Zircon, Monazite SHRIMP U-Th-Pb and Quartz Oxygen Isotopic Results from the Higher Himalayan Crystallines (HHC) of the Sikkim Himalayas
Abstract
1. Introduction
2. Geological Framework
3. Analytical Techniques
4. Internal Structure of Zircon and Monazite
4.1. North Sikkim 19-005
4.2. North Sikkim 19-006
4.3. North Sikkim 19-009
4.4. West Sikkim 19-010
5. Results of the Zircon Dating
5.1. Protolith
5.1.1. North Sikkim 19-005
5.1.2. North Sikkim 19-006
5.1.3. North Sikkim 19-009
5.1.4. West Sikkim 19-010
5.2. Igneous Ages
5.3. Metamorphic Ages
5.3.1. North Sikkim 19-005
5.3.2. North Sikkim 19-009
5.3.3. West Sikkim 19-010
6. Results of the Monazite Dating
6.1. North Sikkim 19-005
6.2. North Sikkim 19-006
6.3. North Sikkim 19-009
6.4. West Sikkim 19-010
7. Results of the Oxygen Analyses
7.1. Zircon
7.1.1. North Sikkim 19-005
7.1.2. North Sikkim 19-006
7.1.3. North Sikkim 19-009
7.1.4. West Sikkim 19-010
7.2. Monazite
7.2.1. North Sikkim 19-005
7.2.2. North Sikkim 19-006
7.2.3. North Sikkim 19-009
7.2.4. West Sikkim 19-010
7.3. Quartz
7.3.1. North Sikkim 19-005
7.3.2. North Sikkim 19-006
7.3.3. North Sikkim 19-009
7.3.4. West Sikkim 19-010
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leech, M.L.; Singh, S.; Jain, A.K.; Klemperer, S.L.; Manickavasagam, R.M. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 2005, 234, 83–97. [Google Scholar] [CrossRef]
- Leech, M.L.; Singh, S.; Jain, A.K. Continuous Metamorphic Zircon Growth and Interpretation of U-Pb SHRIMP Dating: An Example from the Western Himalaya. Int. Geol. Rev. 2007, 49, 313–328. [Google Scholar] [CrossRef]
- Parsons, A.J.; Hosseini, K.; Palin, R.M.; Sigloch, K. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth Sci. Rev. 2020, 208, 103084. [Google Scholar] [CrossRef]
- Singh, S.; Barley, M.E.; Jain, A.K. Tale of two migmatites and leucogranite generation within the Himalayan Collisional Zone: Evidences from SHRIMP U-Pb zircon ages from Higher Himalayan Metamorphic Belt and Trans-Himalayan Karakoram Metamorphic Belt, India. Himal. J. Sci. 2004, 2, 251–252. [Google Scholar] [CrossRef]
- Le Fort, P. Metamorphism and magmatism during the Himalayan Collision. In Collision Tectonics; Coward, M.P., Ries, A., Eds.; Special Publication; Geological Society: London, UK, 1986; Volume 19, pp. 159–172. [Google Scholar]
- Kohn, M.J. Himalayan metamorphism and its tectonic implications. Annu. Rev. Earth Planet. Sci. 2014, 42, 381–419. [Google Scholar] [CrossRef]
- Jain, A.K.; Singh, S.; Manickavasagam, R.M. Himalayan Collision Tectonics. Gondwana Res. Group Mem. 2002, 7, 114. [Google Scholar]
- Jain, A.K.; Manickavasagam, R.M. Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology 1993, 21, 407–410. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Goscombe, B.; Gray, D.; Foster, D.A. Metamorphic response to collision in the Central Himalayan Orogen. Gondwana Res. 2018, 57, 191–265. [Google Scholar] [CrossRef]
- Singh, S. Collision Tectonics: Metamorphic and Geochronological Constraints from Parts of Himachal Pradesh, NW-Himalaya. Ph.D. Thesis, University of Roorkee, Roorkee, India, 1993. [Google Scholar]
- Singh, S.; Jain, A.K. Deformation and strain pattern in parts of the Jutogh Nappe along the Sutlej valley in Jeori-Wangtu region, Himachal Pradesh, India. J. Himal. Geol. 1993, 4, 41–55. [Google Scholar]
- Singh, S.; Jain, A.K. Himalayan Granitoids. J. Virtual Explor. 2003, 11, 1–20. [Google Scholar] [CrossRef]
- Searle, M.P.; Cottle, J.M.; Streule, M.J.; Waters, D.J. Crustal melt granites and migmatites along the Himalaya: Melt source, segregation, transport and granite emplacement mechanisms. Earth Environ. Sci. Trans. R. Soc. Edinb. 2009, 100, 219–233. [Google Scholar] [CrossRef]
- Singh, S. Himalayan magmatism through space and time. Episodes 2020, 43, 358–368. [Google Scholar] [CrossRef]
- Singh, S.; Rit, B.; Prabha Mohan, S.; Kushwaha, A. Crustal melting evidence in migmatites of Higher Himalayan Crystallines (HHC) along Bhagirathi, Dhauliganga valleys, and Sikkim Himalayas, India. J. Geol. Soc. India 2022, 98, 69–73. [Google Scholar] [CrossRef]
- Singh, S.; Kushwaha, A. Melt Enhanced Deformation in Migmatites of Higher Himalayan Crystallines (HHC), India. J. Geol. Soc. India 2023, 99, 9–12. [Google Scholar] [CrossRef]
- Najman, Y.M.R.; Pringle, M.S.; Johnson, M.R.W.; Robertson, A.H.F.; Wijbrans, J.R. Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland basin sediments in India: Implications for early Himalayan evolution. Geology 1997, 25, 535–538. [Google Scholar] [CrossRef]
- Najman, Y.; Johnson, C.; White, N.M.; Oliver, G. Constraints on foreland basin and orogenic evolution from detrital mineral fission track analyses and sediment facies of the Himalayan foreland basin, NW India. Basin Res. 2004, 16, 1–24. [Google Scholar] [CrossRef]
- Najman, Y.; Carter, A.; Oliver, G.; Garzanti, E. Provenance of early foreland basin sediments, Nepal: Constraints to the timing and diachroneity of early Himalayan orogenesis. Geology 2005, 33, 309–312. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; Ojha, T.P. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 1988, 17, 741–765. [Google Scholar] [CrossRef]
- Najman, Y.; Garzanti, E. Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India. Geol. Soc. Am. Bull. 2000, 112, 435–449. [Google Scholar] [CrossRef]
- White, N.M.; Pringle, M.; Garzanti, E.; Bickle, M.; Najman, Y.; Chapman, H.; Friend, P. Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett. 2002, 195, 29–44. [Google Scholar] [CrossRef]
- Singh, S. Protracted zircon growth in migmatites and in situ melt of Higher Himalayan Crystallines: U–Pb ages from Bhagirathi valley, NW Himalaya, India. Geosci. Front. 2019, 10, 793–809. [Google Scholar] [CrossRef]
- Singh, S.; Jain, A.K.; Barley, M.E. SHRIMP U-Pb c. 1860 Ma anorogenic magmatic signatures from the NW Himalaya: Implications for Palaeoproterozoic assembly of the Columbia Supercontinent. Geol. Soc. Lond. Spec. Publ. 2009, 323, 283–300. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Jain, A.K.; Singhal, S.; Singha, N.B.; Singh, S.; Kumud, K.; Seth, P.; Patel, R.C. U-Pb zircon ages and Sm-Nd isotopic characteristics of the Lesser and Great Himalayan sequences, Uttarakhand Himalaya, and their regional tectonic implications. Gondwana Res. 2019, 75, 282–297. [Google Scholar] [CrossRef]
- Brown, M. Orogeny, migmatites and leucogranites: A review. J. Earth Syst. Sci. 2001, 110, 313–336. [Google Scholar] [CrossRef]
- Grujic, D.; Hollister, L.S.; Parrish, R.R. Himalayan metamorphic sequence as an orogenic channel: Insight from Bhutan. Earth Planet. Sci. Lett. 2002, 198, 177–191. [Google Scholar] [CrossRef]
- Neogi, S.; Dasgupta, S.; Fukuoka, M. High P-T polymetamorphism, dehydration melting and generation of migmatites and granites in the Higher Himalayan Crystalline complex, Sikkim, India. J. Petrol. 1998, 39, 61–99. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dasgupta, S.; Neogi, S. Generation of migmatites and the nature of partial melting in a continental collision zone setting: An example from the Sikkim Himalaya. Indian J. Geol. Aniruddha De Meml. 2003, 75, 38–53. [Google Scholar]
- Catlos, E.J.; Dubey, C.S.; Harrison, T.M.; Edwards, M.A. Late Miocene movement within the Himalayan Main Central Thrust shear zone, Sikkim, Northeast India. J. Metamorph. Geol. 2004, 22, 207–226. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Caddick, M.; Kosler, J.; Goswami, S. The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J. Metamorph. Geol. 2004, 22, 249–264. [Google Scholar] [CrossRef]
- Imayama, T.; Takeshita, T.; Yi, K.; Cho, D.L.; Kitajima, K.; Tsutsumi, Y.; Kayama, M.; Nishido, H.; Okumura, T.; Yagi, K.; et al. Two-stage partial melting and contrasting cooling history within the higher Himalayan crystalline sequence in the far-eastern Nepal Himalaya. Lithos 2012, 134–135, 1–22. [Google Scholar] [CrossRef]
- Rubatto, D.; Chakraborty, S.; Dasgupta, S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib. Mineral. Petrol. 2013, 165, 349–372. [Google Scholar] [CrossRef]
- Mottram, C.M.; Argles, T.W.; Harris NB, W.; Parrish, R.R.; Horstwood MS, A.; Warren, C.J.; Gupta, S. Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya. J. Geol. Soc. Lond. 2014, 171, 255–286. [Google Scholar] [CrossRef]
- Smith, H.A.; Chamberlain, C.P.; Zeitler, P.K. Timing and duration of himalayan metamorphism within the India plate, northwest Himalaya, Pakistan. J. Geol. 1994, 102, 493–508. [Google Scholar] [CrossRef]
- DeCelles, P.G. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science 2000, 288, 497–499. [Google Scholar] [CrossRef] [PubMed]
- White, N.M.; Parrish, R.R.; Bickle, M.J.; Najman, Y.M.R.; Burbank, D.; Maithani, A. Metamorphism and exhumation of the NW Himalaya constrained by U-Th-Pb analyses of detrital monazite grains from early foreland basin sediments. J. Geol. Soc. 2001, 158, 625–635. [Google Scholar] [CrossRef]
- Catlos, E.J.; Harrison, T.M.; Manning, C.E.; Grove, M.; Rai, S.M.; Hubbard, M.S.; Upreti, B.N. Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J. Asian Earth Sci. 2002, 20, 459–479. [Google Scholar] [CrossRef]
- Lee, J.; Whitehouse, M.J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology 2007, 35, 45–48. [Google Scholar] [CrossRef]
- Martin, A.J.; Gehrels, G.E.; DeCelles, P.G. The tectonic significance of (U, Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chem. Geol. 2007, 244, 1–24. [Google Scholar] [CrossRef]
- Booth, A.L.; Chamberlain, C.P.; Kidd, W.S.F.; Zeitler, P.K. Constraints on the metamorphic evolution of the eastern Himalayan Syntaxis from geochronologic and petrologic studies of Namche Barwa. Geol. Soc. Am. Bull. 2009, 121, 385–407. [Google Scholar] [CrossRef]
- Larson, K.P.; Cottle, J.M.; Godin, L. Petrochronologic record of metamorphism and melting in the upper Greater Himalayan sequence, Manaslu-Himal Chuli Himalaya, west-central Nepal. Lithosphere 2011, 3, 379–392. [Google Scholar] [CrossRef]
- Lederer, G.W.; Cottle, J.M.; Jessup, M.J.; Langille, J.M.; Ahmad, T. Time-scales of partial melting in the Himalayan middle crust: Insight from the Leo Pargil dome, northwest India. Contrib. Mineral. Petrol. 2013, 166, 1415–1441. [Google Scholar] [CrossRef]
- Rehman, H.U.; Kobayashi, K.; Tsujimori, T.; Ota, T.; Yamamoto, H.; Nakamura, E.; Hirajima, T. Ion microprobe U–Th–Pb geochronology and study of micro-inclusions in zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. J. Asian Earth Sci. 2013, 63, 179–196. [Google Scholar] [CrossRef]
- Kellett, D.A.; Grujic, D.; Coutand, I.; Cottle, J.; Mukul, M. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics 2013, 32, 252–270. [Google Scholar] [CrossRef]
- Montomoli, C.; Iaccarino, S.; Carosi, R.; Langone, A.; Visonà, D. Tectonometamorphic discontinuities within the Greater Himalayan Sequence in Western Nepal (Central Himalaya): Insights on the exhumation of crystalline rocks. Tectonophysics 2013, 608, 1349–1370. [Google Scholar] [CrossRef]
- Larson, K.P.; Cottle, J.M. Initiation of Crustal Shortening in Himalaya. Terra Nova 2015, 27, 169–174. [Google Scholar] [CrossRef]
- Wang, J.M.; Rubatto, D.; Zhang, J.J. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-sequence Thrusting and its Implications. J. Petrol. 2015, 56, 1677–1702. [Google Scholar] [CrossRef]
- Palin, R.M.; Treloar, P.J.; Searle, M.P.; Wald, T.; White, R.W.; Mertz-Kraus, R. U–Pb monazite ages from the Pakistan Himalaya record pre-Himalayan Ordovician orogeny and Permian continental breakup. Geol. Soc. Am. Bull. 2018, 130, 2047–2061. [Google Scholar] [CrossRef]
- Copeland, P.; Parrish, R.R.; Harrison, T.M. Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature 1988, 333, 760–763. [Google Scholar] [CrossRef]
- Parrish, R.P.; Tirrul, R. U-Pb ages of the Baltoro granite, northwest Himalaya, and implications for zircon inheritance and monazite U-Pb systematics. Geology 1989, 17, 1076–1079. [Google Scholar] [CrossRef]
- Parrish, R.R. U–Pb dating of monazite and its application to geological problems. Can. J. Earth Sci. 1990, 7, 1431–1450. [Google Scholar] [CrossRef]
- Weinberg, R.F.; Wolfram, L.C.; Nebel, O.; Hasalová, P.; Závada, P.; Kylander-Clark, A.R.C.; Becchio, R. Decoupled U-Pb date and chemical zonation of monazite in migmatites: The case for disturbance of isotopic systematics by coupled dissolution-reprecipitation. Geochim. Cosmochim. Acta 2020, 269, 398–412. [Google Scholar] [CrossRef]
- Montel, J.M. Experimental determinationof the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800 °C, 2 kbar, under H20-saturated conditions. Geology 1986, 14, 659–662. [Google Scholar] [CrossRef]
- Rapp, R.P.; Ryerson, F.J.; Miller, C.F. Experimental evidence bearing on the stability of monazite during crustal anatexis. Geophys. Res. Lett. 1987, 14, 307–310. [Google Scholar] [CrossRef]
- Kelsey, D.E.; Clark, C.; Hand, M. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. J. Metamorph. Geol. 2008, 26, 199–212. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Brown, M. Consequences of open-system melting in tectonics. J. Geol. Soc. Lond. 2014, 171, 21–40. [Google Scholar] [CrossRef]
- Kohn, M.J.; Malloy, M.A. Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations. Geochim. Cosmochim. Acta 2004, 68, 101–113. [Google Scholar] [CrossRef]
- Skipton, D.R.; Schneider, D.A.; McFarlane, C.R.M.; St-Onge, M.R.; Jackson, S.E. Multi-stage zircon and monazite growth revealed by depth profiling and in situ U–Pb geochronology: Resolving the Paleoproterozoic tectonics of the Trans-Hudson Orogen on southeastern Baffin Island, Canada. Precambrian Res. 2016, 285, 272–298. [Google Scholar] [CrossRef]
- Košler, J.; Fonneland, H.; Sylvester, P.; Tubrett, M.; Pedersen, R.-B. U–Pb dating of detrital zircons for sediment provenance studies—A comparison of laser ablation ICPMS and SIMS techniques. Chem. Geol. 2002, 182, 605–618. [Google Scholar] [CrossRef]
- Prabha-Mohan, S.; Williams, I.S.; Singh, S. Direct zircon U–Pb evidence for pre-Himalayan HT metamorphism in the Higher Himalayan Crystallines, eastern Garhwal Himalaya, India. Geol. J. 2021, 57, 133–149. [Google Scholar] [CrossRef]
- Valley, J.W.; Kinny, P.D.; Schulze, D.J.; Spicuzza, M.J. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 1998, 133, 1–11. [Google Scholar] [CrossRef]
- Valley, J.W. Oxygen Isotopes in Zircon. Rev. Mineral. Geochem. 2003, 53, 343–385. [Google Scholar] [CrossRef]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Claesson, S.; Bibikova, E.V.; Shumlyanskyy, L.; Whitehouse, M.J.; Billström, K. Can oxygen isotopes in magmatic zircon be modified by metamorphism? A case study from the Eoarchean Dniester-Bug Series, Ukrainian Shield. Precambrian Res. 2016, 273, 1–11. [Google Scholar] [CrossRef]
- Ayers, J.C.; Loflin, M.; Miller, C.F.; Barton, M.D.; Coath, C.D. In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism: Birch Creek Pluton aureole, White Mountains, eastern California. Geology 2006, 34, 653–656. [Google Scholar] [CrossRef]
- Gauthiez-Putallaz, L.; Rubatto, D.; Hermann, J. Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contrib. Mineral. Petrol. 2016, 171, 15. [Google Scholar] [CrossRef]
- Vho, A.; Lanari, P.; Rubatto, D. An Internally-Consistent Database for Oxygen Isotope Fractionation Between Minerals. J. Petrol. 2019, 60, 2101–2130. [Google Scholar] [CrossRef]
- Gupta, S.; Das, A.; Goswami, S. Evidence for structural discordance in the inverted metamorphic sequence of Sikkim Himalaya: Towards resolving the Main Central Thrust controversy. J. Geol. Soc. India 2010, 75, 313–322. [Google Scholar] [CrossRef]
- GSI Miscellaneous Publication. Geology and Mineral Resources of Sikkim. Geol. Surv. India Misc. Publ. 2012, 30, 54. [Google Scholar]
- Mukhopadhyay, D.K.; Chakraborty, S.; Trepmann, C.; Rubatto, D.; Anczkiewicz, R.; Gaidies, F.; Dasgupta, S.; Chowdhury, P. The nature and evolution of the Main Central Thrust: Structural and geochronological constraints from the Sikkim Himalaya, NE India. Lithos 2017, 282–283, 447–463. [Google Scholar] [CrossRef]
- Jain, A.K.; Banerjee, D.M.; Kale, V.S. Tectonics of the Indian Subcontinent; Society of Earth Scientists Series; Springer Publication: Cham, Switzerland, 2020; 576p. [Google Scholar] [CrossRef]
- Dasgupta, S.; Ganguly, J.; Neogi, S. Inverted metamorphic sequence in the Sikkim Himalayas: Crystallization history, P–T gradient and implications. J. Metamorph. Geol. 2004, 22, 395–412. [Google Scholar] [CrossRef]
- Ganguly, J.; Dasgupta, S.; Cheng, W.; Neogi, S. Exhumation history of a section of the Sikkim Himalayas, India: Records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet. Sci. Lett. 2000, 183, 471–486. [Google Scholar] [CrossRef]
- Sorcar, N.; Hoffe, U.; Dasgupta, S.; Chakaraborty, S. High temperature cooling histories of migmatites from the High Himalayan Crystallines in Sikkim, India-rapid cooling unrelated to exhumation. Contrib. Mineral. Petrol. 2014, 167, 957. [Google Scholar] [CrossRef]
- Anczkiewicz, R.; Chakraborty, S.; Dasgupta, S.; Mukhopadhyay, D.; Kołtonik, K. Timing, duration, and inversion of prograde Barrovian metamorphism constrained by high-resolution Lu–Hf garnet dating: A case study from the Sikkim Himalaya, NE India. Earth Planet. Sci. Lett. 2014, 407, 70–81. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite. Geol. Soc. Am. Bull. 2006, 118, 39–64. [Google Scholar] [CrossRef]
- Rubatto, D.; Putlitz, B.; Gauthiez-Putallaz, L.; Crépisson, C.; Buick, I.S.; Zheng, Y.F. Measurement of in-situ oxygen isotope ratios in monazite by SHRIMP ion microprobe: Standards, protocols and implications. Chem. Geol. 2014, 380, 84–96. [Google Scholar] [CrossRef]
- Kusakabe, M.; Matsuhisa, A. Oxygen three-isotope ratios of silicate reference materials determined by direct comparison with VSMOW-oxygen. Geochem. J. 2008, 42, 309–317. [Google Scholar] [CrossRef]
- Williams, I.S. U-Th-Pb Geochronology by Ion Microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes: Reviews in Economic Geology; McKibben, M.A., Shanks, W.C., III, Ridley, W.I., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1998; Volume 7, pp. 1–35. [Google Scholar]
- Claoué-Long, J.C.; Compston, W.; Roberts, J.; Fanning, C.M. Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In Geochronology, Timescales and Global Stratigraphic Correlation; Berggren, W.A., Kent, D.V., Aubry, M.-P., Hardenbol, J., Eds.; SEPM Special Publication; SEPM Society for Sedimentary Geology: Claremore, OK USA, 1995; Volume 54, pp. 3–21. [Google Scholar]
- Cumming, G.L.; Richards, J.R. Ore lead isotope ratios in a continuously changing earth. Earth Planet. Sci. Lett. 1975, 28, 155–171. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Ickert, R.B.; Hiess, J.; Williams, I.S.; Holden, P.; Ireland, T.R.; Lanc, P.; Schram, N.; Foster, J.J.; Clement, S.W. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem. Geol. 2008, 257, 114–128. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Spencer, C.J.; Harris, R.A.; Dorais, M.J. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India: Constrained by U-Pb and Hf isotopes in zircons. Gondwana Res. 2012, 22, 26–35. [Google Scholar] [CrossRef]
- Dhiman, R.; Singh, S. Neoproterozoic and Cambro-Ordovician magmatism: Episodic growth and reworking of continental crust, Himachal Himalaya, India. Int. Geol. Rev. 2021, 63, 422–436. [Google Scholar] [CrossRef]
- Jeon, H.; Williams, I.S.; Chappell, B.W. Magma to mud to magma: Rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet. Sci. Lett. 2012, 319, 104–117. [Google Scholar] [CrossRef]
- Williams, I.S. Response of detrital zircon and monazite, and their UePb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust. J. Earth Sci. 2001, 48, 557–580. [Google Scholar] [CrossRef]
- Rubatto, D.; Williams, I.S.; Buick, I.S. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib. Mineral. Petrol. 2001, 140, 458–468. [Google Scholar] [CrossRef]
- Long, S.; McQuarrie, N.; Tobgay, T. Tectonostratigraphy of the Lesser Himalaya of Bhutan: Implications for the along strike stratigraphie continuity of the northern Indian margin. Geol. Soc. Am. Bull. 2011, 123, 1406–1426. [Google Scholar] [CrossRef]
- Jain, A.K.; Sushmita Singh, S.; Mukherjee, P.K. Migmatization, granite generation and melt accumulation in the Himalayan Orogenic Channel, Central and Eastern Bhutan. Curr. Sci. 2018, 114, 1903–1912. Available online: http://www.jstor.org/stable/26495339 (accessed on 14 May 2018). [CrossRef]
- Phillips, S.E.; Argles, T.W.; Warren, C.J.; Harris, N.B.W.; Kunz, B.E. Kyanite petrogenesis in migmatites: Resolving melting and metamorphic signatures. Contrib. Mineral. Petrol. 2023, 178, 10. [Google Scholar] [CrossRef]
- Wotzlaw, J.-F.; Bindeman, I.N.; Watts, K.E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 2014, 42, 807–810. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Taylor, H.P.; Sheppard, S.M.F. Igenous rocks: I. Processes of isotopic fractionation and isotope systematics. In Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy; Valley, J.W., Taylor, H.P., O’Neil, J.R., Eds.; Mineralogical Society of America: Washington, DC, USA, 1986; pp. 227–271. [Google Scholar]
- Chappell, B.W.; White, A.J.R. I- and S-Type Granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar] [CrossRef]
- King, E.M.; Valley, J.W. The source, magmatic contamination, and alteration of the Idaho batholith. Contrib. Mineral. Petrol. 2001, 142, 72–88. [Google Scholar] [CrossRef]
Location | Sample Number | Age | References |
---|---|---|---|
North Sikkim | |||
Above Chungthang Thrust (Zircon ages) | CLN-8 | 31.4 Ma, 24.5 Ma | [34] |
LNT | 20.5 Ma, 19.0 Ma, 18.5 Ma | [34] | |
TG8 | 19.9 Ma, 18.2 Ma | [34] | |
TG9 | 21.1 Ma, 22.0 Ma, 19.9 Ma | [34] | |
Above Chungthang Thrust (Monazite ages) | CLN-8 (migmatite metapelites) | 22.7 ± 0.3 Ma | [31] |
21.9 ± 1.1 Ma | [31] | ||
31.4 Ma | [34] | ||
CLN-6 | 29.0 Ma, 25.3 Ma, 27.7 Ma, 23.8 Ma | [34] | |
CLN-5 | 28.0 Ma,26.8 Ma, 28.8 Ma, 25.6 Ma | [34] | |
LNT-2 | 23.3–20.9 Ma, 23.5–20.7 Ma | [34] | |
LNT-5 | 36.9–24.0–19.2 Ma 36.9–21.0 Ma, 36.4–35.6 Ma | [34] | |
TG-9 (migmatite and metapelite) | 24.5–22.5 Ma, 23.5–20.2 Ma | [34] | |
TG-9 (Leucosome) | 23.5–20.7 Ma, 24.5-22.5 Ma, 23.5–20.2 Ma, 21.4–16.9 Ma, 23.0–16.5 Ma | [34] | |
TG-8 (migmatite metapelite) | 25.5-20.6 Ma, 26.2 Ma | [34] | |
Below Chungthang Thrust (Monazite ages) | 13.8 ± 1.0 Ma | [31] | |
Below MCT (Monazite ages) | 13.0 ± 0.2 Ma 12.3 ± 0.6 Ma | [31] | |
Eastern Sikkim | |||
Above Chungthang Thrust (Monazite ages) | 141 | 22.0 ± 0.3 Ma | [31] |
24.0–18.9 Ma, 26.7–21.2 Ma, | [34] | ||
26.5–18.8 Ma 22.7 ± 0.3 Ma 21.9 ± 1.1 Ma | [35] | ||
Below Chungthang Thrust (Monazite ages) | 13.0 ± 0.4 Ma 12.7 ± 0.1 Ma | [31] | |
15.9 ± 1.0 Ma | [35] | ||
Around MCT (Monazite ages) | ~21–12 Ma (Core and Rim of Gt) ~21–16 Ma (Core and Rim of Gt) 12.8 ± 0.2 Ma (in Staurolite) 11.8 ± 0.2 Ma Matrix | [35] | |
Western Sikkim | |||
Sm-Nd Gt from leucosome | 16.1 ± 2.4 Ma RIM 23.0 ± 2.8 Ma CORE | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabha-Mohan, S.; Williams, I.S.; Singh, S. Zircon, Monazite SHRIMP U-Th-Pb and Quartz Oxygen Isotopic Results from the Higher Himalayan Crystallines (HHC) of the Sikkim Himalayas. Minerals 2024, 14, 572. https://doi.org/10.3390/min14060572
Prabha-Mohan S, Williams IS, Singh S. Zircon, Monazite SHRIMP U-Th-Pb and Quartz Oxygen Isotopic Results from the Higher Himalayan Crystallines (HHC) of the Sikkim Himalayas. Minerals. 2024; 14(6):572. https://doi.org/10.3390/min14060572
Chicago/Turabian StylePrabha-Mohan, Shashank, Ian S. Williams, and Sandeep Singh. 2024. "Zircon, Monazite SHRIMP U-Th-Pb and Quartz Oxygen Isotopic Results from the Higher Himalayan Crystallines (HHC) of the Sikkim Himalayas" Minerals 14, no. 6: 572. https://doi.org/10.3390/min14060572
APA StylePrabha-Mohan, S., Williams, I. S., & Singh, S. (2024). Zircon, Monazite SHRIMP U-Th-Pb and Quartz Oxygen Isotopic Results from the Higher Himalayan Crystallines (HHC) of the Sikkim Himalayas. Minerals, 14(6), 572. https://doi.org/10.3390/min14060572