Application of a Multi-Technique Approach to the Identification of Mineral Polymorphs in Histological Samples: A Case of Combined Use of SEM/EDS and Micro-Raman Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogner, A.; Jouneau, P.H.; Thollet, G.; Basset, D.; Gauthier, C. A history of scanning electron microscopy developments: Towards “wet-STEM” imaging. Micron 2007, 38, 390–401. [Google Scholar] [CrossRef]
- Croce, A.; Gatti, G.; Calisi, A.; Cagna, L.; Bellis, D.; Bertolotti, M.; Rinaudo, C.; Maconi, A. Asbestos bodies in human lung: Localization of iron and carbon in the coating. Geosciences 2024, 14, 58. [Google Scholar] [CrossRef]
- Keil, K.L.; Fitzgerald, R.; Heinrich, K.F.J. Celebrating 40 years of energy dispersive X-ray spectrometry in electron probe microanalysis: A historic and nostalgic look back into the beginnings. Microsc. Microanal. 2009, 15, 476–483. [Google Scholar] [CrossRef]
- Rinaudo, C.; Gastaldi, D.; Belluso, E. Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can. Mineral. 2003, 41, 883–890. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Salvioli-Mariani, E.; Mantovani, L.; Tribaudino, M.; Lottici, P.P.; Laporte-Magoni, C.; Bersani, D. Micro-Raman mapping of the polymorphs of serpentine. J. Raman Spectrosc. 2015, 46, 953–958. [Google Scholar] [CrossRef]
- Panicker, A.R.; Sai Kiran, B.; Vikram Raju, B.; Ram Mohan, M. Characterisation of serpentine polymorphs from the Holenarsipur Greenstone Belt, Western Dharwar Craton: Implications for multi-stage serpentinization. J. Earth Syst. Sci. 2022, 131, 75. [Google Scholar] [CrossRef]
- Italian Government. Legislative Decree No. 277 of 15 August 1991, Implementing EU Directives No. 80/1107/EEC, No. 82/605/EEC, No. 83/477/EEC, No. 86/188/EEC, and No. 88/642/EEC, on the Protection of Workers from the Risks Related to Exposure to Chemical, Physical and Biological Agents at Work. Gazzetta Ufficiale Supplemento Ordinario no. 200; Italian Government: Rome, Italy, 1991.
- International Agency for Research on Cancer (IARC). Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite). In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100C, pp. 219–309. ISBN 978 92 832 1320 8. [Google Scholar]
- Liendo, F.; Arduino, M.; Deorsola, F.A.; Bensaid, S. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technol. 2022, 198, 117050. [Google Scholar] [CrossRef]
- Mohamad, M.; Ul Haq, B.; Ahmed, R.; Shaari, A.; Ali, N.; Hussain, R. A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Mat. Sci. Semicond. Process. 2015, 31, 405–414. [Google Scholar] [CrossRef]
- Guthrie, G.D.; Heaney, P.J. Mineralogical characteristics of silica polymorphs in relation to their biological activities. Scand. J. Work Environ. Health 1995, 21, 5–8. [Google Scholar]
- Perraki, M.; Proyer, A.; Mposkos, E.; Kaindl, R.; Hoinkes, G. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet. Sci. Lett. 2006, 241, 672–685. [Google Scholar] [CrossRef]
- Musa, M.; Croce, A.; Allegrina, M.; Rinaudo, C.; Belluso, E.; Bellis, D.; Toffalorio, F.; Veronesi, G. The use of Raman spectroscopy to identify inorganic phases in iatrogenic pathological lesions of patients with malignant pleural mesothelioma. Vib. Spectrosc. 2012, 61, 66–71. [Google Scholar] [CrossRef]
- Krishnan, R.S.; Shankar, R.K. Raman effect: History of the discovery. J. Raman Spectrosc. 1981, 10, 1–8. [Google Scholar] [CrossRef]
- Handzo, B.; Peters, J. A fingerprint in a fingerprint: A Raman spectral analysis of pharmaceutical ingredients. Spectroscopy 2022, 37, 24–30. [Google Scholar] [CrossRef]
- Kniggendorf, A.K.; Meinhardt-Wollweber, M. Of microparticles and bacteria identification—(resonance) Raman micro-spectroscopy as a tool for biofilm analysis. Water Res. 2011, 45, 4571–4582. [Google Scholar] [CrossRef]
- Medeghini, L.; Lottici, P.P.; De Vito, C.; Mignardi, S.; Bersani, D. Micro-Raman spectroscopy and ancient ceramics: Applications and problems. J. Raman Spectrosc. 2014, 45, 1244–1250. [Google Scholar] [CrossRef]
- Krafft, C.; Popp, J. Raman4Clinics: The prospects of Raman-based methods for clinical application. Anal. Bioanal. Chem. 2015, 407, 8263–8264. [Google Scholar] [CrossRef]
- Rinaudo, C.; Croce, A. Micro-Raman spectroscopy, a powerful technique allowing sure identification and complete characterization of asbestiform minerals. Appl. Sci. 2019, 9, 3092. [Google Scholar] [CrossRef]
- Rinaudo, C.; Allegrina, M.; Fornero, E.; Musa, M.; Croce, A.; Bellis, D. Micro-Raman spectroscopy and VP-SEM/EDS applied to the identification of mineral particles and fibres in histological sections. J. Raman Spectrosc. 2010, 41, 27–32. [Google Scholar] [CrossRef]
- Ferrante, D.; Bertolotti, M.; Todesco, A.; Mirabelli, D.; Terracini, B.; Magnani, C. Cancer mortality and incidence in a cohort of wives of asbestos workers in Casale Monferrato, Italy. Environ. Health Perspect. 2007, 115, 1401–1405. [Google Scholar] [CrossRef]
- Croce, A.; Bertolotti, M.; Crivellari, S.; Amisano, M.; Nada, E.; Grosso, F.; Cagna, L.; Rinaudo, C.; Gatti, G.; Maconi, A. Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy applied to the analysis of fibers and particles in tissues from colon adenocarcinomas. Work. Pap. Public Health 2023, 11, 9586. [Google Scholar] [CrossRef]
- Rinaudo, C.; Croce, A.; Erra, S.; Nada, E.; Bertolotti, M.; Grosso, F.; Maconi, A.; Amisano, M. Asbestos Fibers and Ferruginous Bodies Detected by VP-SEM/EDS in Colon Tissues of a Patient Affected by Colon-Rectum Cancer: A Case Study. Minerals 2021, 11, 658. [Google Scholar] [CrossRef]
- Kontoyannis, C.G.; Vagenas, N.V. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 2000, 125, 251–255. [Google Scholar] [CrossRef]
- Tomić, Z.; Makreski, P.; Gajić, B. Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and X-ray powder diffraction. J. Raman Spectrosc. 2010, 41, 582–586. [Google Scholar] [CrossRef]
- Alia, J.M.; Diaz de Mera, Y.; Edwards, H.G.M.; González Martín, P.; López Andrés, S. Ft-Raman and infrared spectroscopic study of aragonite-strontianite (CaxSr1−xCO3) solid solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53, 2347–2362. [Google Scholar] [CrossRef]
- Stuart, B.H. Temperature studies of polycarbonate using Fourier transform Raman spectroscopy. Polym. Bull. 1996, 36, 341–346. [Google Scholar] [CrossRef]
- Sacco, A.; Mandrile, L.; Tay, L.-L.; Itoh, N.; Raj, A.; Moure, A.; Del Campo, A.; Fernandez, J.F.; Paton, K.R.; Wood, S.; et al. Quantification of titanium dioxide (TiO2) anatase and rutile polymorphs in binary mixtures by Raman spectroscopy: An interlaboratory comparison. Metrologia 2023, 60, 055011. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Rezaee, M.; Mousavi Khoie, S.M.; Liu, H.K. The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation. CrystEngComm 2011, 13, 5055. [Google Scholar] [CrossRef]
- Ahmad, S.; Zeb, B.; Ditta, A.; Alam, K.; Ahahid, U.; Shah, A.U.; Ahmad, I.; Alasmari, A.; Sakran, M.; Alqurashi, M. Mineralogical, and biochemical characteristics of particulate matter in three size fractions (PM10, PM2.5, and PM1) in the urban environment. ACS Omega 2023, 8, 31661–31674. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.M.; Reboredo, F.H.; Lidon, F.C. Food colour additives: A synoptical overview on their chemical properties, applications in food products, and health side effects. Foods 2022, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Shafiu Kamba, A.; Ismail, M.; Tengku Ibrahim, T.A.; Zakaria, Z.A. A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system. Biomed. Res. Int. 2013, 2013, 587451. [Google Scholar] [CrossRef]
- Render, D.; Samuel, T.; King, H.; Vig, M.; Jeelani, S.; Babu, R.J. Biomaterial-derived calcium carbonate nanoparticles for enteric drug delivery. J. Nanomater. 2016, 2016, 3170248. [Google Scholar] [CrossRef]
- Ropers, M.H.; Terrisse, H.; Mercier-Bonin, M.; Humbert, B. Titanium dioxide as food addictive. In Application of Titanium Dioxide; IntechOpen Limited: London, UK, 2017; pp. 3–21. ISBN 978-953-51-3430-5. [Google Scholar]
- Rodríguez-Ibarra, C.; Medina-Reyes, E.I.; Déciga-Alcaraz, A.; Delgado-Buenrostro, N.L.; Quezada-Maldonado, E.M.; Ispanixtlahuatl-Meráz, O.; Ganem-Rondero, A.; Flores-Flores, J.O.; Vázquez-Zapíen, G.J.; Mata-Miranda, M. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal of a 24-hour exposure. Toxicology 2022, 478, 153280. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Carbon black, titanium dioxide, and talc. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; Volume 93, pp. 193–276. ISBN 978 92 832 1293 5. [Google Scholar]
- EFSA. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J. 2021, 19, 6585. [Google Scholar]
- Bischoff, N.S.; Proquin, H.; Jetten, M.J.; Schrooders, Y.; Jonkhout, M.C.M.; Briedé, J.J.; van Breda, S.G.; Jennen, D.G.J.; Medina-Reyes, E.I.; Delgado-Buenrostro, N.L. The Effects of the Food Additive Titanium Dioxide (E171) on Tumor Formation and Gene Expression in the Colon of a Transgenic Mouse Model for Colorectal Cancer. Nanomaterials 2022, 12, 1256. [Google Scholar] [CrossRef]
- Vigneshwaran, R.; Ezhilarasan, D.; Rajeshkumar, S. Inorganic titanium dioxide nanoparticles induces cytotoxicity in colon cancer cells. Inorg. Chem. Commun. 2021, 133, 108920. [Google Scholar] [CrossRef]
- Maddah, A.; Danesh, H.; Ghasemi, P.; Ziamajidi, N.; Salehzadeh, M.; Abbasalipourkabir, R. The effect of titanium dioxide (TiO2) nanoparticles on oxidative stress status in the HCT116 human colon cancer cell line. Bionanoscience 2023, 13, 600–608. [Google Scholar] [CrossRef]
- Haider, A.J.; Jameel, Z.N.; Al-Hussaini, I.H.M. Review on: Titanium dioxide applications. Energy Procedia 2019, 157, 17–29. [Google Scholar] [CrossRef]
- Arun, J.; Nachiappan, S.; Rangarajan, G.; Alagappan, R.P.; Gopinath, K.P.; Lichtfouse, E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review. Environ. Chem. Lett. 2023, 21, 339–362. [Google Scholar] [CrossRef]
- Racovita, A.D. Titanium dioxide: Structure, impact, and toxicity. Int. J. Environ. Res. Public Health 2022, 19, 5681. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A global perspective on microplastics. J. Geophys. Res. Oceans 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Arajuo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Ly, N.H.; Kim, M.K.; Lee, H.; Lee, C.; Son, S.J.; Zoh, K.D.; Vasseghian, Y.; Joo, S.W. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. J. Nanostruct. Chem. 2022, 12, 865–888. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers 2022, 14, 2700. [Google Scholar] [CrossRef]
- Chakraborty, I.; Banik, S.; Biswas, R.; Yamamoto, T.; Noothalapati, H.; Mazumder, N. Raman spectroscopy for microplastic detection in water sources: A systematic review. Int. J. Environ. Sci. Technol. 2023, 20, 10435–10448. [Google Scholar] [CrossRef]
- Fang, C.; Luo, Y.; Naidu, R. Raman imaging for the analysis of silicone microplastics and nanoplastics released from a kitchen sealant. Front. Chem. 2023, 11, 1165523. [Google Scholar] [CrossRef] [PubMed]
- Lo Bue, G.; Marchini, A.; Musa, M.; Croce, A.; Gatti, G.; Riccardi, M.P.; Lisco, S.; Mancin, N. First attempt to quantify microplastics in Mediterranean Sabellaria spinulosa (Anellida, Polychaeta) bioconstructions. Mar. Pollut. Bull. 2023, 196, 115659. [Google Scholar] [CrossRef] [PubMed]
- Perraki, M.; Skliros, V.; Mecaj, P.; Vasileiou, E.; Salmas, C.; Papanikolaou, I.; Stamatis, G. Identification of microplastics using μ-Raman spectroscopy in surface and groundwater bodies of SE Attica, Greece. Water 2024, 16, 843. [Google Scholar] [CrossRef]
- Beiras, R.; Verdejo, E.; Campoy-López, P.; Vidal-Liñán, L. Aquatic toxicity of chemically defined microplastics can be explained by functional additives. J. Hazard. Mater. 2021, 406, 124338. [Google Scholar] [CrossRef]
- Turner, A.; Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- Sridharan, S.; Kumar, M.; Saha, M.; Kirkham, M.B.; Singh, L.; Bolan, N.S. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna? Sci. Total Environ. 2022, 824, 153828. [Google Scholar] [CrossRef] [PubMed]
- Hennebert, P. Hazardous properties of mineral and organo-mineral plastic additives and management of hazardous plastics. Detritus 2023, 23, 83–93. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Szelagiewicz, M.; Marcolli, C.; Cianferani, S.; Hard, A.P.; Vit, A.; Burkhard, A.; von Raumer, M.; Hofmeier, U.C.; Zilian, A.; Francotte, E.; et al. In situ characterization of polymorphic forms. The potential of Raman techniques. J. Therm. Anal. Calorim. 1999, 57, 23–43. [Google Scholar] [CrossRef]
- Dračínský, M.; Procházková, E.; Kessler, J.; Šebestík, J.; Matějka, P.; Bouř, P. Resolution of organic polymorphic crystals by Raman spectroscopy. J. Phys. Chem. B 2013, 117, 7297–7307. [Google Scholar] [CrossRef]
- Mossman, B.T.; Glenn, R.E. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit. Rev. Toxicol. 2013, 43, 632–660. [Google Scholar] [CrossRef]
- Zhai, K.; Xue, W.; Wang, H.; Wu, X.; Zhai, S. Raman spectra of sillimanite, andalusite, and kyanite at various temperatures. Phys. Chem. Miner. 2020, 47, 23. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Veerapandy, V.; Fjellvåg, H.; Vajeeston, P. First-principles exploration into the physical and chemical properties of certain newly identified SnO2 polymorphs. ACS Omega 2022, 7, 10382–10393. [Google Scholar] [CrossRef] [PubMed]
- Timón, V.; Torrens-Martin, D.; Fernández-Carrasco, L.J.; Martínez-Ramírez, S. Infrared and Raman vibrational modelling of β-C2S and C3S compounds. Cem. Concr. Res. 2023, 169, 107162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croce, A.; Bellis, D.; Rinaudo, C.; Cagna, L.; Gatti, G.; Roveta, A.; Bertolotti, M.; Maconi, A. Application of a Multi-Technique Approach to the Identification of Mineral Polymorphs in Histological Samples: A Case of Combined Use of SEM/EDS and Micro-Raman Spectroscopy. Minerals 2024, 14, 633. https://doi.org/10.3390/min14070633
Croce A, Bellis D, Rinaudo C, Cagna L, Gatti G, Roveta A, Bertolotti M, Maconi A. Application of a Multi-Technique Approach to the Identification of Mineral Polymorphs in Histological Samples: A Case of Combined Use of SEM/EDS and Micro-Raman Spectroscopy. Minerals. 2024; 14(7):633. https://doi.org/10.3390/min14070633
Chicago/Turabian StyleCroce, Alessandro, Donata Bellis, Caterina Rinaudo, Laura Cagna, Giorgio Gatti, Annalisa Roveta, Marinella Bertolotti, and Antonio Maconi. 2024. "Application of a Multi-Technique Approach to the Identification of Mineral Polymorphs in Histological Samples: A Case of Combined Use of SEM/EDS and Micro-Raman Spectroscopy" Minerals 14, no. 7: 633. https://doi.org/10.3390/min14070633
APA StyleCroce, A., Bellis, D., Rinaudo, C., Cagna, L., Gatti, G., Roveta, A., Bertolotti, M., & Maconi, A. (2024). Application of a Multi-Technique Approach to the Identification of Mineral Polymorphs in Histological Samples: A Case of Combined Use of SEM/EDS and Micro-Raman Spectroscopy. Minerals, 14(7), 633. https://doi.org/10.3390/min14070633