Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy
Abstract
:1. Introduction about Clays and Applied Clay Mineralogy
2. X-ray Powder Diffraction Microstructural Analysis Fundamentals and Methods
2.1. Prelimnary Comments on Crystalline Microstructure from X-ray Powder Diffraction Data
2.2. Powder X-ray Diffraction Microstructural Analysis
2.3. Fundamental Parameters of Diffraction Profiles
2.3.1. Position and Area Parameters
2.3.2. Dispersion Parameters
2.3.3. Shape of the Diffraction Profiles
2.3.4. Some Considerations Prior to the Microstructural Analysis
2.3.5. Deconvolution Procedures
Simplified Deconvolution Procedures
- Method of Williamson and Hall [46]
- 2.
- The method of Voigt function [47]
- 3.
- Implementation in Rietveld refinement of the whole diffraction powder pattern.
Fourier Transform Methods
Method of Warren and Averbach
Whole Powder-Pattern Fitting
3. X-ray Diffraction Microstructural Analysis in Clay Minerals
3.1. General Features of Structure and Classification of Clay Minerals
3.2. Crystallinity of Clay Minerals
3.3. X-ray Powder Diffraction Microstructural Analysis of Some Particular Groups of Clay Minerals
3.3.1. Kaolinite
3.3.2. Muscovite, Illite, Vermiculite
3.3.3. Chlorite
3.3.4. Smectites
3.3.5. Pyrophyllite, Talc
3.3.6. Sepiolite-Palygorskite
3.4. Useful Software in X-ray Powder Diffraction Microstructural Analysis of Clay Minerals
4. Some Examples of Use of XRD Microstructural Parameters in Particular Applications
4.1. For Kaolinite
4.2. For Muscovite, Illite, Chlorite
4.2.1. Diagenesis, Basin Evolution, Low Grade Metamorphism
4.2.2. Structural Geology and Tectonics
4.3. Research of Mineral Resources
4.4. Weathering, Soils, Provenance
4.5. Growth Mechanisms
4.6. Synthesis, Thermal Processing, Ceramics and Related Fields
4.7. Crystallinity in Polymers and Polymer Composites
4.8. Carriers of Active Agents
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mason, B.; Moore, C.B. Principles of Geochemistry; Wiley: Hoboken, NJ, USA, 1982; 344p. [Google Scholar]
- Warr, L.N. Earth’s clay mineral inventory and its climate interaction: A quantitative assessment. Earth-Sci. Rev. 2022, 234, 104198. [Google Scholar] [CrossRef]
- Meunier, A.; Velde, B. Illite Origins, Evolution and Metamorphism; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004; pp. XVI + 288. [Google Scholar] [CrossRef]
- Kogel, J.E.; Trivedi, N.C.; Barker, J.M.; Krukowsk, S. Industrial Minerals & Rocks: Commodities, Markets, and Uses; Society for Mining, Metallurgy, and Exploration (SME): Littleton, CO, USA, 2006; 1529p. [Google Scholar]
- Grim, R.E. Clay Mineralogy; McGraw-Hill Book Company: New York, NY, USA, 1969; 422p. [Google Scholar]
- Potter, P.E.; Maynard, J.B.; Pryor, W.A. Sedimentology of Shale; Springer: New York, NY, USA, 1980; 610p. [Google Scholar] [CrossRef]
- Guggenheim, S.; Martin, R.T. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner. 1995, 43, 255–256. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. (Eds.) Handbook of Clay Science; Developments in Clay Science, Part A Fundamentals, Part B: Techniques and Applications; Elsevier Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, 1748p. [Google Scholar]
- Grim, R.E. Applied Clay Mineralogy; McGraw-Hill Book Company: New York, NY, USA, 1962; 596p. [Google Scholar]
- Murray, H.M. Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays; Developments in Clay Science, 2; Elsevier: Amsterdam, The Netherlands, 2007; 189p. [Google Scholar]
- Van Olphen, H. An Introduction to Clay Colloid Chemistry, 2nd ed.; Wiley: New York, NY, USA, 1977; 318p. [Google Scholar]
- Lagaly, G. Colloid clay science. In Handbook of Clay Science; Chapter 5; Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 141–245. Developments in Clay Science. [Google Scholar] [CrossRef]
- Harvey, C.C.; Lagaly, G. Industrial Applications. In Handbook of Clay Science; Chapter 4.2; Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 451–490. [Google Scholar] [CrossRef]
- Lagaly, G.; Ogawa, M.I.; Dekan, L. Clay Mineral Organic Interactions. In Handbook of Clay Science; Chapter 7.3; Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 309–377. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; van Meerbeek, A. Clay mineral and organoclay–polymer Nanocomposite. In Handbook of Clay Science; Chapter 10.3; Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2006; Volume 1, pp. 583–621. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Álvarez, A.; Santarén, J.; Esteban-Cubillo, A. Advanced Materials and New Applications of Sepiolite and Palygorskite. In Developments in Palygorskite-Sepiolite Research; Developments in Clay Science; Galán, G., Singer, A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2011; Volume 3, pp. 393–452. [Google Scholar] [CrossRef]
- Gurses, A. Introduction to Polymer-Clay Nanocomposites; Pan Stanford Publishing: Singapore, 2015; 360p. [Google Scholar] [CrossRef]
- Zhou, C.H.; Keeling, J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013, 74, 3–9. [Google Scholar] [CrossRef]
- Millot, G. Geology of Clays: Weathering, Sedimentology and Geochemistry; Springer: Berlin/Heidelberg, Germany, 1970; 430p. [Google Scholar] [CrossRef]
- Weaver, C.E. Clays, Muds, and Shales; Developments in Sedimentology, 44; Elsevier: Amsterdam, The Netherlands, 1989; 820p. [Google Scholar]
- Gillott, J.E. Clay in Engineering Geology; Developments in Geotechnical Engineering, 41; Elsevier Science Publishers: Amsterdam, The Netherlands, 1987; 474p. [Google Scholar]
- Meunier, A. Clays; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; pp. XIII+472. [Google Scholar] [CrossRef]
- Caillere, S.; Hénin, S. Minéralogie des Argiles; Mason: Paris, France, 1963; 356p. [Google Scholar]
- Caillère, S.; Hénin, S.; Rautureau, M. Minéralogie des Argiles; Mason: Paris, France, 1982; Volume 2, 189p. [Google Scholar]
- Nemecz, E. Clay Minerals; Akadémiai Kiadó: Budapest, Hungary, 1981; 47p. [Google Scholar]
- Brown, G. (Ed.) The X-ray Identification and Crystal structures of Clay Minerals; Mineralogical Society: London, UK, 1961; 544p. [Google Scholar]
- Brindley, G.W.; Brown, G. (Eds.) Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society Monographs, Nº5; The Mineralogical Society of Great Britain and Ireland: London, UK, 1980; 495p. [Google Scholar]
- Moore, D.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clays Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Galán, E.; Singer, A. (Eds.) Developments in Palygorskite-Sepiolite Research; Developments in Clay Science; Elsevier Science: Amsterdam, The Netherlands, 2011; Volume 3, 270p. [Google Scholar]
- Brindley, G.W. The-interpretation of broadened X-ray reflections with special reference to clay minerals. Discuss. Faraday Soc. 1951, 11, 75–82. [Google Scholar] [CrossRef]
- Bertaut, F. Raies de Debye-Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines. Acta Crystallogr. 1950, 3, 14–18. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grose und inmeren Struktur von Kollittchen Rontgenstrahlen’ Nacrichten von der Geselchaft der Wissenchaften Gottingen. Math. Phys. 1918, 1–2, 96–100. [Google Scholar]
- Lavina, B.; Dera, P.; Downs, R.T. Modern X-ray Diffraction Methodsin Mineralogy and Geoscience. In Spectroscopic Methods in Mineralogy and Material Sciences; Reviews in Mineralogy & Geochemistry; Henderson, G.S., Neuville, D., Downs, R.T., Eds.; Mineralogical Society of America: Boulder, CO, USA, 2014; Volume 78, pp. 1–31. [Google Scholar] [CrossRef]
- Stokes, A.R.; Wilson, A.J.C. A method of calculating the integral breadth of Deby-Scherrer lines generalized to non cubic crystals. Proc. Camb. Philos. Soc. 1944, 40, 197. [Google Scholar] [CrossRef]
- Wilson, A.J.C. Mathematical Theory of X-ray Powder Diffractometry; Centrex Publishing Company: Eindhoven, The Netherlands, 1963; 128p. [Google Scholar]
- Warren, B.E.; Averbach, B.L. The effect of cold-work distortion on X-ray patterns. J. Appl. Phys. 1950, 21, 595–599. [Google Scholar] [CrossRef]
- Warren, B.E.; Averbach, B.L. The separation of work distortion and particle size broadening in X-ray patterns. J. Appl. Phys. 1952, 23, 497. [Google Scholar] [CrossRef]
- Langford, J.I.; Louër, D. Diffraction line profiles and Scherrer constants for materials with cylindrical crystallites. J. Appl. Crystallogr. 1982, 15, 20–26. [Google Scholar] [CrossRef]
- Langford, J.I.; Louër, D.; Sonneveld, E.J.; Visse, J.W. Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffr. 1986, 1, 211–221. [Google Scholar] [CrossRef]
- Vargas, R.; Louër, D.; Langford, J.I. Diffraction line profiles and Scherrer constants for materials with hexagonal crystallites. J. Appl. Crystallogr. 1983, 16, 512–518. [Google Scholar] [CrossRef]
- Kojdecki, M.A. Determination of real crystal structure characteristics from X-ray diffraction line profiles. Int. J. Appl. Electromagn. 1991, 2, 147–159. [Google Scholar]
- Kojdecki, M.A.; Mielcarek, W. Dependence of Sizes and Shapes of Crystallites in Zinc Oxide Powder on Annealing Temperature. Mater. Sci. Forum 2000, 21–324, 1040–1045. [Google Scholar] [CrossRef]
- Kojdecki, M.A.; Bastida, J.; Pardo, P.; Amoros, P. Crystalline microstructure of sepiolite influenced by grinding. J. Appl. Crystallogr. 2005, 38, 888–899. [Google Scholar] [CrossRef]
- Warren, B.E. X-ray Diffraction; Addison-Wesley Publishing Company: Reading, MA, USA, 1969; 381p. [Google Scholar]
- Taupin, D. Automatic peak determination in X-ray powder patterns. J. Appl. Crystallogr. 1973, 6, 266. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminum and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Langford, J.I. A rapid method for analysing breadths of diffraction and spectral lines using the Voigt function. J. Appl. Crystallogr. 1978, 11, 10–14. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures; John Wiley & Sons: New York, NY, USA, 1974; 965p. [Google Scholar]
- Snyder, R.L. Analytical profile fitting of X-ray powder diffraction profiles in Rietveld analysis. In The Rietveld Method; IUCr Monograph, 44; Young, R.A., Ed.; Oxford Science Publication: Oxford, UK, 1993; pp. 111–132. [Google Scholar]
- Caglioti, G.; Paoletti, A.; Ricci, F.P. Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction. Nucl. Instrum. Methods 1958, 3, 223–228. [Google Scholar] [CrossRef]
- Cline, J.P.; Black, D.; Windover, D.; Henins, A. The Calibration of Laboratory X-ray Diffraction Equipment Using NIST Standard Reference Materials. In Modern Diffraction Methods; Chapter 13; Mittemeijer, E.J., Welzel, U., Eds.; Wiley VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2012; pp. 359–398. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A.A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Kern, A.; Coelho, A.A.; Cheary, R.W. Convolution Based Profile Fitting. In Diffraction Analysis of the Microstructure of Materials; Springer Series in Materials Science; Mittemeijer, E.J., Scardi, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 68, pp. 17–50. [Google Scholar] [CrossRef]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN a new fundamental parameters based Rietveld program for laboratory X-ray sources, it’s use in quantitative analysis and structure investigations. Comm. Powder Diffr. Newsl. 1998, 20, 5–8. [Google Scholar]
- Bish, D.L.; Reynolds, R.C. Sample preparation for X-ray diffraction. In Modern Powder Diffraction; Reviews in Mineralogy and Geochemistry; Bish, D.L., Post, J.E., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1989; Volume 20, pp. 73–99. [Google Scholar]
- Hill, R.J. Data collection strategies: Fitting the experiment to the need’. In The Rietveld Method (IUCr Monographs on Crystallography 5.); Young, R.A., Ed.; Oxford Science Publications: Oxford, UK, 1993; pp. 61–102. [Google Scholar]
- Plevert, J. Diffraction des Rayons X par les Solides Polycristallins. Aspects Methodologiques de la Diffractometrie Sequentielle et Analyses Structurale et Microstructurale de Solides Inorganiques. (X-ray Diffraction by Polycrystalline Solids. Methodological Aspects of Sequential Diffractometry and Structural and Microstructural Analysis of Inorganic Solids). Ph D. Thesis, Université de Rennes, Rennes, France, 1990. [Google Scholar]
- Delhez, R.; Mittemeijer, E.J. An improved Kα2 elimination. J. Appl. Crystallogr. 1975, 8, 609–611. [Google Scholar] [CrossRef]
- Delhez, R.; Mittemeijer, E.J.; De Keijser, T.H.; Rozendaal, H.C.F. Corrections for angle dependence of Lorentz, polarization and structure factors in X-ray diffraction line profiles. J. Phys. Sci. Instrum. 1977, 10, 784–785. [Google Scholar] [CrossRef]
- Young, R.A.; Gerdes, R.J.; Wilson, A.J.C. Propagation of some systematic errors in X-ray line profile analysis. Acta Crystallogr. 1967, 22, 155–162. [Google Scholar] [CrossRef]
- Smith, L.P. The Determination of X-ray Line Shapes by a Double Crystal Spectrometer. Phys. Rev. B 1934, 46, 343–351. [Google Scholar] [CrossRef]
- Stokes, A.R. Numerical Fourier analysis method for the correction of widths and shape of lines on X-ray powder photographs. Proc. R. Soc. Lond. 1948, 61, 382–391. [Google Scholar] [CrossRef]
- Ergun, S. Direct method for unfolding convolution products—Its application to X-ray scattering intensities. J. Appl. Crystallogr. 1968, 1, 19–23. [Google Scholar] [CrossRef]
- Louër, D.; Weigel, D.; Louboutin, R. Méthode directe de correction des profils de raies de diffraction des rayons X. I. Méthode numérique de déconvolution. (Direct method for correcting X-ray diffraction line profiles. I. Numerical deconvolution method). Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1969, A25, 335–338. [Google Scholar] [CrossRef]
- Young, R.A.; Wiles, D.B. Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 1982, 15, 430–438. [Google Scholar] [CrossRef]
- Lucks, I.; Lamparter, P.; Mittemeijer, E.J. Uptake of iron, oxygen and nitrogen in molybdenum during ball milling. Acta Mater. 2001, 49, 2419–2428. [Google Scholar] [CrossRef]
- Mittemeijer, E.J.; Welzel, U. Diffraction Line-Profile Analysis. In Modern Diffraction Methods; Mittemeijer, E.J., Welzel, U., Eds.; Wiley_VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2013; pp. 89–126. [Google Scholar] [CrossRef]
- Gubicza, J. X-ray Line Profile Analysis in Materials Science; Engineering Science Reference: Hershey PA, USA, 2014; 343p. [Google Scholar]
- Schoening, F.R.L. Strain and particle size values from X-ray line breadths. Acta Crystallogr. 1965, 18, 975–976. [Google Scholar] [CrossRef]
- Nandi, R.K.; Sen Gupta, S.P. The analysis of X-ray diffraction profiles from imperfect solids by an application of convolution relations. J. Appl. Crystallogr. 1978, 11, 6–9. [Google Scholar] [CrossRef]
- De Keijser, T.H.; Langford, J.I.; Mittemeijer, E.J.; Vogels, A.B.P. Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 1982, 15, 308–314. [Google Scholar] [CrossRef]
- Bish, D.L. Studies of Clays and Clay Minerals Using X-ray Powder Diffraction and the Rietveld Method; No. LA-UR-93-2660; CONF-9309232-1; Los Alamos National Laboratory: Los Alamos, USA, 1993. [Google Scholar]
- Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, USA, 1994. [Google Scholar]
- Hassanzadeh-Tabrizi, S.A. Precise calculation of crystallite size of nanomaterials: A review. J. Alloy Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Guinebretière, R. Diffractions des Rayons X sur Echantillons Polycrystallins (X-ray Diffractions on Polycrystalline Samples); Hermes Science Publications: Paris, France, 2014; 287p. [Google Scholar]
- LeBail, A.; Louër, D. Smoothing and validity of crystallite-size distributions from X-ray line-profile analysis. J. Appl. Crystallogr. 1978, 11, 50–55. [Google Scholar] [CrossRef]
- Eberl, D.D.; Drits, V.; Srodon, J.; Ntiesch, R. MudMaster: A Program for Calculating Crystallite Size Distributions and Strain from the Shapes of X-ray Diffraction Peaks; USGS Open File Report 96-171; USGS: Reston, VA, USA, 1996; 44p. [Google Scholar] [CrossRef]
- Drits, V.A.; Srodon, J.; Eberl, D.D. XRD measurement of mean illite crystallite thickness: Reappraisal of the Kubler index and the Scherrer equation. Clays Clay Miner. 1997, 45, 461–475. [Google Scholar] [CrossRef]
- Bergmann, J.; Kleeberg, R. Fundamental Parameters versus Learnt Profiles Using the Rietveld Program BGMN. Mater. Sci. Forum 2001, 378, 30–35. [Google Scholar] [CrossRef]
- Dong, Y.H.; Scardi, P. MarqX: A new program for whole-powder-pattern fitting. J. Appl. Crystallogr. 2000, 33, 184–189. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J.; Roisnel, T. Line broadening analysis using FullProf: Determination of microstructural properties. 8th European Powder Diffraction Conference. Mater. Sci. Forum 2004, 443, 123–126. [Google Scholar] [CrossRef]
- Reynolds, R.C., Jr.; Ferrell, J.R. (Eds.) Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals; Workshop Lectures of The Clay Minerals Society: London, UK, 1993; Volume 5. [Google Scholar] [CrossRef]
- Aplin, A.C.; Matenaar, I.F.; McCarty, D.K.; van der Pluijm, B.A. Influence of Mechanical Compaction and Clay Mineral Diagenesis on the Microfabric and Pore-Scale Properties of Deep-Water Gulf of Mexico Mudstones. Clays Clay Miner. 2006, 54, 500–514. [Google Scholar] [CrossRef]
- Warshaw, C.M.; Roy, R. Classification and a scheme for the identification of layer silicates. Geol. Soc. Am. Bull. 1961, 72, 1455–1492. [Google Scholar] [CrossRef]
- Bailey, S.W. (Ed.) Micas, Reviews in Mineralogy; Mineralogical Society of America Madison: Madison, WV, USA, 1984; Volume 13, 584p. [Google Scholar]
- Bailey, S.W. (Ed.) Hydrous Phyllosilicates (Exclusive of Micas); Reviews in Mineralogy; Mineralogical Sociery of America: Madison, WV, USA, 1988; Volume 13, 725p. [Google Scholar]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Galán, E.; Kogure, T.; Stanjek, H. Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Étude des argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner. 2006, 54, 761–777. [Google Scholar] [CrossRef]
- Brindley, G.W. Order-Disorder in Clay Minerals Structures. In Crystal Structures of Clay Minerals and Their X-ray Identification; Mineralogical Society Monographs, Nº5; Brindley, G.W., Brown, G., Eds.; The Mineralogical Society of Great Britain and Ireland: London, UK, 1980; pp. 125–197. [Google Scholar]
- Drits, V.A.; Tchoubar, C. X-ray Diffraction by Disordered Lamellar Structures; Springer: Berlin/Heidelberg, Germany, 1990; 371p. [Google Scholar]
- Drits, V.A. Structural and chemical heterogeneity of layer silicates and clay minerals. Clay Miner. 2003, 38, 403–432. [Google Scholar] [CrossRef]
- Fiore, S.; Cuadros, J.; Huertas, F.J. (Eds.) Interstratified Clay Minerals: Origin, Characterization and Geochemical Significance; AIPEA Educational Series; Publication No. 1; Digilabs: Bari, Italy, 2010; 175p. [Google Scholar]
- Brigatti, M.; Mottana, A. Layered Mineral Structures and their Application in Advanced Technologies; EMU Notes in Mineralogy, 11; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland: London, UK, 2011; 381p. [Google Scholar]
- Sakharov, B.A.; Lanson, B. X-ray Identification of Mixed-Layer Structures: Modelling of Diffraction Effects. In Handbook of Clay Science; Developments in Clay Science, Part B: Techniques and Applications; Chapter 23; Bergaya, F., Lagaly, G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2013; Volume 5, pp. 51–135. [Google Scholar]
- Sakharov, B.A.; Plançon, A.; Lanson, B.; Drits, V.A. Influence of the outer surface layers of crystals on the X-ray diffraction intensity of basal reflections. Clays Clay Miner. 2004, 52, 680–692. [Google Scholar] [CrossRef]
- Lanson, B. Modelling of X-ray diffraction profiles: Investigation of defective lamellar structure crystal chemistry. In Layered Mineral Structures and their Application in Advanced Technologies; EMU Notes in Mineralogy, 11; Brigatti, M., Mottana, A., Eds.; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland: London, UK, 2011; pp. 151–202. [Google Scholar]
- Sakharov, B.; Lindgreen, H.; Salyn, A.; Drits, V. A Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting. Clays Clay Miner. 1999, 47, 555566. [Google Scholar] [CrossRef]
- Yuan, P.; Thill, A.; Bergaya, F. (Eds.) Nanosized Tubular Clay Minerals: Halloysite and Imogolite; Developments in Clay Science, V.7; Elsevier: Amsterdam, The Netherlands, 2016; 754p. [Google Scholar]
- Guggenheim, S.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Eberl, D.E.; Formoso, M.L.; Galán, E.; Merriman, R.J.; Peacor, D.R.; et al. Report of the association internationale pour l’étude des argiles (AIPEA) nomenclature committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the ‘crystallinity index’. Clays Clay Miner. 2002, 50, 406–409. [Google Scholar] [CrossRef]
- Brindley, G.W.; Robinson, K. Ramdomness in the structures of kaolinitic clay minerals. Trans. Faraday Soc. 1946, 42, B198–B205. [Google Scholar] [CrossRef]
- Murray, H.H.; Lyons, S.C. Correlation of paper-coating quality with degree of crystal perfection of kaolinite. Clays Clay Miner. 1956, 4, 31–40. [Google Scholar] [CrossRef]
- Galán, E.; Espinosa de los Monteros, J. El Caolín en España: Características, Identificación y Ensayos Cerámicos (Kaolin in Spain: Characteristics, Identification and Ceramic Tests); Sociedad Española de Cerámica y Vidrio (Spanish Ceramic and Glass Society): Madrid, Spain, 1974; 230p. [Google Scholar]
- Hinckley, D.N. Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clay Clay Miner. 1963, 11, 229–235. [Google Scholar] [CrossRef]
- Plancon, A.; Giese, R.F.; Snyder, R.; Drits, V.A.; Bookin, A.S. Stacking-faults in the kaolin-group minerals-defect structures of kaolinite. Clay Clay Miner. 1989, 37, 203–210. [Google Scholar] [CrossRef]
- Range, K.J.; Weiss, A. Uber das Verhalten von kaolinitit bei hohen Drücken. Ber. Deut. Keram. Ges. 1969, 46, 231–288. [Google Scholar]
- Barrios, J.; Plançon, A.; Cruz, M.I.; Tchoubar, C. Qualitative and Quantitative Study of Stacking Faults in a Hydrazine Treated Kaolinite-Relationship with the Infrared Spectra. Clays Clay Miner. 1977, 25, 422–429. [Google Scholar] [CrossRef]
- Lietard, P. Contribution à L’étude des Propriétés Physicochimiques et Morphologiques des Kaolins (Contribution to the Study of the Physicochemical and Morphological Properties of Kaolins). Ph.D. Thesis, Ecole National Superieur de Géologie, Appliquée et Prospection Minière, Nancy, France, 1977. [Google Scholar]
- Keller, W.D.; Haenni, R.P. Effects of micro-sized mixtures of kaolin minerals on properties of kaolinites. Clays Clay Miner. 1978, 26, 384–396. [Google Scholar] [CrossRef]
- Cases, J.M.; Liétard, O.; Yvon, J.; Delon, J.F. Étude des propriétés cristallochimiques, morphologiques et superficielles des kaolinites désordonnées. Bull. Miner. 1982, 105, 439–455. [Google Scholar] [CrossRef]
- Cases, J.M.; Cunin, P.; Grillet, Y.; Poinsignon, C.; Yvon, J. Methods of analyzing morphology of kaolinites—Relations between crystallographic and morphological properties. Clay Miner. 1986, 21, 55–56. [Google Scholar] [CrossRef]
- Aparicio, P.; Galán, E. Mineralogical Interference on Kaolinite Crystallinity Index Measurements. Clays Clay Miner. 1999, 47, 12–27. [Google Scholar] [CrossRef]
- Plançon, A.; Zacharie, C. An expert system for the structural characterization of kaolinites. Clay Miner. 1990, 25, 249–260. [Google Scholar] [CrossRef]
- Amigó, J.M.; Bastida, J.; Sanz, A.; Signes, M.; Serrano, J. Crystallinity of Lower Cretaceous kaolinites of Teruel (Spain). Appl. Clay Sci. 1994, 9, 51–56. [Google Scholar] [CrossRef]
- Reynolds, R.C.; Bish, D.L. The effects of grinding on the structure of a low-defect kaolinite. Am. Miner. 2002, 87, 1626–1630. [Google Scholar] [CrossRef]
- Weaver, E.W. Possible uses of clay minerals in search for oil. Clays Clay Miner. 1960, 44, 1505–1518. [Google Scholar] [CrossRef]
- Kübler, B. Les argiles, indicateurs de métamorphisme (Clays, indicators of metamorphism). Rev. Inst. Franc. Petrole 1964, 19, 10931112. [Google Scholar]
- Dunoyer de Segonzac, G. The transformation of clay minerals during diagenesis and low grade metamorphism: A review. Sedimentology 1968, 15, 281–346. [Google Scholar] [CrossRef]
- Dunoyer de Segonzac, G. Les Minéraux Argileux dans la Diagenèse. Passage au Métamorphisme (Clay Minerals in Diagenesis. Transition to Metamorphism); 339 p, 45 tables, 110 illus. Mém Serv Carte Géol d’Alsace Lorraine (Memoirs of the Geological Map Service of Alsace Lorraine) 1969. Volume 29, 320p. Available online: www.persee.fr/doc/sgeol_0080-9020_1969_mon_29_1 (accessed on 29 May 2024).
- Merriman, R.J.; Roberts, B.; Peacor, D.R. A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contrib. Miner. Petrol. 1990, 106, 27–40. [Google Scholar] [CrossRef]
- Merriman, R.J.; Roberts, B.; Peacor, D.R.; Hirons, S.R. Strain-related differences in the crystal growth of white mica and chlorite: A TEM and XRD study of the development of metapelite microfabrics in the Southern Uplands thrust terrane, Scotland. J. Metamorph. Geol. 1995, 13, 55–576. [Google Scholar] [CrossRef]
- Frey, M. Very low-grade metamorphism in clastic sedimentary rocks. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie: Gllasgow, UK; London, UK, 1987; pp. 9–58. [Google Scholar]
- Arkai, P.; Sassi, F.P.; Sassi, R. Simultaneous measurements of chlorite and illite crystallinity—A more reliable tool for monitoring low to very-low grade metamorphisms in metapelites—A case-study from the Southern Alps (NE Italy). Eur. J. Miner. 1995, 7, 1115–1128. [Google Scholar] [CrossRef]
- Biscaye, P.E. Mineralogy and sedimentation of Deep Sea Clay in the Atlantic Ocean and adjacent Seas and Oceans. Geol. Soc. Am. Bull. 1965, 76, 803–822. [Google Scholar] [CrossRef]
- Thorez, J. Practical Identification of Clay Minerals; G Lelotte Editions: Dison, Belgium, 1976; 90p. [Google Scholar]
- Cizel, B.; Krantz, G. Mechanism of montmorillonite structure degradation by percussive grinding. Clay Miner. 1981, 16, 151–162. [Google Scholar] [CrossRef]
- Gonzalez Garcia, F.; Ruiz Abrio, M.T.; Gonzalez Rodrigue, M. Effects of dry grinding on two kaolins of different degrees of crystallinity. Clay Miner. 1991, 26, 549–565. [Google Scholar] [CrossRef]
- La Iglesia, A. Pressure-induced disorder in kaolinite. Clay Miner. 1993, 28, 311–319. [Google Scholar] [CrossRef]
- La Iglesia, A.; Aznar, A.J. Crystallinity variations in kaolinite induced by grinding and pressure treatments. J. Mater. Sci. 1996, 31, 4671–4677. [Google Scholar] [CrossRef]
- Serrano, F.J.; Sanz, A.; Esteve, V.; Bastida, J.; Amigó, J.M. XRD line broadening of kaolinites from Teruel (Spain). In Applied Crystallography; Moraviec, H., Strótz, D., Eds.; World Scientific Publishing: Singapore, 1995; pp. 367–370. [Google Scholar]
- Frost, R.L.; Makó, E.; Kristóf, J.; Horvath, E.; Kloprogge, J.T. Modification of kaolinite surfaces by mechanochemical treatment. Langmuir 2001, 17, 4731–4738. [Google Scholar] [CrossRef]
- Hart, R.D.; Gilkes, R.J.; Siradz, S.; Singh, B. The nature of soil kaolins from Indonesia and Western Australia. Clays Clay Miner. 2002, 50, 198–207. [Google Scholar] [CrossRef]
- Clausell, J.V.; Bastida, J.; Serrano, F.J.; Pardo, P.; Huertas, F.J. A new FESEM procedure for assessment of XRD microstructural data of kaolinites. Appl. Clay Sci. 2007, 37, 127–132. [Google Scholar] [CrossRef]
- Pardo, P.; Bastida, J.; Kojdecki, M.A.; Ibañez, R.; Zbik, M. X-ray diffraction line broadening in dry grinding of kaolinite. Z. Krist. Suppl. 2007, 26, 549–554. [Google Scholar] [CrossRef]
- Pardo, P.; Bastida, J.; Serrano, F.J.; Ibañez, R.; Kojdecki, M.A. X-ray diffraction line-broadening study on two vibrating, dry-milling procedures in kaolinites. Clay Clay Miner. 2009, 57, 25–34. [Google Scholar] [CrossRef]
- Clausell, J.V.; Bastida, J.; Kojdecki, M.; Pardo, P. Crystal growth mechanism of kaolinites deduced from crystallite size distribution. Z. Krist. Suppl. 2011, 1, 93–98. [Google Scholar] [CrossRef]
- Pardo, P.; Huertas, F.J.; Kojdecki, M.A.; Bastida, J. Crystallite size evolution in hydrothermal formation of kaolinite. Z. Krist. Suppl. 2011, 1, 63–68. [Google Scholar] [CrossRef]
- Hamzaoui, R.; Muslim, F.; Guessasma, S.; Bennabi, A.; Guillin, J. Structural and thermal behavior of proclay kaolinite using high energy ball milling process. J. Powder Technol. 2015, 271, 228–237. [Google Scholar] [CrossRef]
- Kodama, H.; Gatineau, L.; Mering, J. An analysis of Xray diffraction line profiles of microcrystalline muscovites. Clays Clay Miner. 1971, 19, 405–413. [Google Scholar] [CrossRef]
- Lanson, B.; Kubler, B. Experimental determination of the coherent scattering domain size distribution of natural mica-like phases with the Warren–Averbach technique. Clays Clay Miner. 1994, 4, 489–494. [Google Scholar] [CrossRef]
- Arkai, P.; Merriman, R.J.; Roberts, B.; Toth, M.; Peacor, D.R. Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: Comparison of XRD and TEM data for diagenetic to epizonal pelites. Eur. J. Miner. 1996, 8, 1119–1138. [Google Scholar] [CrossRef]
- Jiang, W.T.; Peacor, D.R.; Kim, J.W. TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks. J. Metamorph. Geol. 1997, 15, 267–281. [Google Scholar] [CrossRef]
- Drits, V.A.; Eberl, D.D.; Srodon, J. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren–Averbach technique. Clays Clay Miner. 1998, 46, 38–50. [Google Scholar] [CrossRef]
- Warr, L.N.; Nieto, F. Crystal thickness and defect density of phyllosilicates in low-temperature metamorphic pelites: A TEM and XRD study of clay mineral crystallinity index standards. Can. Miner. 1998, 36, 1453–1474. [Google Scholar]
- Warr, L.N.; Peacor, D.R. Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slate. Schweiz. Miner. Petrogr. Mitt 2002, 82, 187–202. [Google Scholar]
- Eberl, D.D.; Srodon, J.; Drits, V.A. Comment on ‘Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates by L. N. Warr and D. L. Peacor’. Schweiz. Miner. Petrogr. Mitt 2003, 83, 349–358. [Google Scholar]
- Dudek, T.; Srodon, J.; Elsass, F.; Uhlik, P. Thickness distribution of illite crystals in shales. I: X-ray diffraction vs. high-resolution transmission electron microscopy measurements. Clays Clay Miner. 2002, 50, 562–577. [Google Scholar] [CrossRef]
- Dudek, T.; Srodon, J.; Eberl, D.; Elsass, F.; Uhlik, P. Thickness distribution of illite crystals in shales. II: Origin of the distribution and the mechanism of smectite illitization in shales. Clays Clay Miner. 2003, 51, 529–542. [Google Scholar] [CrossRef]
- Omotoso, O.E.; Mikula, R.J. High surface areas caused by smectitic interstratification of kaolinite and illite in Athabasca oil sands. Appl. Clay Sci. 2004, 25, 37–47. [Google Scholar] [CrossRef]
- Shata, S.; Hesse, R.; Martin, R.F.; Vali, H. Expandability of anchizonal illite and chlorite: Significance for crystallinity development in the transition from diagenesis to metamorphism. Am. Miner. 2003, 88, 748–762. [Google Scholar] [CrossRef]
- Shata, S. Illite crystallinity: Instrumental effect and its relation to crystallite size and lattice distortion. Z. Krist. Suppl. 2007, 26, 111–116. [Google Scholar] [CrossRef]
- Asaad, A.; Hubert, F.; Dazas, B.; Razafitianamaharavo, A.; Brunet, J.; Glaus, M.A.; Savoye, S.; Ferrage, E.; Tertre, E. A baseline study of mineralogical and morphological properties of different size fractions of illite du Puy. Appl. Clay Sci. 2022, 224, 106517. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.A.; Caneo, O.B.; Poyato, J.; Perez-Rodriguez, J.L. Preparation and characterization of micron and submicron-sized vermiculite. Phys. Chem. Miner. 2001, 28, 61–66. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, J.L.; Carrera, F.; Poyato, J.; Pérez-Maqueda, L.A. Sonication as a tool for preparing nanometric vermiculite particles. Nanotechnology 2002, 13, 382–387. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.A.; De Haro, M.C.J.; Poyato, J.; Pérez-Rodríguez, J.L. Comparative study of ground and sonicated vermiculite. J. Mater. Sci. 2004, 39, 5347–5351. [Google Scholar] [CrossRef]
- Nguyen, A.N.; Reinert, L.; Lévêque, J.M.; Beziat, M.A.; Dehaudt, P.; Julia, J.F.; Duclaux, L. Preparation and characterization of micron and submicron-sized vermiculite powders by ultrasonic irradiation. Appl. Clay Sci. 2013, 72, 9–17. [Google Scholar] [CrossRef]
- Marcos, C.; Rodriguez, I. Structural changes on vermiculite treated with methanol and ethanol and subsequent microwave irradiation. Appl. Clay Sci. 2016, 123, 304–314. [Google Scholar] [CrossRef]
- Kaur, S.; Singh, S.; Singh, L. Opto-electric and physio-chemical changes in oxygen ion irradiated natural Vermiculite mineral. Appl. Radiat. Isot. 2019, 148, 7–12. [Google Scholar] [CrossRef]
- Reinholdt, M.X.; Hubert, F.H.; Faurel, M.; Tertre, E.; Razafitianamaharavo, A.; Francius, G.; Prêt, D.; Petit, S.; Béré, E.; Pelletier, M.; et al. Morphological properties of vermiculite particles in size-selected. Appl. Clay Sci. 2013, 77–78, 18–32. [Google Scholar] [CrossRef]
- Mystkowski, K.; Środoń, J. Elsass F Mean thickness and thickness distribution of smectite crystallites. Clay Miner. 2000, 35, 545–557. [Google Scholar] [CrossRef]
- Stepkowska, E.T.; Pérez-Rodríguez, J.L.; Maqueda, C.; Starnawskad, E. Variability in water sorption and in particle thickness of standard smectites. Appl. Clay Sci. 2004, 24, 185–199. [Google Scholar] [CrossRef]
- Christidis, G.E.; Makri, P.; Perdikatsis, V. Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. Clay Miner. 2004, 39, 163–175. [Google Scholar] [CrossRef]
- García Tomás, F.; Kojdecki, M.A.; Pardo, P.; Bastida, J. X-ray Diffraction Microstructural Analysis of Swelling by Ethylene Glycol in Two Reference Clay Minerals. Acta Phys. Pol. A 2016, 130, 4. [Google Scholar] [CrossRef]
- Bekri-Abbes, I.; Srasra, E. Effect of mechanochemical treatment on structure and electrical properties of montmorillonite. J. Alloy Compd. 2016, 671, 34–42. [Google Scholar] [CrossRef]
- Ferrage, E. Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations: A review of methodology, applications and perspectives. Clays Clay Miner. 2016, 64, 348–373. [Google Scholar] [CrossRef]
- Sanchez-Soto, P.J.; Macias, M.; Perez Rodriguez, J.L. Effects of mechanical treatment on X-ray-diffraction line broadening in pyrophyllite. J. Am. Ceram. Soc. 1993, 76, 180–184. [Google Scholar] [CrossRef]
- Uhlík, P.; Šucha, V.; Eberl, D.D.; PušKelová, L.; Čaplovičová, M. Evolution of pyrophyllite particle sizes during dry grinding. Clay Miner. 2000, 35, 423–432. [Google Scholar] [CrossRef]
- Balek, V.; Šubrt, J.; Pérez-Maqueda, L.A.; Beneš, M.; Bountseva, I.M.; Beckman, I.N.; Pérez-Rodríguez, J.L. Thermal behavior of ground talc mineral. J. Min. Metall. B 2008, 44, 7–17. [Google Scholar] [CrossRef]
- Dellisanti, F.; Valdrè, G.; Mondonico, M. Changes of the main physical and technological properties of talc due to mechanical strain. Appl. Clay Sci. 2009, 42, 398–404. [Google Scholar] [CrossRef]
- Jamil, N.H.; Palaniandy, S. Acid medium sonication: A method for preparation of low density talc nano-sheets. Powder Technol. 2010, 200, 87–90. [Google Scholar] [CrossRef]
- Jamil, N.H.; Palaniandy, S. Comparative study of water-based and acid-based sonications on structural changes of talc. Appl. Clay Sci. 2011, 51, 399–406. [Google Scholar] [CrossRef]
- Palaniandy, S.; Azizli, K.A.M. Mechanochemical effects on talc during fine grinding process in a jet mill. J. Miner. Process 2009, 92, 22–33. [Google Scholar] [CrossRef]
- Martinez Ramirez, S.; Puertas, F.; BlancoVarela, M.T. Stability of sepiolite in neutral and alkaline media at room temperature. Clay Miner. 1995, 31, 225–232. [Google Scholar] [CrossRef]
- Dumas, A.; Mizrahi, M.; Martin, F.; Requejo, F.G. Local and Extended-Order Evolution of Synthetic Talc during Hydrothermal Synthesis: Extended X-ray Absorption Fine Structure, X-ray Diffraction, and Fourier Transform Infrared Spectroscopy Studies. Cryst. Growth Des. 2015, 15, 5451–5463. [Google Scholar] [CrossRef]
- Bastida, J.; Pardo, P.; Kojdecki, M.; Ramo, P. Comparative microstructural analysis (XRD and FESEM) of sepiolite. Bol. Soc. Española 2006, 45, 330–337. [Google Scholar] [CrossRef]
- Bastida, J.; Pardo, P.; Kojdecki, M.; Ramo, P.; Amorós, P. X-ray diffraction line broadening on vibrating dry-milled Two Crows sepiolite. Clays Clay Miner. 2006, 54, 390–401. [Google Scholar] [CrossRef]
- Leguey, S.; Ruiz, A.I.; Fernandez, R.; Cuevas, J. Resistant cellulose-derivative biopolymer templates in natural sepiolite. Am. J. Sci. 2014, 314, 1041–1063. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, J.; Chen, J. Determining the Aspect Ratio of Palygorskite by Dynamic Laser Light Scattering and X-ray Diffraction Analysis Techniques. J. Nanomater. 2020, 2020, 5263042. [Google Scholar] [CrossRef]
- Walker, J.R. An Introduction to Computer Modeling of X-ray Powder Diffraction Patterns of Clay Minerals: A Guided Tour of NEWMOD©. In Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals; Reynolds, R.C., Ferrell, J.R., Eds.; Workshop Lectures of the Clay Minerals Society: London, UK, 1993; Volume 5, pp. 1–17. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Thelin, P. PATISSIER: Software to estimate the smectite content and number of consecutive illite layers in mixed-layer illite-smectite using illite crystallinity data. Schweiz. Miner. Petrogr. Mitt 2010, 82, 221–228. [Google Scholar]
- Yuan, H.J.; Bish, D.L. NEWMOD plus, a new version of the Newmod program for interpreting x-ray powder diffraction patterns from interstratified clay minerals. Clays Clay Miner. 2010, 58, 318–326. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, D.; Bu, H.; Deng, L.; Liu, H.; Yuan, P.; Du, P.; Song, H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid. Earth Sci. 2018, 3, 16–29. [Google Scholar] [CrossRef]
- Satokawa, S.; Miyawaki, R.; Osaki, A.; Tomura, S.; Shibasaki, Y. Effects of acidity on the hydrothermal synthesis of kaolinite from silica-gel and gibbsite. Clays Clay Miner. 1996, 44, 417–423. [Google Scholar] [CrossRef]
- Araújo, J.; Corrêa, A.; de Teixeira, J.; Ivanovitch, M.V.; Bertolino, L.C. Caracterização da microestrutura de caulinitas pela difração de raios X. Matéria 2006, 11, 361–371. [Google Scholar] [CrossRef]
- Abdellatif, M.M. Studying the Effect of Crystal Size on Adsorption Properties of Clay. Arab. J. Nucl. Sci. Appl. 2012, 45, 40–46. [Google Scholar]
- Ilić, B.; Radonjanin, V.; Malešev, M.; Zdujić, M.; Mitrović, A. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Appl. Clay Sci. 2016, 123, 173–181. [Google Scholar] [CrossRef]
- Awad, M.E.; Lopez-Galindo, A.; Sanchez-Espejo, R.; Sainz-Diaz, C.; El-Rahmany, M.M.; Viseras, C. Crystallite size as a function of kaolinite structural order-disorder and kaolin chemical variability: Sedimentological implication. Appl. Clay Sci. 2018, 162, 261–267. [Google Scholar] [CrossRef]
- Awad, M.E.; Lopez-Galindo, A.; Medarevic, D.; Duris, J.; El-Rahmany, M.M.; Ibric, S.; Viseras, C. Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients. Minerals 2020, 10, 23. [Google Scholar] [CrossRef]
- Peacor, D.R. Diagenesis and low-grade metamorphism of shales and slates. In Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy; Reviews in Mineralogy, 27; Buseck, P.R., Ed.; Mineralogical Society of America: Washington, DC, USA, 1992; pp. 335–380. [Google Scholar]
- Merriman, R.J.; Peacor, D.R. Very low-grade metapelites: Mineralogy, microfabrics and measuring reaction progress. In Low-Grade Metamorphism; Frey, M., Robinson, D., Eds.; Blackwell Science: Oxford, UK, 1999; pp. 10–60. [Google Scholar] [CrossRef]
- Kübler, B. Evaluation quantitative du metamorphisme par la cristallinité de l’ illite. Bull. Cent. Rech. Pau SNPA 1968, 2, 385–397. [Google Scholar]
- Weber, K. Notes on determination of illite crystallinity. Neues Jahrb. Mineral. Monatshefte 1972, 6, 267–276. [Google Scholar]
- Kisch, H.I. Illite crystallinity and coal rank associated with lowest-grade metamorphism of theTaveyanne greywacke in the Helvetic zone of the Swiss Alps. Swiss J. Geosci. 1980, 73, 753–777. [Google Scholar]
- Kisch, H.I. Coal rank and illite crystallinity associated with the zeolite facies of Southland and the pumpellyite-bearing facies of Otago, Southern New-Zealand. N. Z. J. Geol. Geophys. 1981, 24, 349–360. [Google Scholar] [CrossRef]
- Kisch, H.I. Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. In Diagenesis in Sediments and Sedimentary Rocks; Larsen, G., Chillingar, G.V., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 289–493. [Google Scholar] [CrossRef]
- Blenkinsop, T.G. Definition of low-grade metamorphic zones using illite crystallinity. J. Metamorph. Geol. 1988, 6, 623–636. [Google Scholar] [CrossRef]
- Pesquera, A.; Velasco, F. Metamorphism of the paleozoic Cinco Villas massif (Basque Pyrenees)—Illite crystallinity and graphitization degree. Miner. Mag. 1988, 52, 615–625. [Google Scholar] [CrossRef]
- Arkai, P. Chlorite crystallinity—An empirical-approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by paleozoic and mesozoic rocks of Northeast Hungary. J. Metamorph. Geol. 1991, 9, 723–734. [Google Scholar] [CrossRef]
- Arkai, P.; Ghabrial, D.S. Chlorite crystallinity as an indicator of metamorphic grade of low-temperature meta-igneous rocks: A case study from the Bukk mountains, northeast Hungary. Clay Miner. 1997, 3, 205–222. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhou, J. The relationships between the Kubler index, Weaver index and Weber index of illite crystallinity and their applications. Schweiz. Miner. Petrogr. Mitt 2000, 80, 187–198. [Google Scholar]
- Lee, J.I.; Lee, Y.I. Kubler illite ‘crystallinity’ index of the Cretaceous Gyeongsang Basin, Korea: Implications for basin evolution. Clays Clay Miner. 2001, 49, 36–43. [Google Scholar] [CrossRef]
- Brime, C.; Eberl, D.D. Growth mechanisms of low-grade illites based on shapes of crystal thickness distributions. Schweiz. Miner. Petrogr. Mitt 2002, 82, 203–209. [Google Scholar]
- Wyld, S.J.; Rogers, J.W.; Copeland, P. Metamorphic evolution of the luning-fencemaker fold-Thrust Belt, Nevada: Illite crystallinity, metamorphic petrology, and 40Ar/39Ar geochronology. J. Geol. 2003, 111, 17–38. [Google Scholar] [CrossRef]
- Ruiz Cruz, M.D. Genesis and evolution of the kaolin-group minerals during the diagenesis and the beginning of metamorphism. In Diagenesis and Low-Temperature Metamorphism: Theory, Methods and Regional Aspects; Nieto, F., Millán, J.J., Eds.; Sociedad Española de Mineralogía: Jaén, Spain, 2007; Volume 3, pp. 41–52. [Google Scholar]
- Battaglia, S.; Pennisi, M. Structural boron as factor controlling illite crystallinity in a mud volcano environment (Northern Apennine, Italy. Chem. Geol. 2016, 444, 120–127. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, M.D.; Abad, J.; Bentabol, M.J. Permo-Triassic Clastic Rocks from the Ghomaride Complex and Federico Units (Rif Cordillera, N Morocco): An Example of Diagenetic-Metamorphic Transition. Minerals 2019, 9, 738. [Google Scholar] [CrossRef]
- Nieto, F.; Do Campo, M. Editorial for Minerals Special Issue ‘From Diagenesis to Low-Grade metamorphism’. Minerals 2020, 10, 879. [Google Scholar] [CrossRef]
- Burkhard, M.; Badertscher, N. Finite strain has no influence on the illite crystallinity of tectonized Eocene limestone breccias of the Morcles nappe, Swiss Alps. Clay Miner. 2001, 36, 171–180. [Google Scholar] [CrossRef]
- Zulauf, G.; Kowalczyk, G.; Krahl, J.; Petschick, R.; Schwanz, S. The tectonometamorphic evolution of high-pressure low-temperature metamorphic rocks of eastern Crete, Greece: Constraints from microfabrics, strain, illite crystallinity and paleodifferential stress. J. Struct. Geol. 2002, 24, 1805–1828. [Google Scholar] [CrossRef]
- Piana, F.; Battaglia, S.; Bertok, C.; D’Atri, A.; Ellero, A.; Leoni, L.; Martire, L.; Perotti, E. lllite (KI) and chlorite (AI) ‘crystallinity’ indices as a constraint for the evolution of the External Brianconnais Front in Western Ligurian Alps (NW Italy). Ital. J. Geosci. 2014, 133, 445–454. [Google Scholar] [CrossRef]
- Warr, L.N.; Cox, S.C. Correlating illite (Kubler) and chlorite (Arkai) ‘crystallinity’ indices with metamorphic mineral zones of the South Island, New Zealand. Appl. Clay Sci. 2016, 134, 164–174. [Google Scholar] [CrossRef]
- Giorgetti, G.; Memmi, I.; Peacor, D.R. Retarded illite crystallinity caused by stress-induced sub-grain boundaries in illite. Clay Miner. 2018, 35, 693–708. [Google Scholar] [CrossRef]
- Duba, D.; Williamsjones, A.E. The application of illite crystallinity, organic-matter reflectance, and isotopic techniques to mineral exploration—A case-study in Southwestern Gaspe, Quebec. Econ. Geol. 1983, 78, 1350–1363. [Google Scholar] [CrossRef]
- Bechtel, A.; Elliott, W.C.; Wampler, J.M.; Oszczepalski, S. Clay mineralogy, crystallinity, and K-Ar ages of illites within the Polish Zechstein basin: Implications for the age of Kupferschiefer mineralization. Econ. Geol. 1999, 94, 261–272. [Google Scholar] [CrossRef]
- Jin, Z.D.; Zhu, J.C.; Ji, J.F.; Lu, X.W.; Li, F.C. Ore-forming fluid constraints on illite crystallinity (IC) at Dexing porphyry copper deposit, Jiangxi Province. Sci. China Ser. D 2001, 44, 177–184. [Google Scholar] [CrossRef]
- Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P. Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado. Am. Min. 2002, 87, 1546–1556. [Google Scholar] [CrossRef]
- Li, X.F.; Hua, R.M.; Mao, J.W.; Ji, J.F.; Wang, C.Z. A study of illite Kubler Indexes and chlorite ‘crystallinities’ with respect to shear deformation and alterations, Jinshan gold deposit, East China. Resour. Geol. 2003, 53, 283–292. [Google Scholar] [CrossRef]
- Li, C.X.; Wang, R.C.; Zhang, M. Mineralogical characteristics of unusual black talc ores in Guangfeng County, Jiangxi Province, China. Appl. Clay Sci. 2013, 7, 37–46. [Google Scholar] [CrossRef]
- Yan, S.X. A comparative study on the illite crystallinity and the clay mineral reflectance spectral index for subdividing the very low-grade metamorphic belt along the Lizhou-Hekou geological section in the Youjiang sedimentary basin, Guangxi, China. Sci. China Ser. D 2004, 47, 834–845. [Google Scholar] [CrossRef]
- Cozzi, G.; Bastida, J.; Alvarez Larena, A.; Kojdecki, M.; Pardo, P. Crystallite size of kaolinites as indicator of different geochemical types of bauxite in Maestrazgo area (NE Spain). Z. Kristallog. Suppl. 2009, 30, 441–446. [Google Scholar] [CrossRef]
- Liu, R.C.; Ren, Z.L.; Yang, P.; He, H.Y.; Smith, T.M.; Guo, W.; Wu, L. Mesozoic Tectono-Thermal Event of the Qinshui Basin, Central North China Craton: Insights from Illite Crystallinity and Vitrinite Reflectance. Front Earth Sci. 2021, 9, 765497. [Google Scholar] [CrossRef]
- Peltz, M.; Jacob, A.; Grathoff, G.H.; Enzmann, F.; Kersten, M.; Warr, L.N. A FIB-SEM Study of Illite Morphology in Aeolian Rotliegend Sandstones: Implications for Understanding the Petrophysical Properties of Reservoir Rocks. Clays Clay Miner. 2022, 7, 84–105. [Google Scholar] [CrossRef]
- Arkai, P. The distinction between low-T retrograde metamorphism and weathering plus burial diagenesis of the Gneiss and mica schist basement-complex, Great Plain, Hungary—A novel use of illite crystallinity. Neues J. Miner. Monat. 1993, 8, 337–351. [Google Scholar]
- Martin-Garcia, J.M.; Delgado Parraga, J.F.; Bech, J.; Delgado, R. Mineral formation in micaceous Mediterranean Red soils of Sierra Nevada, Granada, Spain. Eur. J. Soil Sci. 1998, 49, 253–268. [Google Scholar] [CrossRef]
- Lamy, F.; Hebbeln, D.; Wefer, G. High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quat. Res. 1999, 51, 83–93. [Google Scholar] [CrossRef]
- Pandarinath, K.; Prasad, S.; Gupta, S.K. A 75 ka record of palaeoclimatic changes inferred from crystallinity of illite from Nal Sarovar, western India. J. Geol. Soc. India 1999, 54, 515–522. [Google Scholar]
- Fagel, N.; Boski, Y.; Likhoshway, L.; Oberhaensli, H. Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeogr. Palaeocl. 2003, 193, 159–179. [Google Scholar] [CrossRef]
- Ehrmann, W.; Schmiedl, G.; Hamann, Y.; Kuhnt, T.; Hemleben, C.; Siebel, W. Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeogr. Palaeocl. 2007, 249, 36–57. [Google Scholar] [CrossRef]
- Pandarinath, K. Clay minerals in SW Indian continental shelf sediment cores as indicators of provenance and palaeomonsoonal conditions: A statistical approach. Int. Geol. Rev. 2009, 51, 145–165. [Google Scholar] [CrossRef]
- Kuwahara, O.; Yukiko Masudome, Y.; Paudel, M.R.; Fujii, R.; Hayashi, T.; Mami Mampuku, M.; Sakai, H. Controlling weathering and erosion intensity on the southern slope of the Central Himalaya by the Indian summer monsoon during the last glacial. Glob. Planet. Change 2010, 71, 73–84. [Google Scholar] [CrossRef]
- Colin, C.; Siani, G.; Sicre, M.A.; Liu, Z. Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River basin over the past 25,000 year. Mar. Geol. 2010, 271, 84–92. [Google Scholar] [CrossRef]
- Hu, B.Q.; Li, J.; Cui, R.Y.; Wei, H.L.; Zhao, J.T.; Li, G.G.; Fang, X.S.; Ding, X.; Zou, L.; Bai, F.L. Clay mineralogy of the riverine sediments of Hainan Island, South China Sea: Implications for weathering and provenance. J. Asian Earth Sci. 2014, 96, 84–92. [Google Scholar] [CrossRef]
- Bastida, J.; Linares, R.; López Buendía, A.M.; Osácar, M.C.; Rosell, J.; Zarroca, M. Weathering evolution in lutites of the K/Pg transition red beds of the Tremp Group (Tremp-Isona Basin, south Pyrenees). Clay Miner. 2017, 52, 107–126. [Google Scholar] [CrossRef]
- Guo, J.H.; Pyles, C.; Krugh, W.; Negrini, R. Clay minerals in the late Quaternary sediment of Tulare Lake, California: Implications for climate change, weathering, and erosion processes. Int. J. Sediment. Res. 2019, 34, 432–443. [Google Scholar] [CrossRef]
- Hubert, F.; Caner, L.; Meunier, A.; Ferrage, E. Unraveling complex <2 μm clay mineralogy from soils using X-ray diffraction profile modeling on particle size sub-fractions: Implications for soil pedogenesis and reactivity. Am. Miner. 2012, 97, 384–398. [Google Scholar] [CrossRef]
- Dos Santos, P.G.; de Almeida, J.A.; Sequinatto, L. Mineralogy of the Clay Fraction and Chemical Properties of Soils Developed from Sedimentary Lithologies of Piramboia, Sanga-the-Cabral and Guara Geological Formations in Southern Brazil. Rev. Bras. Cienc. Solo 2017, 41, e0160344. [Google Scholar] [CrossRef]
- Prandel, L.V.; Dias, N.M.P.; da Costa Saab, S.; Brinatti, M.; Neyde, F.; Balarezo Giarola, B.; Pires, L.F. Characterization of kaolinite in the hardsetting clay fraction using atomic force microscopy, X-ray diffraction, and the Rietveld method. J. Soils Sediments 2017, 17, 2144–2155. [Google Scholar] [CrossRef]
- Paul, R.; Datta, S.C.; Manjaiah, K.M.; Bhattacharyya, R. X-ray crystallinity of different soil nanoclays in relation to phosphatase adsorption. Appl. Clay Sci. 2017, 144, 19–25. [Google Scholar] [CrossRef]
- Paul, R.; Karthikeyan, K.; Vasu, D.; Tiwary, P.; Chandran, P. Origin and Mineralogy of Nano Clays of Indian Vertisols and Their Implications in Selected Soil Properties. Eurasian Soil Sci. 2021, 54, 572–585. [Google Scholar] [CrossRef]
- Jung, J.W.; Chung, H.; Ko, Y.T.; Moon, I.; Suh, Y.J.; Kim, K. A microbial driver of day mineral weathering and bioavailable Fe source under low-temperature conditions. Front. Microbiol. 2022, 13, 980078. [Google Scholar] [CrossRef] [PubMed]
- Eberl, D.D.; Drits, V.A.; Srodon, J. Deducing crystal growth mechanisms for minerals from the shapes of crystal size distributions. Am. J. Sci. 1998, 298, 499–533. [Google Scholar] [CrossRef]
- Eberl, D.D.; Drits, V.; Srodon, J. User’s Guide to Galoper: A Program for Simulating the Shapes of Crystal Size Distributions from Growth Mechanisms and Associated Programs; Open-File Report 2000-505; USGS: Reston, VA, USA, 2000. [Google Scholar] [CrossRef]
- Srodon, J.; Eberl, D.D.; Drits, V.A. Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism. Clays Clay Miner. 2000, 48, 446–458. [Google Scholar] [CrossRef]
- Eberl, D.D.; Kile, D.E.; Drits, V.A. On geological interpretations of crystal size distributions: Constant vs. proportionate growth. Am. Miner. 2002, 87, 1235–1241. [Google Scholar] [CrossRef]
- Kile, D.E.; Eberl, D.D. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion. Am. Miner. 2003, 88, 1514–1521. [Google Scholar] [CrossRef]
- Bobos, I.; Eberl, D.D. Thickness distributions and evolution of growth mechanisms of NH4-illite from the fossil hydrothermal system of Harghita Bai, eastern Carpathians, Romania. Clays Clay Miner. 2013, 61, 375–391. [Google Scholar] [CrossRef]
- Serrano, F.J.; Bastida, J.; Amigó, J.M.; Sanz, A. XRD line broadening studies on mullite. Cryst. Res. Technol. 1996, 31, 1085–1093. [Google Scholar] [CrossRef]
- Kodama, T.; Harada, Y.; Schneider, H. Crystal-size control and characterization of Na-4-mica prepared from kaolinite. J. Mater. Chem. 2001, 11, 1222–1227. [Google Scholar] [CrossRef]
- García Portillo, C.; Bastida, J.; Lázaro, A. Microstructure of kaolinite and technological properties of kaolinitic casting clays. Bol. Soc. Esp. Ceram. V. 2005, 44, 239–244. [Google Scholar] [CrossRef]
- Bastida, J.; Lores, M.T.; De La Torre, J.; Pardo, P.; López Buendia, A.M. Microstructural modification of clay minerals in ball clays from Teruel by thermal treatment. Bol. Soc. Esp. Ceram. V. 2006, 45, 38–45. [Google Scholar] [CrossRef]
- Dellisanti, F.; Valdrè, G.; Mondonico, M. Linear relationship between thermo-dehydroxylation and induced-strain by mechanical processing in vacuum: The case of industrial kaolinite, talc and montmorillonite. Int. J. Min. Process 2008, 88, 94–99. [Google Scholar] [CrossRef]
- Fischer, H.; Weidler, P.G.; Grobéty, B.; Luster, J.; Gehring, A.U. The transformation of synthetic hectorite in the presence of Cu(II). Clays Clay Miner. 2009, 7, 139–149. [Google Scholar] [CrossRef]
- Sanz, A.; Bastida, J.; Caballero, A.; Kojdecki, M. X-ray diffraction Warren–Averbach mullite analysis in whiteware porcelains: Influence of kaolin raw material. Clay Miner. 2018, 53, 471–485. [Google Scholar] [CrossRef]
- Mileva, D.; Tranchida, D.; Gahleitner, M. Designing polymer crystallinity: An industrial perspective. Polym. Cryst. 2018, 1, e10009. [Google Scholar] [CrossRef]
- Uzun, I. Methods of determining the degree of crystallinity of polymers with X-ray diffraction: A review. Polym. Cryst. 2013, 30, 394. [Google Scholar] [CrossRef]
- Ranade, A.; Nayak, K.; Fairbrother, D.; D’Souza, N.A. Maleated and non-maleated polyethylene-montmorillonite layered silicate blown films: Creep, dispersion and crystallinity. Polymer 2005, 46, 7323–7333. [Google Scholar] [CrossRef]
- Pan, B.; Yue, Q.; Ren, J.; Wang, H.; Jian, L.; Zhang, J.; Yang, S. A study on attapulgite reinforced PA6 composites. Polym. Test. 2006, 25, 384–391. [Google Scholar] [CrossRef]
- Peng, Z.Q.; Chen, D.J. Study on the nonisothermal crystallization behavior of poly(vinyl alcohol)/attapulgite nanocomposites by DSC analysis. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 534–540. [Google Scholar] [CrossRef]
- Liu, H.H.; Chaudhary, D. Effect of montmorillonite on morphology, glass transition and crystallinity of the xylitol-plasticized bionanocomposites. Carbohydr. Polym. 2013, 98, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.L.; Saito, T.; Isogai, A. Transparent, flexible and high-strength regenerated cellulose/saponite nanocomposite films with high gas barrier properties. J. Appl. Polym. Sci. 2013, 130, 3168–3174. [Google Scholar] [CrossRef]
- Vicente, M.A.; Gil, A.; Bergaya, F. Pillared Clays and Clay Minerals. In Handbook of Clay Science; Developments in Clay Science; Part B; Bergaya, F., Lagaly, G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2013; Volume 5, pp. 523–557. [Google Scholar] [CrossRef]
- Gebretsadik, F.B.; Cesteros, Y.; Salagre, P.; Giménez-Mañogil, J.; García-García, A. Potential of Cu–saponite catalysts for soot combustion. Catal. Sci. Technol. 2016, 6, 507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastida, J.; Pardo-Ibañez, P. Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy. Minerals 2024, 14, 584. https://doi.org/10.3390/min14060584
Bastida J, Pardo-Ibañez P. Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy. Minerals. 2024; 14(6):584. https://doi.org/10.3390/min14060584
Chicago/Turabian StyleBastida, Joaquín, and Pablo Pardo-Ibañez. 2024. "Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy" Minerals 14, no. 6: 584. https://doi.org/10.3390/min14060584
APA StyleBastida, J., & Pardo-Ibañez, P. (2024). Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy. Minerals, 14(6), 584. https://doi.org/10.3390/min14060584