Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Samples and Analytical Methods
4.1. EPMA Analysis
4.2. SHRIMP Zircon U-Pb Dating
4.3. 40Ar/39Ar Dating
4.4. He-Ar Isotopes
5. Analytical Results
5.1. Composition of the Major Ore Minerals
5.2. Zircon SHRIMP U-Pb Geochronology
5.3. 40Ar/39Ar Geochronology
5.4. He-Ar Isotope Compositions
6. Discussions
6.1. The Timing of Gold Mineralization at the Shuigou Deposit
6.2. Occurrence of Gold and Trace Elements
6.3. Source of Ore-Forming Fluids
6.4. Ore Genesis
7. Conclusions
- (1)
- The Shuigou gold deposit was formed at ca. 125 Ma, aligning with the peak period of gold mineralization in the Jiaodong region.
- (2)
- The He-Ar analysis of fluid inclusions in the main-stage pyrite indicates that the fluids involved in the gold mineralization event originated from the mantle, the crust, and meteoric sources.
- (3)
- The formation of the Shuigou gold deposit occurred in the context of the destruction of the North China Craton (NCC).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.Q.; Deng, J.; Zhang, L.; Yang, W.; Xie, D.; Wang, L.; Qiu, K.F.; Li, D.P. Jiaodong-type gold deposit. Acta Petrol. Sin. 2024, 40, 1691–1711. [Google Scholar] [CrossRef]
- Song, M.C.; Wang, L.; Song, Y.X.; Li, J.; Wang, B.; Wei, X.F.; Zhang, J.J.; Song, G.Z. Geometry and origin of supergiant gold deposits in the Jiaodong gold province, eastern China. J. Asian Earth Sci. 2023, 254, 105744. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Santosh, M. The dilemma of the Jiaodong gold deposits: Are they unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. A practical classification of gold deposits, with a theoretical basis. Ore Geol. Rev. 2015, 65, 568–573. [Google Scholar] [CrossRef]
- Yang, L.Q.; Li, R.H.; Gao, X.; Qiu, K.F.; Zhang, L. A preliminary study of extreme enrichment of critical elements in the Jiaodong gold deposits, China. Acta Petrol. Sin. 2020, 36, 1285–1314. [Google Scholar] [CrossRef]
- Yang, L.Q.; Wei, Y.J.; Wang, S.R.; Zhang, L.; Ju, L.; Li, R.H.; Gao, X.; Qiu, K.F. A preliminary study of reserve estimate and resource potential assessment of critical elements in the Jiaodong gold deposits, China. Acta Petrol. Sin. 2022, 38, 9–22. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Guo, L.N.; Song, M.C.; Zheng, X.L. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrol. Sin. 2014, 30, 2447–2467. [Google Scholar]
- Yang, L.Q.; Deng, J.; Goldfarb, R.J.; Zhang, J.; Gao, B.F.; Wang, Z.L. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Res. 2014, 25, 1469–1483. [Google Scholar] [CrossRef]
- Zhang, X.O.; Cawood, P.A.; Wilde, S.A.; Liu, R.Q.; Song, H.L.; Li, W.; Snee, L.W. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Miner. Depos. 2003, 38, 141–153. [Google Scholar] [CrossRef]
- Li, J.W.; Vasconcelos, P.M.; Zhang, J.; Zhou, M.F.; Zhang, X.J.; Yang, F.H. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong Gold Province, eastern China. J. Geol. 2003, 111, 741–751. [Google Scholar] [CrossRef]
- Li, J.W.; Vasconcelos, P.M.; Zhou, M.F.; Zhao, X.F.; Ma, C.Q. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Econ. Geol. 2006, 101, 1023–1038. [Google Scholar] [CrossRef]
- Wen, B.J.; Fan, H.R.; Hu, F.F.; Liu, X.; Yang, K.F.; Sun, Z.F.; Sun, Z.F. Fluid evolution and ore genesis of the giant Sanshandao gold deposit, Jiaodong gold province, China: Constrains from geology, fluid inclusions and H–O–S–He–Ar isotopic compositions. J. Geochem. Explor. 2016, 171, 96–112. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Fan, H.R.; Zhai, M.G.; Xie, Y.H.; Yang, J.H. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Miner. Depos. 2003, 38, 739–750. [Google Scholar] [CrossRef]
- Li, X.C.; Fan, H.R.; Santosh, M.; Hu, F.F.; Yang, K.F.; Lan, T.G. Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China. Ore Geol. Rev. 2013, 53, 403–421. [Google Scholar] [CrossRef]
- Li, L.; Santosh, M.; Li, S.R. The ‘Jiaodong type’ gold deposits: Characteristics, origin and prospecting. Ore Geol. Rev. 2015, 65, 589–611. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Santosh, M.; Liu, X.; Liang, Y.; Yang, L.; Zhao, R.; Yang, L. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China. Miner. Depos. 2020, 55, 257–274. [Google Scholar] [CrossRef]
- Qiu, K.F.; Romer, R.L.; Long, Z.Y.; Williams-Jones, A.E.; Yu, H.C.; Turner, S.; Wang, Q.F.; Li, S.S.; Zhang, J.Y.; Duan, H.R.; et al. The role of an oxidized lithospheric mantle in gold mobilization. Sci. Adv. 2024, 10, eado6262. [Google Scholar] [CrossRef]
- Cheng, S.B.; Lü, Q.T.; Liu, Z.J.; Yang, Y.; Liu, Z.D.; Yan, J.Y.; Zhang, H.; Gong, X.J.; Chen, C.X. Petrogenesis of Mo-associated Mesozoic granitoids on the Jiaodong Peninsula: Implications for crustal architecture and Mo mineralization along the Dabie–Sulu Orogen. Ore Geol. Rev. 2022, 149, 105015. [Google Scholar] [CrossRef]
- Ding, Z.J.; Sun, F.Y.; Liu, F.L.; Liu, J.H.; Peng, Q.M.; Ji, P.; Li, B.L.; Zhang, P.J. Mesozoic geodynamic evolution and metallogenic series of major metal deposits in Jiaodong Peninsula, China. Acta Petrol. Sin. 2015, 31, 3045–3080. [Google Scholar]
- Deng, J.; Wang, C.M.; Bagas, L.; Santosh, M.; Yao, E.Y. Crustal architecture and metallogenesis in the south-eastern North China Craton. Earth Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Zhang, L.; Zhao, A.H.; Santosh, M.; Yu, X.F.; Yang, W.; Li, D.P.; Shan, W.; Xie, D.; et al. Mantle-rooted fluid pathways and world-class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics. Earth Sci. Rev. 2024, 255, 104862. [Google Scholar] [CrossRef]
- Jiang, N.; Guo, J.H.; Fan, W.B.; Hu, J.; Zong, K.Q.; Zhang, S.Q. Archean TTGs and sanukitoids from the Jiaobei terrain, North China craton: Insights into crustal growth and mantle metasomatism. Precambrian Res. 2016, 281, 656–672. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, M.G.; Li, T.S.; Santosh, M.; Zhao, L.; Wang, H.Z. Archean–Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U–Th–Pb and Lu–Hf evidence from the Jiaobei terrane. Precambrian Res. 2014, 241, 146–160. [Google Scholar] [CrossRef]
- Tam, P.Y.; Zhao, G.C.; Liu, F.L.; Zhou, X.W.; Sun, M.; Li, S.Z. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U–Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Res. 2011, 19, 150–162. [Google Scholar] [CrossRef]
- Cheng, S.B.; Liu, Z.J.; Wang, Q.F.; Feng, B.; Wei, X.L.; Liu, B.Z.; Qin, L.Y.; Zhao, B.J.; Shui, P.; Xu, L.; et al. SHRIMP zircon U–Pb dating and Hf isotope analyses of the Muniushan Monzogranite, Guocheng, Jiaobei Terrane, China: Implications for the tectonic evolution of the Jiao–Liao–Ji Belt, North China Craton. Precambrian Res. 2017, 301, 36–48. [Google Scholar] [CrossRef]
- Xie, S.W.; Wu, Y.B.; Zhang, Z.M.; Qin, Y.C.; Liu, X.C.; Wang, H.; Qin, Z.W.; Liu, Q.; Yang, S.H. U–Pb ages and trace elements of detrital zircons from Early Cretaceous sedimentary rocks in the Jiaolai Basin, north margin of the Sulu UHP terrane: Provenances and tectonic implications. Lithos 2012, 154, 346–360. [Google Scholar] [CrossRef]
- Goss, S.C.; Wilde, S.A.; Wu, F.Y.; Yang, J.H. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos 2010, 120, 309–326. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, S.Y.; Dai, B.Z.; Jiang, Y.H.; Hou, M.L.; Pu, W.; Xu, B. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U–Pb geochronological, geochemical and Sr–Nd–Hf isotopic evidence. Lithos 2013, 162–163, 251–263. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Santosh, M.; Yang, K.F.; Peng, H.W.; Hollings, P.; Hu, F.F. Mesozoic felsic dikes in the Jiaobei Terrane, southeastern North China Craton: Constraints from zircon geochronology and geochemistry, and implications for gold metallogeny. J. Geochem. Explor. 2019, 201, 40–55. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, J.M.; Williams, I.S.; Campbell, I.H.; Faunes, A. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 2001, 29, 383–386. [Google Scholar] [CrossRef]
- Nasdala, L.; Hofmeister, W.; Norberg, N.; Martinson, J.M.; Corfu, F.; Dörr, W.; Kamo, S.L.; Kennedy, A.K.; Kronz, A.; Reiners, P.W. Zircon M257—A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostand. Geoanalytical Res. 2008, 32, 247–265. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Sang, H.Q.; Wang, F.; He, H.Y.; Wang, Y.L.; Yang, L.K.; Zhu, R.X. Intercalibration of ZBH-25 biotite reference material untilized for K-Ar and Ar-40-Ar-39 age determination. Yanshi Xuebao/Acta Petrol. Sin. 2006, 22, 3059–3078. [Google Scholar]
- Stuart, F.M.; Burnard, P.G.; Taylor, R.P.; Turner, G. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He Ar isotopes in fluid inclusions from Dae Hwa W Mo mineralisation, South Korea. Geochim. Cosmochim. Acta 1995, 59, 4663–4673. [Google Scholar] [CrossRef]
- Song, Y.X.; Song, M.C.; Ding, Z.J.; Wei, X.F.; Xu, S.H.; Li, J.; Tan, X.M.; Hu, H.; Cao, J. Major Advances on Deep Prospecting in Jiaodong Gold Ore Cluster and Its Metallogenic Characteristics. Gold Sci. Technol. 2017, 25, 4–18. [Google Scholar]
- Hou, M.L.; Jiang, S.Y.; Jiang, Y.H.; Ling, H.F. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shangdong province. Acta Petrol. Sin. 2006, 22, 2525–2533. [Google Scholar]
- Yang, K.F.; Jiang, P.; Fan, H.R.; Zuo, Y.B.; Yang, Y.H. Tectonic transition from a compressional to extensional metallogenic environment at ~120Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton. J. Asian Earth Sci. 2018, 160, 408–425. [Google Scholar] [CrossRef]
- Feng, L.Q.; Gu, X.X.; Zhang, Y.M.; Wang, J.L.; Ge, Z.L.; He, Y.; Zhang, Y.S. Geology and geochronology of the Shijia gold deposit, Jiaodong Peninsula, China. Ore Geol. Rev. 2020, 120, 103432. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Guo, L.N.; Li, R.H.; Groves, D.I.; Danyushevsky, L.V.; Zhang, C.; Zheng, X.L.; Zhao, H. Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Econ. Geol. 2016, 111, 105–126. [Google Scholar] [CrossRef]
- Xiao, J.D.; Xie, Z.J.; Xia, Y.; Lan, T.G.; Zhang, L.; Pan, L.C.; Hu, H.L.; Wang, H.; Tan, Q.P.; Xu, Y. Predominant fracture gold in the Jiaodong gold province, China: Constraints on gold mineralization processes. Ore Geol. Rev. 2024, 165, 105915. [Google Scholar] [CrossRef]
- Cao, G.S.; Zhang, Y.; Chen, H.Y. Trace elements in pyrite from orogenic gold deposits: Implications for metallogenic mechanism. Acta Petrol. Sin. 2023, 39, 2330–2346. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, Q.D.; Frimmel, H.E.; Fan, H.R.; Xue, J.L.; Yang, J.H.; Wu, J.J.; Bao, Z.A. Spatio-temporal fluid evolution of gold deposit in the Jiaodong Peninsula, China: A case study of the giant Xiling deposit. J. Geochem. Explor. 2024, 260, 107455. [Google Scholar] [CrossRef]
- Cai, W.Y.; Song, M.C.; Santosh, M.; Li, J. The gold-telluride connection: Evidence for multiple fluid pulses in the Jinqingding telluride-rich gold deposit of Jiaodong Peninsula, Eastern China. Geosci. Front. 2024, 15, 101795. [Google Scholar] [CrossRef]
- Wei, Y.J.; Yang, L.Q.; Qiu, K.F.; Wang, S.R.; Ren, F.; Dai, Z.H.; Li, D.P.; Shan, W.; Li, Z.S.; Wang, J.H.; et al. Geology, mineralogy and pyrite trace elements constraints on gold mineralization mechanism at the giant Dayingezhuang gold deposit, Jiaodong Peninsula, China. Ore Geol. Rev. 2022, 148, 104992. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Shen, J.F.; Li, S.R.; Santosh, M.; Luo, Z.H.; Liu, Y. Oxygen, boron, chromium and niobium enrichment in native Au and Ag grains: A case study from the Linglong gold deposit, Jiaodong, eastern China. J. Asian Earth Sci. 2013, 62, 537–546. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Hofstra, A.H.; Simmons, S.F. Critical Elements in Carlin, Epithermal, and Orogenic Gold Deposits. In Rare Earth and Critical Elements in Ore Deposits; Verplanck, P.L., Hitzman, M.W., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2016; Volume 18, pp. 217–244. [Google Scholar]
- Wei, W.F.; Hu, R.Z.; Bi, X.W.; Jiang, G.H.; Yan, B.; Yin, R.S.; Yang, J.H. Mantle-derived and crustal He and Ar in the ore-forming fluids of the Xihuashan granite-associated tungsten ore deposit, South China. Ore Geol. Rev. 2019, 105, 605–615. [Google Scholar] [CrossRef]
- Hu, R.Z.; Burnard, P.G.; Bi, X.W.; Zhou, M.F.; Pen, J.T.; Su, W.C.; Wu, K.X. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River–Jinshajiang fault belt, SW China. Chem. Geol. 2004, 203, 305–317. [Google Scholar] [CrossRef]
- Burnard, P.G.; Hu, R.; Turner, G.; Bi, X.W. Mantle, crustal and atmospheric noble gases in ailaoshan gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Zhang, L.C.; Shen, Y.C.; Li, H.M.; Zeng, Q.D.; Li, G.M.; Liu, T.B. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for Jiaodong gold deposits. Acta Petrol. Sin. 2002, 18, 559–565. [Google Scholar]
- Zhu, R.X.; Xu, Y.G.; Zhu, G.; Zhang, H.F.; Xia, Q.K.; Zheng, T.Y. Destruction of the North China Craton. Sci. China Earth Sci. 2012, 55, 1565–1587. [Google Scholar] [CrossRef]
- Ying, J.F.; Zhang, H.F.; Kita, N.; Morishita, Y.; Shimoda, G. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet. Sci. Lett. 2006, 244, 622–638. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, J.H.; Xu, Y.G.; Wilde, S.A.; Walker, R.J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 2019, 47, 173–195. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Xu, Z.; Zhao, Z.F.; Dai, L.Q. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci. China Earth Sci. 2018, 61, 353–385. [Google Scholar] [CrossRef]
- Yang, J.H.; Xu, L.; Sun, J.F.; Zeng, Q.D.; Zhao, Y.N.; Wang, H.; Zhu, Y.S. Geodynamics of decratonization and related magmatism and mineralization in the North China Craton. Sci. China Earth Sci. 2021, 64, 1409–1427. [Google Scholar] [CrossRef]
- Cheng, S.B.; Liu, Z.J.; Wang, Q.F.; Wang, F.J.; Xue, Y.S.; Xu, L.; Wang, J.P.; Zhu, B.L. Mineralization age and geodynamic background for the Shangjiazhuang Mo deposit in the Jiaodong gold province, China. Ore Geol. Rev. 2017, 80, 876–890. [Google Scholar] [CrossRef]
- Zhu, G.; Lu, Y.C.; Su, N.; Wu, X.D.; Yin, H.; Zhang, S.; Xie, C.L.; Niu, M.L. Crustal deformation and dynamics of Early Cretaceous in the North China Craton. Sci. China Earth Sci. 2021, 64, 1428–1450. [Google Scholar] [CrossRef]
- Wang, Q.F.; Liu, X.F.; Yin, R.S.; Weng, W.J.; Zhao, H.S.; Yang, L.; Zhai, D.G.; Li, D.P.; Ma, Y.; Groves, D.I.; et al. Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks: Evidence from Hg isotopes. Geology 2023, 52, 115–119. [Google Scholar] [CrossRef]
Spot | U (ppm) | Th (ppm) | Th/U | 206Pb * (ppm) | 207Pb */206Pb * | ±% | 207Pb */235U * | ±% | 206Pb */238U * | ±% | 206Pb/238U Age |
---|---|---|---|---|---|---|---|---|---|---|---|
DLH2 | |||||||||||
DLH2-1 | 264 | 114 | 0.45 | 4.57 | 0.0500 | 20.0 | 0.1380 | 21.0 | 0.0199 | 2.4 | 126.8 ± 3.0 |
DLH2-2 | 381 | 254 | 0.69 | 6.49 | 0.0300 | 37.0 | 0.0780 | 37.0 | 0.0190 | 2.3 | 121.4 ± 2.8 |
DLH2-3 | 231 | 173 | 0.77 | 4.09 | 0.0480 | 34.0 | 0.1340 | 34.0 | 0.0201 | 2.9 | 128.2 ± 3.6 |
DLH2-4 | 252 | 103 | 0.42 | 4.28 | 0.0540 | 30.0 | 0.1450 | 30.0 | 0.0194 | 2.9 | 124.1 ± 3.5 |
DLH2-5 | 292 | 130 | 0.46 | 5.28 | 0.0430 | 27.0 | 0.1210 | 27.0 | 0.0204 | 2.3 | 130.4 ± 3.0 |
DLH2-6 | 202 | 61 | 0.31 | 3.43 | 0.0528 | 18.0 | 0.1420 | 18.0 | 0.0195 | 2.4 | 124.5 ± 2.9 |
DLH2-7 | 379 | 156 | 0.42 | 6.40 | 0.0538 | 8.1 | 0.1440 | 8.3 | 0.0194 | 1.9 | 124.1 ± 2.4 |
DLH2-8 | 262 | 112 | 0.44 | 4.66 | 0.0490 | 21.0 | 0.1370 | 21.0 | 0.0201 | 2.5 | 128.3 ± 3.2 |
DLH2-10 | 291 | 117 | 0.42 | 5.12 | 0.0330 | 37.0 | 0.0900 | 37.0 | 0.0198 | 2.7 | 126.4 ± 3.4 |
DLH2-11 | 294 | 110 | 0.39 | 5.02 | 0.0408 | 20.0 | 0.1090 | 20.0 | 0.0193 | 2.2 | 123.3 ± 2.7 |
DLH2-14 | 334 | 111 | 0.34 | 5.40 | 0.0653 | 7.6 | 0.1710 | 7.8 | 0.0190 | 2.0 | 121.2 ± 2.4 |
DLH2-17 | 245 | 87 | 0.37 | 4.35 | 0.0450 | 24.0 | 0.1240 | 25.0 | 0.0202 | 2.3 | 128.7 ± 3.0 |
DLH2-18 | 263 | 113 | 0.44 | 4.70 | 0.0446 | 21.0 | 0.1250 | 21.0 | 0.0203 | 2.3 | 129.6 ± 2.9 |
DLH2-12 | 16,612 | 1136 | 0.07 | 343.00 | 0.0516 | 2.5 | 0.1677 | 3.1 | 0.0236 | 1.7 | 150 ± 2.6 |
DLH2-13 | 152 | 64 | 0.44 | 3.44 | 0.0620 | 23.0 | 0.2190 | 23.0 | 0.0257 | 2.9 | 163.3 ± 4.6 |
DLH2-16 | 269 | 127 | 0.49 | 4.92 | 0.0484 | 9.1 | 0.1410 | 9.4 | 0.0211 | 2.0 | 134.4 ± 2.7 |
DLH5 | |||||||||||
DLH5-1 | 2552 | 3262 | 1.32 | 39.80 | 0.0467 | 1.8 | 0.1167 | 3.1 | 0.0181 | 2.5 | 115.7 ± 2.9 |
DLH5-2 | 375 | 345 | 0.95 | 6.01 | 0.0462 | 10.0 | 0.1180 | 10.0 | 0.0186 | 2.7 | 118.5 ± 3.1 |
DLH5-3 | 193 | 382 | 2.04 | 3.24 | 0.0477 | 4.8 | 0.1284 | 5.5 | 0.0195 | 2.7 | 124.6 ± 3.3 |
DLH5-5 | 1257 | 1202 | 0.99 | 20.10 | 0.0476 | 3.5 | 0.1224 | 4.3 | 0.0186 | 2.6 | 119.1 ± 3.0 |
DLH5-7 | 302 | 328 | 1.12 | 5.23 | 0.0476 | 20.0 | 0.1250 | 20.0 | 0.0191 | 2.9 | 121.9 ± 3.5 |
DLH5-8 | 419 | 390 | 0.96 | 6.97 | 0.0480 | 3.9 | 0.1272 | 4.7 | 0.0192 | 2.6 | 122.8 ± 3.2 |
DLH5-3 | 404 | 623 | 1.59 | 6.58 | 0.0470 | 4.6 | 0.1220 | 5.3 | 0.0188 | 2.6 | 120.2 ± 3.1 |
DLH5-10 | 394 | 470 | 1.23 | 6.66 | 0.0489 | 3.3 | 0.1328 | 4.2 | 0.0197 | 2.6 | 125.7 ± 3.2 |
DLH5-12 | 279 | 262 | 0.97 | 5.12 | 0.0960 | 52.0 | 0.2500 | 52.0 | 0.0192 | 3.2 | 122.3 ± 3.9 |
DLH5-13 | 357 | 268 | 0.77 | 5.77 | 0.0498 | 5.2 | 0.1292 | 5.8 | 0.0188 | 2.6 | 120.1 ± 3.2 |
DLH5-14 | 332 | 448 | 1.39 | 5.30 | 0.0523 | 4.0 | 0.1339 | 4.9 | 0.0186 | 2.8 | 118.5 ± 3.3 |
DLH5-15 | 519 | 428 | 0.85 | 8.40 | 0.0473 | 3.4 | 0.1225 | 4.3 | 0.0188 | 2.6 | 119.9 ± 3.1 |
Heating Step | T (°C) | (40Ar/39Ar)m | (36Ar/39Ar)m | (37Ar/39Ar)m | 40Ar(%) | F (40Ar*/39Ar) | 39Ar (×10−14 mol) | 39Ar (Cum.) (%) | Age ± 1σ (Ma) |
---|---|---|---|---|---|---|---|---|---|
Sample: 14DLH20, weight = 20.4 mg, J = 0.004130 | |||||||||
1 | 700 | 22.0330 | 0.0271 | 1.1197 | 64.08 | 14.1322 | 0.49 | 1.07 | 103.3 ± 1.3 |
2 | 800 | 22.1964 | 0.0201 | 0.2500 | 73.38 | 16.2913 | 3.85 | 8.48 | 118.6 ± 1.0 |
3 | 850 | 18.2024 | 0.0040 | 0.2996 | 93.59 | 17.0391 | 5.03 | 11.09 | 123.8 ± 0.63 |
4 | 900 | 17.6757 | 0.0018 | 0.3056 | 97.12 | 17.1704 | 7.07 | 15.59 | 124.7 ± 0.61 |
5 | 950 | 17.5876 | 0.0012 | 0.2303 | 98.01 | 17.2404 | 9.09 | 20.05 | 125.2 ± 0.61 |
6 | 1000 | 17.6495 | 0.0011 | 0.2812 | 98.20 | 17.3357 | 8.96 | 19.77 | 125.9 ± 0.62 |
7 | 1050 | 17.5198 | 0.0012 | 0.2513 | 98.01 | 17.1753 | 6.89 | 15.20 | 124.8 ± 0.61 |
8 | 1100 | 19.2077 | 0.0028 | 0.1427 | 95.68 | 18.3804 | 1.37 | 3.02 | 133.2 ± 0.66 |
9 | 1200 | 20.9490 | 0.0044 | 0.3891 | 93.96 | 19.6893 | 2.60 | 5.73 | 142.4 ± 0.72 |
Sample: 13DLH15, weight = 20.3 mg, J = 0.004198 | |||||||||
1 | 700 | 14.1979 | 0.0056 | 2.7976 | 90.05 | 12.8152 | 1.38 | 2.48 | 95.4 ± 0.59 |
2 | 800 | 18.7968 | 0.0093 | 0.6864 | 85.64 | 16.1077 | 7.14 | 12.87 | 119.1 ± 0.71 |
3 | 850 | 17.0325 | 0.0001 | 0.0202 | 99.90 | 17.0161 | 7.27 | 13.11 | 125.6 ± 0.61 |
4 | 900 | 16.9952 | 0.0001 | 0.0311 | 99.87 | 16.9739 | 13.24 | 23.86 | 125.3 ± 0.61 |
5 | 950 | 16.9868 | 0.0001 | 0.0215 | 99.86 | 16.9626 | 9.08 | 16.37 | 125.3 ± 0.61 |
6 | 1000 | 17.0321 | 0.0001 | 0.0481 | 99.91 | 17.0179 | 2.83 | 5.10 | 125.6 ± 0.61 |
7 | 1100 | 17.1857 | 0.0006 | 0.0702 | 98.94 | 17.0046 | 11.16 | 20.13 | 125.6 ± 0.61 |
8 | 1150 | 17.5068 | 0.0010 | 0.1426 | 98.42 | 17.2325 | 2.78 | 5.02 | 127.2 ± 0.62 |
9 | 1200 | 19.1514 | 0.0033 | 2.3805 | 95.94 | 18.4114 | 0.59 | 1.06 | 135.6 ± 0.77 |
Sample | 4He (10−8 cm3 STP/g) | 3He/4He (Ra) | 40Ar (10−8 cm3 STP/g) | 40Ar/36Ar | 40Ar * (10−8 cm3 STP/g) | 40Ar */4He | F 4He |
---|---|---|---|---|---|---|---|
DLH11 | 28.31 | 0.26 | 16.57 | 383.0 | 3.79 | 0.13 | 3789 |
DLH13 | 15.02 | 0.97 | 14.69 | 408.7 | 4.07 | 0.27 | 2420 |
DLH18 | 18.67 | 1.26 | 31.62 | 426.6 | 9.72 | 0.52 | 1459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Cheng, S.; Liu, C.; Gu, B.; Xue, Y. Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes. Minerals 2025, 15, 14. https://doi.org/10.3390/min15010014
Liu Z, Cheng S, Liu C, Gu B, Xue Y. Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes. Minerals. 2025; 15(1):14. https://doi.org/10.3390/min15010014
Chicago/Turabian StyleLiu, Zhenjiang, Shaobo Cheng, Changrong Liu, Benjie Gu, and Yushan Xue. 2025. "Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes" Minerals 15, no. 1: 14. https://doi.org/10.3390/min15010014
APA StyleLiu, Z., Cheng, S., Liu, C., Gu, B., & Xue, Y. (2025). Geochronology and Genesis of the Shuigou Gold Deposit, Qixia-Penglai-Fushan Metallogenic Area, Jiaodong Peninsula, Eastern China: Constraints from SHRIMP U-Pb, 40Ar/39Ar Age, and He-Ar Isotopes. Minerals, 15(1), 14. https://doi.org/10.3390/min15010014