A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
2.3. Experimental Analysis
2.4. Experimental Procedure
2.4.1. Horizontal Tube Furnace Apparatus: Manufacturing of NdCl3 Powder
2.4.2. Horizontal Tube Furnace Apparatus: Manufacturing of Bulk NdCl3
2.4.3. Glove Box Apparatus: Manufacturing of NdCl3 Powder
2.5. Conversion Rate of Chlorination
2.6. Chlorination Variables
3. Results
3.1. Thermodynamic Considerations
3.1.1. Calcination
3.1.2. Chlorination
NdOCl(s) + 2NH4Cl(s) → NdCl3(s) + 2NH3(g) + H2O(g), T = 306.47 °C
T = 400 °C, ∆Go673.15K = −233.97 kJ
3.2. Horizontal Tube Furnace Apparatus: Manufacturing of NdCl3 Powder
3.3. Horizontal Tube Furnace Apparatus: Manufacturing of Bulk NdCl3
3.4. Glove Box Apparatus: Manufacturing of NdCl3 Powder
4. Discussion
4.1. Impurity Control
4.2. Recovery Rate of NdCl3
4.3. Particle Property
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weifeng, L.; Warwick, J.M.; Adele, C.M.; Peter, J.W. Global economic and environmental outcomes of the Paris Agreement. Energy Econ. 2020, 90, 104838. [Google Scholar] [CrossRef]
- Heim, J.W., II; Vander Wal, R.L. NdFeB Permanent Magnet Uses, Projected Growth Rates and Nd Plus Dy Demands across End-Use Sectors through 2050: A Review. Minerals 2023, 13, 1274. [Google Scholar] [CrossRef]
- Jianliang, W.; Meiyu, G.; Mingming, L.; Xinqiang, W. Long-term outlook for global rare earth production. Resour. Policy 2020, 65, 101569. [Google Scholar] [CrossRef]
- Shizhe, L.; Lingyun, C.; Bing, L.; Liangliang, W.; Bo, Y.; Mugen, L. Anode processes for Nd electrowinning from LiF-NdF3-Nd2O3 melt. Electrochim. Acta 2014, 147, 82–86. [Google Scholar] [CrossRef]
- Andrea, S.; Josefine, M.; Petra, Z.; Wilhelm, K. Comparative Life Cycle Assessment of Neodymium Oxide Electrolysis in Molten Salt. Adv. Eng. Mater. 2020, 22, 1901206. [Google Scholar] [CrossRef]
- Shah, S.; Pietsch, T.; Ruck, M. Facile synthesis of anhydrous rare-earth trichlorides from their oxides in chloridoaluminate ionic liquids. Angew. Chem. Int. Ed. 2024, 63, e202317480. [Google Scholar] [CrossRef]
- Isyatun, R.; Andina, S.; Hasudungan, E.M.; Zulfiadi, Z.; Cristina, A.S. Thermodynamic simulation and validation experiment of neodymium oxide reduction into metallic neodymium by metallothermic process. Indones. Min. J. 2018, 21, 21–34. [Google Scholar] [CrossRef]
- Anderson, A.; Mishra, B. Investigation of the Carbochlorination Process for Conversion of Cerium and Neodymium Oxides into Their Chlorides. J. Sustain. Met. 2015, 1, 189–198. [Google Scholar] [CrossRef]
- Meyer, G.; Ax, P. An analysis of the ammonium chloride route to anhydrous rare-earth metal chlorides. Mater. Res. Bull. 1982, 17, 1447–1455. [Google Scholar] [CrossRef]
- Brocchi, E.A.; Navarro, R.C.S.; Moura, F.J. A chemical thermodynamics review applied to V2O5 chlorination. Thermochim. Acta 2013, 559, 1–16. [Google Scholar] [CrossRef]
- Sofronov, V.; Ivanov, Z.; Makaseyev, Y.; Kostareva, T. Research of Dysprosium, Terbium and Neodymium Oxides Fluoration. Key Eng. Mater. 2016, 683, 345–352. [Google Scholar] [CrossRef]
- Osamu, Y.; Yasuo, T.; Ryoji, K.; Masahiro, F. Thermal decomposition and electrical conductivity of M(OH)3 and MOOH (M=Y, Lanthanide). Solid State Ion. 1985, 17, 107–114. [Google Scholar] [CrossRef]
- Anukorn, P.; Somchai, T.; Titipun, T. Template-free synthesis of neodymium hydroxide nanorods by microwave-assisted hydrothermal process, and of neodymiumoxide nanorods by thermal decomposition. Ceram. Int. 2012, 38, 4075–4079. [Google Scholar] [CrossRef]
- Sister, J.E.; Norman, O.S. Sublimation pressures of solid solutions III. NH4Cl+NH4Br. J. Chem. Thermodyn. 1971, 3, 531–538. [Google Scholar] [CrossRef]
- Bale, C.W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfoud, R.B.; Melançon, J.; Pelton, A.D.; Petersen, S. FactSage thermochemical software and databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
Crucible | Nd2O3 | NH4Cl | NdCl3 |
---|---|---|---|
MgO | Stable | 0~1000 | 0~1000 |
Al2O3 | Stable | 500 | 300 |
SiO2 | Stable | Stable | 700 |
No. | Apparatus | Gas Atmosphere | Product Form | Chlorination | Melting | Reactants [g] | |||
---|---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | Temp. [°C] | Time [min] | Nd2O3 | NH4Cl | ||||
1 | Horizontal furnace | Ar gas blowing | Powder | 400 | 240 | - | 5 | 7.4796 | |
2 | 9.0455 | ||||||||
3 | 19.2753 | ||||||||
4 | 120 | 7.4796 | |||||||
5 | 9.0455 | ||||||||
6 | 19.2753 | ||||||||
7 | Bulk | 400 | 120 | 760 | 1 | 5 | 7.4796 | ||
8 | 9.0455 | ||||||||
9 | 19.2753 | ||||||||
10 | 75 | 7.4796 | |||||||
11 | 9.0455 | ||||||||
12 | 19.2753 | ||||||||
13 | Glove box | O2: 16.05 ppm H2O: 0.01 ppm | Powder | 400 | 120 | - | 5 | 7.4796 |
Temp. [°C] | NH4Cl/Nd2O3 [mol/mol] | a(NdOCl) | ∆Grxn [kJ] | ∆Hrxn [kJ] | ∆Srxn [J] |
---|---|---|---|---|---|
400 | 9.41 | 1 | −908 | 1524 | 3027 |
400 | 11.38 | 0.5 | −1051 | 1927 | 3735 |
400 | 24.25 | 0.1 | −1965 | 4549 | 8308 |
No. | Chlorination Time [min] | NH4Cl/Nd2O3 [mol/mol] | d90 | d50 | d10 | Specific Surface Area [m2/g] |
---|---|---|---|---|---|---|
[μm] | [μm] | [μm] | ||||
Nd2O3 | - | - | 7.546 | 3.085 | 0.508 | 4.468 |
1 | 240 | 9.41 | 12.865 | 5.572 | 2.056 | 2.539 |
2 | 11.38 | 14.076 | 5.596 | 2.073 | 2.463 | |
3 | 24.25 | 48.433 | 6.828 | 2.443 | 2.023 | |
4 | 120 | 9.41 | 10.946 | 5.376 | 2.022 | 2.613 |
5 | 11.38 | 11.977 | 5.473 | 2.059 | 2.552 | |
6 | 24.25 | 18.001 | 6.210 | 2.305 | 2.203 |
No. | Chlorination Time [min] | NH4Cl/Nd2O3 [mol/mol] | Impurities [wt.%] | Product [g] | Impurities [g] | ||
---|---|---|---|---|---|---|---|
N | H | O | |||||
1 | 240 | 9.41 | 0.590 | 0.626 | 1.054 | 6.9401 | 0.158 |
2 | 11.38 | 0.560 | 0.599 | 0.795 | 7.0211 | 0.137 | |
3 | 24.25 | 0.620 | 0.516 | 0.808 | 7.3434 | 0.143 | |
4 | 120 | 9.41 | 0.610 | 0.692 | 1.119 | 7.1062 | 0.172 |
5 | 11.38 | 0.740 | 0.611 | 0.998 | 7.1146 | 0.167 | |
6 | 24.25 | 0.640 | 0.782 | 0.814 | 7.2812 | 0.163 |
No. | Chlorination | NH4Cl/Nd2O3 [mol/mol] | Nd2O3 [g] | NH4Cl [g] | Theoretical Mass of NdCl3 [g] | Experimental Mass of NdCl3 [g] | Recovery Rate [%] | |
---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | |||||||
1 | 400 | 240 | 9.41 | 5 | 7.4796 | 7.4477 | 6.783 | 91.07 |
2 | 11.38 | 9.0455 | 6.884 | 92.43 | ||||
3 | 24.25 | 19.2753 | 7.201 | 96.68 | ||||
4 | 120 | 9.41 | 7.4796 | 6.934 | 93.10 | |||
5 | 11.38 | 9.0455 | 6.947 | 93.28 | ||||
6 | 24.25 | 19.2753 | 7.118 | 95.58 |
No. | Chlorination Time [min] | NH4Cl/Nd2O3 [mol/mol] | Impurities [wt.%] | Product [g] | Impurities [g] | ||
---|---|---|---|---|---|---|---|
N | H | O | |||||
7 | 120 | 9.41 | 0.540 | 0.696 | 0.932 | 7.0521 | 0.153 |
8 | 11.38 | 0.570 | 0.505 | 0.889 | 7.0733 | 0.139 | |
9 | 24.25 | 0.490 | 0.481 | 0.823 | 7.2932 | 0.131 | |
10 | 75 | 9.41 | 0.660 | 0.479 | 1.032 | 7.0753 | 0.154 |
11 | 11.38 | 0.650 | 0.555 | 1.073 | 7.1461 | 0.163 | |
12 | 24.25 | 0.630 | 0.522 | 0.803 | 7.2032 | 0.141 |
No. | Chlorination | Melting | NH4Cl/Nd2O3 [mol/mol] | Nd2O3 [g] | NH4Cl [g] | Theoretical Mass of NdCl3 [g] | Experimental Mass of NdCl3 [g] | Recovery Rate [%] | ||
---|---|---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | Temp. [°C] | Time [min] | |||||||
7 | 400 | 120 | 760 | 1 | 9.41 | 5 | 7.4796 | 7.4477 | 6.899 | 92.64 |
8 | 11.38 | 9.0455 | 6.934 | 93.11 | ||||||
9 | 24.25 | 19.2753 | 7.162 | 96.17 | ||||||
10 | 75 | 9.41 | 7.4796 | 6.922 | 92.94 | |||||
11 | 11.38 | 9.0455 | 6.983 | 93.76 | ||||||
12 | 24.25 | 19.2753 | 7.062 | 94.83 |
No. | Impurities [wt.%] | Product [g] | Impurities [g] | ||
---|---|---|---|---|---|
N | H | O | |||
13 | 0.330 | 0.349 | 0.517 | 7.4364 | 0.089 |
No. | Chlorination | NH4Cl/Nd2O3 [mol/mol] | Nd2O3 [g] | NH4Cl [g] | Theoretical Mass of NdCl3 [g] | Experimental Mass of NdCl3 [g] | Recovery Rate [%] | |
---|---|---|---|---|---|---|---|---|
Temp. [°C] | Time [min] | |||||||
13 | 400 | 120 | 9.41 | 5 | 7.4796 | 7.4477 | 7.347 | 98.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.-W.; Wang, J.-P. A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride. Minerals 2024, 14, 480. https://doi.org/10.3390/min14050480
Yu J-W, Wang J-P. A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride. Minerals. 2024; 14(5):480. https://doi.org/10.3390/min14050480
Chicago/Turabian StyleYu, Joo-Won, and Jei-Pil Wang. 2024. "A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride" Minerals 14, no. 5: 480. https://doi.org/10.3390/min14050480
APA StyleYu, J.-W., & Wang, J.-P. (2024). A Study on the Production of Anhydrous Neodymium Chloride through the Chlorination Reaction of Neodymium Oxide and Ammonium Chloride. Minerals, 14(5), 480. https://doi.org/10.3390/min14050480