Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays
Abstract
1. Introduction
2. Materials
3. Test Methods
4. Results and Discussion
4.1. Chemical and Microstructural Investigation
4.2. Sensitivity and Specific Surface
4.3. Potassium Sorption Capacity
- -
- for the Perniö, Kouvola, and Tiller soils, the values of S at the equilibrium concentrations exceeding 0.35 g/L, Slim, were assumed to be equal to the average value of the corresponding experimental data;
- -
- in the case of the Kotka soil, Slim was assumed equal to the highest S value detected;
- -
- for all the investigated soils, the values of S lower than Slim were fitted by the linear isotherm, as typically occurs at low range of concentrations:S = kd C,
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torrance, J.K. A laboratory investigation of the effect of leaching on the compressibility and shear strength of Norwegian marine clays. Géotechnique 1974, 24, 155–173. [Google Scholar] [CrossRef]
- Rosenqvist, I.T. Considerations on the sensitivity of Norwegian quick clays. Geotechnique 1953, 3, 195–200. [Google Scholar] [CrossRef]
- Bjerrum, L. Geotechnical properties of Norwegian marine clays. Géotechnique 1954, 4, 49–69. [Google Scholar] [CrossRef]
- Rankka, K.; Andersson-Sköld, Y.; Hultén, C.; Larsson, R.; Leroux, V.; Dahlin, T. Quick Clay in Sweden; Technical Report No. 65; Swedish Geotechnical Institute: Linköping, Sweden, 2004; 137p. [Google Scholar]
- Bjerrum, L.; Løken, T.; Heiberg, S.; Foster, R. A field study of factors responsible for quick clay slides. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico, August 1969; pp. 531–540. [Google Scholar]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Helle, T.E.; Nordal, S.; Aagaard, P.; Lied, O.K. Long-term effect of potassium chloride treatment on improving the soil behavior of highly sensitive clay—Ulvensplitten, Norway. Can. Geotech. J. 2016, 53, 410–422. [Google Scholar] [CrossRef]
- Helle, T.E.; Aagaard, P.; Nordal, S. In-situ improvement of highly sensitive clays by potassium chloride migration. J. Geotech. Geoenv. Eng. 2017, 143, 1–25. [Google Scholar] [CrossRef]
- L’Heureux, J.S.; Lindgård, A.; Emdal, A. The Tiller-Flotten research site: Geotechnical characterization of a very sensitive clay deposit. AIMS Geosci. 2019, 5, 831–867. [Google Scholar] [CrossRef]
- Di Sante, M.; Di Buò, B.; Fratalocchi, E.; Länsivaara, T. Lime Treatment of a Soft Sensitive Clay: A Sustainable Reuse Option. Geosciences 2020, 10, 182. [Google Scholar] [CrossRef]
- ASTM D422-63(2007); Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- ISO 17892-12:2018; Geotechnical Investigation and Testing — Laboratory Testing of Soil. Part 12: Determination of Liquid and Plastic Limits. ISO: Geneva, Switzerland, 2018.
- ASTM D4318-17; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D2216-19; Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International: West Conshohocken, PA, USA, 2019.
- European Bentonite Association, EUBA, Methodology for the determination of the methylene blue value of bentonite. August 2002.
- GLO-85 Suomen geoteknillinen yhdistys ry SGY. In GLO-85 Geotekniset laboratorioohjeet, 1. Luokituskokeet; Suomen geoteknillinen yhdistys ry ja Rakentajain Kustannus Oy: Helsinki, Finland, 1985. (In Finnish)
- Hansbo, S. A new approach to the determination of the shear strength of clays by the fall-cone test. Proc. Roy. SGI 1957, 14, 7–48. [Google Scholar]
- Koumoto, T.; Houlsby, G.T. Theory and practice of the fall cone test. Geotechnique 2001, 51, 701–712. [Google Scholar] [CrossRef]
- ASTM D4646-16; Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments. ASTM International: West Conshohocken, PA, USA, 2023.
- Moum, J.; Sopp, O.I.; Løken, T. Stabilization of Undisturbed Quick Clay by Salt Wells; NGI Publication No. 81; Norwegian Geotechnical Institute: Oslo, Norway, 1968. [Google Scholar]
- Paniagua, P.; L’heuruex, J.S. Comparison of three Norwegian marine clays from a mineralogical, chemical and geotechnical approach. In Proceedings of the XVII ECSMGE 2019, Reykjavik, Island, 1–6 September 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: Hoboken, NJ, USA, 1974; ISBN 978-0-471-49369-3. [Google Scholar]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed; Prentice Hall: Saddle River, NJ, USA, 2001. [Google Scholar]
- Locat, J.; Berube, M.A.; Chagnon, J.Y.; Gelinas, P. The mineralogy of sensitive clays in relation to some engineering geology problems—An overview. Appl. Clay Sci. 1985, 1, 193–205. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Klein, K.A.; Wang, Y.H.; Prencke, E. Specific surface: Determination and relevance. Can. Geotech. J. 2001, 39, 233–241. [Google Scholar] [CrossRef]
- Bentley, S.P.; Smalley, I.J. Inter-particle cementation in Canadian post-glacial clays and the problem of high sensitivity. Sedimentology 1978, 25, 297–302. [Google Scholar] [CrossRef]
- Yong, R.N.; Sethi, A.J.; Larochelle, P. Significance of amorphous material relative to sensitivity in some Champlain clays. Can. Geotech. J. 1979, 16, 511–520. [Google Scholar] [CrossRef]
- Locat, J. Contribution a L’etude de la Structuration des Argiles Sensibles de L’est du Canada. Ph.D. Thesis, Faculté des Sciences Appliquées, Department of Civil Engineering, University of Sherbrooke, Sherbrooke, QC, Canada, 1982. [Google Scholar]
- Mazzieri, F. Assessment of heavy metals retention in GCLs by column and batch tests. In Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, 25–29 March 2012; Geotechnical Special Publication 225. pp. 3447–3456. [Google Scholar]
- Fratalocchi, E.; Domizi, J.; Felici, M.; Mazzieri, F. Sorption and hydraulic performance of cement-bentonite cutoffs in saline sulphatic solutions. Soils Found. 2023, 63, 101315. [Google Scholar] [CrossRef]
Kotka, Finland | Perniö, Finland | Kouvola, Finland | Tiller, Norway | |
---|---|---|---|---|
Depth of sampling (m from g.l.) | 1.5–3.1 (dry crust) | 4.5 | 1.0–1.5 | 10.1 |
Fine fraction, FF (%) [11] | 98 | 83 | 78 | 63 |
Clay Fraction, CF (%) [11] | 45 | 65 | 24 | 44 |
Liquid limit, LL [12] | 80 | 48 | 28 | 30 |
Plasticity Index, IP [13] | 38 | 21 | 12 | 10 |
Natural water content (%) [14] | 80–130 | 82 | 27–32 | 35 |
Solution | Target K+ Concentration | Measured K+ Concentration | EC |
---|---|---|---|
(g/L) | (g/L) | (µS/cm) | |
C1 | 0.1 | 0.1 | 418 |
C2 | 0.2 | 0.2 | 753 |
C3 | 0.5 | 0.536 | 1674 |
C4 | 1 | 0.954 | 3410 |
Weight Composition (%) | ||||
---|---|---|---|---|
Element | Perniö, Finland | Tiller, Norway | Kotka, Finland | Kouvola, Finland |
Silicon | 52 | 46 | 52 | 55 |
Calcium | 2 | 5 | 2 | 2 |
Aluminium | 16 | 16 | 15 | 16 |
Iron | 14 | 16 | 16 | 15 |
Potassium | 8 | 6 | 7 | 7 |
Magnesium | 4 | 8 | 3 | 2 |
Sodium | 2 | 3 | 2 | 3 |
Other compounds | <2 | <1 | <3 | 0 |
Kotka, Finland | Perniö, Finland | Kouvola, Finland | Tiller, Norway | |
---|---|---|---|---|
Sensitivity index (-) | 15–40 | 37–71 | 31 | 270–280 |
Fall cone remoulded strength (kPa) | 0.5–0.9 | 0.3 | 5.0–7.0 | 0.1 |
Specific Surface (m2/g) | 115.8 | 109.6 | 77 | 54.2 |
CEC (meq/100 g) | 14.9 | 14.1 | 8.6 | 7.0 |
P (%) | 51 | 49 | 34 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Sante, M.; Fratalocchi, E.; Mazzieri, F.; Di Buò, B.; Länsivaara, T. Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays. Minerals 2024, 14, 1273. https://doi.org/10.3390/min14121273
Di Sante M, Fratalocchi E, Mazzieri F, Di Buò B, Länsivaara T. Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays. Minerals. 2024; 14(12):1273. https://doi.org/10.3390/min14121273
Chicago/Turabian StyleDi Sante, Marta, Evelina Fratalocchi, Francesco Mazzieri, Bruno Di Buò, and Tim Länsivaara. 2024. "Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays" Minerals 14, no. 12: 1273. https://doi.org/10.3390/min14121273
APA StyleDi Sante, M., Fratalocchi, E., Mazzieri, F., Di Buò, B., & Länsivaara, T. (2024). Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays. Minerals, 14(12), 1273. https://doi.org/10.3390/min14121273