 | 0.000003 | 0.70761 | 14.35 | 101 | 0.0858 | 0.512132 | 0.000004 | 0.51186 | −3.07 | 1212 | −0.56 | |
L42-3 | 50 | 344 | 0.4172 | 0.710163 | 0.000004 | 0.70731 | 13.95 | 102 | 0.0830 | 0.512127 | 0.000003 | 0.51187 | −3.00 | 1193 | −0.58 | |
L42-4 | 43 | 285 | 0.4397 | 0.711509 | 0.000003 | 0.70850 | 14.35 | 104 | 0.0834 | 0.512161 | 0.000002 | 0.51190 | −2.36 | 1156 | −0.58 | |
L42-5 | 51 | 248 | 0.5973 | 0.708171 | 0.000003 | 0.70409 | 14.7 | 115 | 0.0772 | 0.512134 | 0.000004 | 0.51189 | −2.52 | 1135 | −0.61 | |
L42-6 | 128 | 647 | 0.5700 | 0.706406 | 0.000004 | 0.70251 | 14.05 | 96 | 0.0884 | 0.512151 | 0.000003 | 0.51187 | −2.86 | 1214 | −0.55 | |
L1 pipe | L1-1 | 133 | 665 | 0.5786 | 0.707896 | 0.000004 | 0.70394 | 13.75 | 115 | 0.0726 | 0.512150 | 0.000004 | 0.51192 | −1.90 | 1079 | −0.63 |
L1-2 | 170 | 441 | 1.1155 | 0.711199 | 0.000003 | 0.70357 | 9.24 | 82 | 0.0678 | 0.512121 | 0.000004 | 0.51191 | −2.19 | 1075 | −0.66 | |
L1-3 | 97 | 915 | 0.3063 | 0.706204 | 0.000005 | 0.70411 | 17.6 | 161 | 0.0663 | 0.512133 | 0.000004 | 0.51192 | −1.86 | 1051 | −0.66 | |
L1-4 | 136 | 966 | 0.4057 | 0.706847 | 0.000007 | 0.70407 | 18.4 | 160 | 0.0695 | 0.512108 | 0.000005 | 0.51189 | −2.54 | 1101 | −0.65 | |
L1-5 | 162 | 339 | 1.3789 | 0.713232 | 0.000004 | 0.70380 | 17.85 | 178 | 0.0606 | 0.512096 | 0.000003 | 0.51191 | −2.23 | 1049 | −0.69 | |
L1-6 | 95 | 759 | 0.3621 | 0.706866 | 0.000004 | 0.70439 | 17.55 | 162 | 0.0655 | 0.512131 | 0.000004 | 0.51192 | −1.85 | 1048 | −0.67 | |
L1-7 | 106 | 1050 | 0.2906 | 0.706213 | 0.000004 | 0.70422 | 16.25 | 146 | 0.0672 | 0.512116 | 0.000003 | 0.51190 | −2.25 | 1076 | −0.66 | |
L1-8 | 128 | 371 | 0.9946 | 0.712101 | 0.000004 | 0.70530 | 17.55 | 132 | 0.0806 | 0.512155 | 0.000003 | 0.51190 | −2.31 | 1140 | −0.59 | |
L1-9 | 87 | 926 | 0.2705 | 0.706086 | 0.000007 | 0.70424 | 15.25 | 141 | 0.0653 | 0.512117 | 0.000003 | 0.51191 | −2.12 | 1061 | −0.67 | |
L1-10 | 177 | 498 | 1.0285 | 0.711201 | 0.000008 | 0.70417 | 11.6 | 101 | 0.0694 | 0.512088 | 0.000003 | 0.51187 | −2.93 | 1122 | −0.65 | |
L50 pipe | L50-1 | 67 | 576 | 0.3367 | 0.714471 | 0.000003 | 0.71217 | 7.99 | 61 | 0.0794 | 0.512172 | 0.000003 | 0.51192 | −1.90 | 1110 | −0.60 |
L50-2 | 61 | 445 | 0.3985 | 0.707939 | 0.000004 | 0.70521 | 6.85 | 52 | 0.0796 | 0.512168 | 0.000003 | 0.51192 | −1.99 | 1115 | −0.60 | |
L50-3 | 38 | 257 | 0.4323 | 0.708196 | 0.000004 | 0.70524 | 8.41 | 64 | 0.0791 | 0.512161 | 0.000004 | 0.51191 | −2.09 | 1119 | −0.60 | |
L50-4 | 39 | 194 | 0.5861 | 0.708779 | 0.000003 | 0.70477 | 11.5 | 92 | 0.0754 | 0.512159 | 0.000004 | 0.51192 | −1.92 | 1093 | −0.62 | |
L50-5 | 49 | 417 | 0.3399 | 0.707079 | 0.000004 | 0.70475 | 11.1 | 90 | 0.0749 | 0.512149 | 0.000003 | 0.51191 | −2.07 | 1099 | −0.62 | |
L50-6 | 51 | 380 | 0.3875 | 0.707750 | 0.000004 | 0.70510 | 13.05 | 103 | 0.0766 | 0.512182 | 0.000004 | 0.51194 | −1.53 | 1076 | −0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Ni, P.; Li, Y.; Wan, F. Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton. Minerals 2025, 15, 1009. https://doi.org/10.3390/min15101009
Zhu R, Ni P, Li Y, Wan F. Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton. Minerals. 2025; 15(10):1009. https://doi.org/10.3390/min15101009
Chicago/Turabian StyleZhu, Renzhi, Pei Ni, Yan Li, and Fanglai Wan. 2025. "Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton" Minerals 15, no. 10: 1009. https://doi.org/10.3390/min15101009
APA StyleZhu, R., Ni, P., Li, Y., & Wan, F. (2025). Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton. Minerals, 15(10), 1009. https://doi.org/10.3390/min15101009