A Comparative Study of Quartz and Potassium Feldspar Flotation Process Using Different Chemical Reagents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Froth Flotation
2.2.2. Zeta Potential
2.2.3. BET Surface Area
3. Results and Discussion
3.1. Zeta Potential
3.2. BET Surface Area
3.3. Quartz and Feldspar Flotation
3.4. Effect of HF
3.5. Effect of Acidic pH
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vatalis, K.I.; Charalambides, G.; Benetis, N.P. Market of high purity quartz innovative applications. Procedia Econ. Financ. 2015, 24, 734–742. [Google Scholar] [CrossRef]
- Baila, F.; Labbilta, T.; Darmane, Y. Feldspar Purification from Iron Impurities: A Review of Treatment Methods. Miner. Process. Extr. Metall. Rev. 2023, 1–9. [Google Scholar] [CrossRef]
- Kalyoncu, E.; Burat, F. Selective Separation of Coloring Impurities from Feldspar Ore by Innovative Single-stage Flotation. Miner. Process. Extr. Metall. Rev. 2022, 43, 910–915. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Sun, N.; Liu, R.; Wang, Z.; Wang, L.; Sun, W. Systematic review of feldspar beneficiation and its comprehensive application. Miner. Eng. 2018, 128, 141–152. [Google Scholar] [CrossRef]
- Rao, K.H.; Forssberg, K.S.E. Mixed collector systems in flotation. Int. J. Miner. Process. 1997, 51, 67–79. [Google Scholar] [CrossRef]
- Vidhyadhar, A.; Rao, K.H. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. J. Colloid Interface Sci. 2007, 306, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Peretti, R.; Serci, A.; Zucca, A. Electrostatic K-feldspar/Na-feldspar and feldspar/quartz separation: Influence of feldspar composition. Miner. Process. Extr. Metall. Rev. 2012, 33, 220–231. [Google Scholar] [CrossRef]
- Heyes, G.W.; Allan, G.C.; Bruckard, W.J.; Sparrow, G.J. Review of flotation of feldspar. Miner. Process. Extr. Metall. 2007, 121, 72–78. [Google Scholar] [CrossRef]
- Worrall William, E. Ceramic Raw Materials: Institute of Ceramics Textbook Series; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Zhang, H.; Xu, Z.; Sun, W.; Zhu, Y.; Chen, D. Hydroxylation structure o quartz surface and its molecular hydrophobicity. Appl. Surf. Sci. 2023, 612, 155884. [Google Scholar] [CrossRef]
- Crundwell, K.F. On the mechanism of the dissolution of quartz and silica in aqueous solutions. Acs Omega 2017, 2, 1116–1127. [Google Scholar] [CrossRef]
- Bickmore, B.R.; Wheeler, J.C.; Bates, B.; Nagy, K.L.; Eggett, D.L. Reaction pathways for quartz dissolution determined by statistical and graphical analysis of macroscopic experimental data. Geochim. Et Cosmochim. Acta 2008, 72, 4521–4536. [Google Scholar] [CrossRef]
- Alves Junior, A.J.; Baldo, J.B. The Behavior of Zeta Potential of Silica Suspensions. New J. Glass Ceram. 2014, 4, 29–37. [Google Scholar] [CrossRef]
- Burat, F.; Kokkilic, O.; Kangal, O.; Gurakan, V.; Celik, M.S. Quartz-feldspar separation for the glass and ceramics industries. Miner. Metall. Process. 2007, 24, 75–80. [Google Scholar] [CrossRef]
- Wei, M.; Ban, B.; Li, J.; Sun, J.; Li, F.; Jiang, X.; Chen, J. Flotation behaviour, collector adsorption mechanism of quartz and feldspar-quartz systems using PEA as a novel green collector. Silicon 2020, 12, 327–338. [Google Scholar] [CrossRef]
- Vidhyadhar, A.; Rao, K.H.; Forsberg, K.S.E. Separation of feldspar from quartz: Mechanism of mixed cationic/anionic collector adsorption on minerals and flotation selectivity. Miner. Metall. Process. 2002, 19, 128–136. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Pradip. Zeta potentials in the flotation of oxide and silicate minerals. Adv. Colloid Interface Sci. 2005, 114–115, 9–26. [Google Scholar] [CrossRef]
- Larsen, E.; Kleiv, R.A. Flotation of quartz from quartz-feldspar mixtures by the HF method. Miner. Eng. 2016, 98, 49–51. [Google Scholar] [CrossRef]
- Larsen, E.; Kleiv, R.A. Towards a new process for the flotation of quartz. Miner. Eng. 2015, 83, 13–18. [Google Scholar] [CrossRef]
- Li, Y.; Ren, J.; Xie, J.; Duan, T.; Gao, M.; Wu, X.; He, H. Application of mixed collectors on quartz-feldspar by fluorine-free flotation separation and their interaction mechanism: A review. Physicochem. Probl. Miner. Process. 2021, 57, 139–156. [Google Scholar] [CrossRef]
- Allagui, A.; Benaoum, H.; Olendski, O. On the Gouy-Chapman-Stern model of the electrical double-layer structure with a generalized Boltzmann factor. Phys. A Stat. Mech. Its Appl. 2021, 582, 126252. [Google Scholar] [CrossRef]
- Ibrahim, I.; Hussin, H.; Azizli, K.A.M.; Alimon, M. A study on the interaction of feldspar and quartz with mixed anionic/cationic collector. Malays. J. Fundam. Appl. Sci. 2014, 7, 101–107. [Google Scholar] [CrossRef]
- Wang, W.; Cong, J.; Deng, J.; Weng, X.; Lin, Y.; Huang, Y.; Peng, T. Developing effective separation of feldspar and quartz while recycling tailwater by HF pre-treatment. Minerals 2018, 8, 149. [Google Scholar] [CrossRef]
- Larsen, E.; Kowalczuk, B.P.; Kleiv, R.A. Non-HF collector less flotation of quartz. Miner. Eng. 2019, 133, 115–118. [Google Scholar] [CrossRef]
- Zhu, J.; Dai, S.; Li, P.; Yang, S. An experimental study of removing impurity from a quartz ore by microbial flotation-acid leaching. Physicochem. Probl. Miner. Proc. 2021, 57, 18–28. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Kaya, A. A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environ. Earth Sci. 2011, 62, 697–705. [Google Scholar] [CrossRef]
- Kirby, J.B.; Hasselbrink, E. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 2004, 25, 187–202. [Google Scholar] [CrossRef]
- Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.G.; Lin, L.C. Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements. J. Phys. Chem. C 2019, 123, 20195–20209. [Google Scholar] [CrossRef]
- Gülgönül, I.; Karagüzel, C.; Cinar, M.; Çelik, M.S. Interaction of sodium ions with feldspar surfaces and its effect on the selective separation of Na- and K-feldspars. Miner. Process. Extr. Metall. Rev. 2012, 33, 233–245. [Google Scholar] [CrossRef]
- Jada, A.; Akbour, A.R.; Douch, J. Surface charge and adsorption from water onto quartz sand of humic acid. Chemosphere 2006, 64, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Jinkeun, K.F.; Lawler, D.F. Characteristics of Zeta Potential Distribution in Silica Particles. Bull. Korean Chem. Soc. 2005, 26, 1083–1089. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, L.; Xu, Z.; Liu, Q.; Chi, R. Reactive oily bubble technology for flotation of apatite, dolomite and quartz. Int. J. Miner. Process. 2015, 134, 74–81. [Google Scholar] [CrossRef]
- Salopek, B.; Krasić, D.; Filipović, S. Measurement and application of zeta-potential. Rud. Geološko-Naft. Zb. 1992, 4, 147–151. [Google Scholar]
- Dobias, B.; Jakbos, U.; Oberndorfer, H.; Petzenhauser, R.; Weirer, K. New Aspects in the Theory of Mineral Flotation. Miner. Process. Extr. Metall. Rev. Int. J. 1992, 10, 71–86. [Google Scholar] [CrossRef]
- Elimelech, M.; Nagai, M.; Ko, C.H.; Ryan, J.N. Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ. Sci. Technol. 2000, 34, 2143–2148. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J.; Lu, Q.; Hu, W.; Yang, D.; Qiao, C.; Peng, Q.; Wang, T.; Sun, W.; Zhang, H.; et al. Surface interaction mechanisms in mineral flotation: Fundamentals, measurements, and perspectives. Adv. Colloid Interface Sci. 2021, 295, 102491. [Google Scholar] [CrossRef] [PubMed]
- Kangal, O.M.; Bulut, G.; Yeşilyurt, Z.; Güven, O.; Burat, F. An Alternative Source for Ceramics and Glass Augen-Gneiss. Minerals. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Sekulic, Z.; Canic, N.; Bartulovic, Z.; Dakovic, A. Application of different collectors in the flotation concentration of feldspar, mica and quartz sand. Miner. Eng. 2004, 17, 77–80. [Google Scholar] [CrossRef]
Oxide | Quartz | Kfs |
---|---|---|
SiO2 | 95.33 | 64.62 |
Al2O3 | 2.82 | 17.35 |
TiO2 | 0.04 | - |
Fe2O3 | 0.14 | 0.10 |
MgO | 0.10 | 0.02 |
CaO | 0.25 | 0.21 |
Na2O | 0.51 | 2.60 |
K2O | 0.70 | 15.00 |
Commercial Suppliers | Trade Name | Chemical Composition | Reagent Types | Molar Mass (g/mol) | Water Solubility |
---|---|---|---|---|---|
Merck | Hydrofluoric acid | HF | Modifier | 20.01 | Soluble |
Clariant Solutions | Flotigam V4343 | Alkyl di-amine | Collector | 60 | Soluble |
Nuoryon | Lilaflot OT55 | N-(Tallow alkyl)-1,3-propane-diamine oleate, Tallow alkyltrimethylenediamine diacetate | Collector | 112 | Soluble |
Duomeen C | N-C12-18-alkyltrimethylenedi/C21H44N2 | Collector | 324.59 | Insoluble | |
Duommen TDO | N-C16-C18-alkyl-(even-numbered, C18 unsaturated) propane-1,3-diammonium di(9Z)-octadec-9-enotate | Collector | 74.12 | Soluble | |
Acros Organics | Brij C20 | Polyoxyethylene (20) cetyl ether | Frother | 1123.51 | Soluble |
I.C.L. Iberia | Pine oil | Alpha-terpineol | Frother | 94.11 | Soluble |
Material | Mass [g] | 200 | 200 | 200 | 100 | 100 | 100 | 100 | 600 |
---|---|---|---|---|---|---|---|---|---|
Water | [L] | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2.4 |
pH regulator | Name | HCL | HCL | HCL | HCL | HCL | H2SO4 | H2SO4 | HCl |
[kg/t] | 274 | 274 | 137 | 4.51 | 16.41 | 16.41 | 16.41 | 22 | |
Collector | Name | Flotigam V4343 | Lilaflot OT 55 | Duomeen TDO | Duomeen C | Flotigam V4343 | |||
[g/t] | 400 + 400 + 400 | 600 + 300 + 300 | 600 + 300 + 300 | 600 + 300 + 300 | 500 + 400 + 300 | ||||
* CT | 3 | 3 | 3 | 2 + 2 + 2 | 2 + 2 + 2 | 5 + 5 + 5 | 5 + 5 + 5 | 5 + 3 + 3 | |
Frother | Name | Brij C20 | Brij C20 | Brij C20 | Pine oil | Pine oil | |||
[g/t] | 200 + 200 + 200 | 300 + 300 + 300 | 200 + 200 + 200 | 200 | 250 | ||||
* CT | 2 + 2 + 2 | 2 + 2 + 2 | 2 + 2 + 2 | - | 5 | - | - | - | |
Airflow | [L/s] | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 |
Agitation speed | [rpm] | 820 | 820 | 820 | 820 | 1012 | 1012 | 1012 | 950 |
pH | Initial | 7.36 | 7.06 | 7.36 | 7.01 | 6.32 | 5.85 | 5.85 | 7.01 |
Test | 1.18 | 0.4 | 1.18 | 1.4 | 1.52 | 1.48 | 1.48 | 1.47 | |
[min] | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 0.5 | |
Collect time | [min] | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 1.5 |
[min] | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 2.5 |
Sample | Particle Size | D5 | D10 | D50 | D90 | D98 | Specific Surface Area |
---|---|---|---|---|---|---|---|
(μm) | 10−2 (m2/g) | ||||||
Quartz | 38–106 | 3.2 | 15.6 | 52.1 | 85.6 | 43.5 | 86.45 |
Kfs | 38–106 | 1.8 | 28.8 | 65.8 | 75.0 | 28.6 | 16.20 |
Material | 50% of Quartz and 50% of Feldspar | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | 1.2 | 0.4 | 1.2 | 1.5 | 1.4 | 1.3 | 1.5 | 1.5 | ||
HF | [kg/t] | 274 | 274 | 137 | 4.5 | 16.41 | 16.41 | 16.41 | 22 | |
Collector | Flotigam V4343 | Flotigam V4343 | Lilaflot OT 55 | Duomeen TDO | Duomeen C | |||||
Frother | Brij C20 | Brij C20 | Brij C20 | Pine oil | Pine oil | |||||
Float | Material | Quartz | Quartz | Quartz | Feldspar | Feldspar | Feldspar | Feldspar | Feldspar | |
Grade [%] | 82.82 | 78.58 | 71.74 | 61.87 | 67.89 | 52.06 | 76.34 | 93.68 | ||
Recovery [%] | 100 | 98 | 100 | 97 | 100 | 94 | 95 | 100 | ||
* K [min−1] | 0.584 | 0.581 | 0.268 | 0.878 | 0.768 | 0.459 | 0.759 | 0.617 | ||
Correlation | 1.00 | 1.00 | 1.00 | 0.92 | 0.95 | 0.99 | 0.99 | 1.00 | ||
No float | Material | Feldspar | Feldspar | Feldspar | Quartz | Quartz | Quartz | Quartz | Quartz | |
Grade [%] | 88.98 | 86.32 | 97.98 | 84.59 | 88.35 | 77.18 | 80.16 | 87.24 | ||
Recovery [%] | 80 | 78 | 89 | 32 | 42.6 | 29.5 | 74 | 94 | ||
* K[min−1] | 0.05 | 0.03 | 0.03 | 0.04 | 0.77 | 0.32 | 0.34 | 0.62 | ||
Correlation | 0.96 | 0.98 | 0.99 | 0.99 | 0.95 | 0.99 | 0.95 | 1.00 |
Material | Particle Size, µm | Chemical Agent | Dosage | Quartz, Recovery % | Feldspar, Recovery % | pH | Reference |
---|---|---|---|---|---|---|---|
Vatnet quartz | <200 | HF + Brij C58 | 217 kg/t + 300 g/t | 98.0 | NA | 2.8–2.9 | [17] |
Quartz + feldspar | 38–206 | HF + Brij C58 | 50 kg/t + 300g/t | 95.4 | 95.6 | 1.15 | [15] |
Quartz | <38 | NAF + H2SO4 + Brij 58 | 0.42 M + 0.92 M + 2 × 10−5 M | 98.0 | NA | 2.8–2.9 | [23] |
Quartz | 38–74 | NAF + H2SO4 + Brij 58 | 0.28 M + 0.31 M + 2 × 10−5 M | 97.0 | NA | 2.8–2.9 | [23] |
Quartz + feldspar | 38–106 | HF + Lilaflot OT 55 + Pine oil | 16.41 kg/t + 1200 g/t + 200 g/t | 42.6 | 100 | 1.52 | |
Quartz + feldspar | HF + Duomeen TDO | 16.41 kg/t + 1200 g/t | 29.5 | 94.0 | 1.48 | ||
Quartz + feldspar | HF + Duomeen C + pine oil | 16.41 kg/t + 1200 g/t + 250 g/t | 74.0 | 95.0 | 1.51 | ||
Quartz + feldspar | HF + Flotigam V4343 | 22 kg/t + 1200 g/t | 94.0 | 100 | 1.47 | ||
Quartz | HF + Brij C20 | 274 kg/t + 600 g/t | 78.0 | NA | 1.5 | ||
Quartz + feldspar | HF + Brij C20 | 137 kg/t + 600 g/t | 92.0 | 90.0 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanty, K.; Oliva, J.; Alfonso, P.; Sampaio, C.H.; Anticoi, H. A Comparative Study of Quartz and Potassium Feldspar Flotation Process Using Different Chemical Reagents. Minerals 2024, 14, 167. https://doi.org/10.3390/min14020167
Mohanty K, Oliva J, Alfonso P, Sampaio CH, Anticoi H. A Comparative Study of Quartz and Potassium Feldspar Flotation Process Using Different Chemical Reagents. Minerals. 2024; 14(2):167. https://doi.org/10.3390/min14020167
Chicago/Turabian StyleMohanty, Kalyani, Josep Oliva, Pura Alfonso, Carlos Hoffmann Sampaio, and Hernan Anticoi. 2024. "A Comparative Study of Quartz and Potassium Feldspar Flotation Process Using Different Chemical Reagents" Minerals 14, no. 2: 167. https://doi.org/10.3390/min14020167