Reworking of Eoarchean to Mesoarchean Continental Crust in the Anshan–Benxi Area, North China Craton—Evidence from Lianshanguan ca. 2.5 Ga Syenogranites
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Petrography
4. Analytical Methods
5. Results
5.1. Zircon U-Pb Dating
5.2. Zircon Hf Isotopic Composition
5.3. Geochemistry
6. Discussions
6.1. Magmatic Emplacement Age of Granites
6.2. Petrogenesis
6.3. Reworking of Eoarchean to Mesoarchean Continental Crust in Anshan–Benxi Area
- Sanukitoid-like granites: They meet most of the sanukitoid criteria defined by Heilimo et al. [77]. SiO2 = 55–70 wt. %, Na2O/K2O = 0.5–3, MgO= 1.5–9 wt. %, Mg# = 45–65, K2O = 1.5–5.0 wt. %, Ba + Sr > 1400 ppm, and (Gd/Er)N = 2–6.
- Syenogranites: They have K2O ≥ 4 wt. % with K2O/Na2O ≥ 1.3 [37].
- Potassium-rich granites: They have K2O ≥ 4 wt. % with K2O/Na2O < 1.3 [37].
- Other granites: They have K2O < 4 wt. % without sanukitoid-like characteristics.
- Based on the age distribution of the four types of granitoids in different areas (Figure 7B), we observe that the Northern Liaoning area has a higher abundance of sanukitoid-like granites and potassium-rich granites, while the Suizhong granitic belt has more sanukitoid-like granites and syenogranites. In the Anshan–Benxi area, syenogranites make up a significant proportion. The age peaks of these granites range from 2.56 to 2.50 Ga, and no clear age patterns are evident among the four types of granites.
6.4. Tectonic Implications
7. Conclusions
- The Lianshanguan granitoids consist mainly of syenogranites (K2O > 4 wt. % and K2O/Na2O ratios >1.3). The zircon U-Pb ages of the two syenogranites are 2541 ± 22 and 2512 ± 13 Ma, respectively. These syenogranites have εHf(t) of −20.19 to +4.9, with TDM2(Hf) ages of 3.90–2.70 Ga.
- The Lianshanguan syenogranites exhibit similar characteristics to granites derived from meta-sediments. These granites were likely generated from the reworking of Eoarchean–Mesoarchean crustal materials, possibly with a small portion of ~2.7 Ga juvenile crustal materials.
- Zircon xenocrystic cores indicate two upper intercepts at 3016 ± 15 Ma (MSWD = 1.3, n = 6) and 3531 ± 37 Ma (MSWD = 2.8, n = 5). A metamorphic age of 1919 ± 85 Ma (MSWD = 20, n = 9) was also obtained.
- Compared to the TDM2(Hf) ages of late Neoarchean syenogranites from the Anshan–Benxi area (prominent peaks at 3.54, 3.45, and 2.89 Ga and subordinate age peaks at 3.79, 3.74, 3.34, and 3.02 Ga), the TDM2(Hf) ages of late Neoarchean syenogranites from Northern Liaoning and Western Liaoning–Eastern Hebei areas show one dominant peaks at ~2.8 Ga and one subordinate age peak at ~3.1 Ga, indicating that the late Neoarchean reworking of the Eoarchean to Paleoarchean continental crust mainly occurred in the Anshan–Benxi area.
- An arc–continent collision is likely the dominant geodynamic mechanism during the late Neoarchean.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bell, E.A.; Harrison, T.M.; McCulloch, M.T.; Young, E.D. Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu–Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochim. Cosmochim. Acta 2011, 75, 4816–4829. [Google Scholar] [CrossRef]
- Cui, P.; Sun, J.; Sha, D.; Wang, X.; Zhang, P.; Gu, A.; Wang, Z. Oldest zircon xenocryst (4.17 Ga) from the north China craton. Int. Geol. Rev. 2013, 55, 1902–1908. [Google Scholar] [CrossRef]
- Diwu, C.; Sun, Y.; Wilde, S.A.; Wang, H.; Dong, Z.; Zhang, H.; Wang, Q. New evidence for ~4.45 Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Res. 2013, 23, 1484–1490. [Google Scholar] [CrossRef]
- Furnes, H.; Rosing, M.; Dilek, Y.; de Wit, M. Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology. Lithos 2009, 113, 115–132. [Google Scholar] [CrossRef]
- Harrison, T.M. The Hadean crust: Evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 2009, 37, 479–505. [Google Scholar] [CrossRef]
- Iizuka, T.; Horie, K.; Komiya, T.; Maruyama, S.; Hirata, T.; Hidaka, H.; Windley, B.F. 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: Evidence for early continental crust. Geology 2006, 34, 245–248. [Google Scholar] [CrossRef]
- Iizuka, T.; Komiya, T.; Johnson, S.P.; Kon, Y.; Maruyama, S.; Hirata, T. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu–Hf isotope analysis of zircon. Chem. Geol. 2009, 259, 230–239. [Google Scholar] [CrossRef]
- Kemp, A.; Wilde, S.; Hawkesworth, C.; Coath, C.; Nemchin, A.; Pidgeon, R.; Vervoort, J.; DuFrane, S. Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 2010, 296, 45–56. [Google Scholar] [CrossRef]
- Liu, D.; Nutman, A.P.; Compston, W.; Wu, J.; Shen, Q. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology 1992, 20, 339–342. [Google Scholar] [CrossRef]
- Liu, D.; Wilde, S.A.; Wan, Y.; Wu, J.; Zhou, H.; Dong, C.; Yin, X. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am. J. Sci. 2008, 308, 200–231. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Mojzsis, S.J.; Harrison, T.M. Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth Planet. Sci. Lett. 2002, 202, 563–576. [Google Scholar] [CrossRef]
- Naeraa, T.; Scherstén, A.; Rosing, M.; Kemp, A.; Hoffmann, J.; Kokfelt, T.; Whitehouse, M. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 2012, 485, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Nutman, A.P.; Friend, C.R.; Horie, K.; Hidaka, H. The Itsaq Gneiss Complex of southern West Greenland and the construction of Eoarchaean crust at convergent plate boundaries. Dev. Precambrian Geol. 2007, 15, 187–218. [Google Scholar]
- O’Neil, J.; Carlson, R.W.; Francis, D.; Stevenson, R.K. Neodymium-142 evidence for Hadean mafic crust. Science 2008, 321, 1828–1831. [Google Scholar] [CrossRef]
- Paquette, J.-L.; Barbosa, J.; Rohais, S.; Cruz, S.; Goncalves, P.; Peucat, J.-J.; Leal, A.; Santos-Pinto, M.; Martin, H. The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in NE Brazil and NW Argentina. Precambrian Res. 2015, 271, 49–55. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Kemp, A.I. Clarifying the zircon Hf isotope record of crust–mantle evolution. Chem. Geol. 2016, 425, 65–75. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, D.; Dong, C.Y.; Nutman, A.; Wilde, S.A.; Wang, W.; Xie, H.; Yin, X.; Zhou, H. The oldest rocks and zircons in China. Acta Petrol. Sin. 2009, 25, 1793–1807, (In Chinese with English abstract). [Google Scholar]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef]
- Zeh, A.; Gerdes, A.; Klemd, R.; Barton, J., Jr. U–Pb and Lu–Hf isotope record of detrital zircon grains from the Limpopo Belt–evidence for crustal recycling at the Hadean to early-Archean transition. Geochim. Et Cosmochim. Acta 2008, 72, 5304–5329. [Google Scholar] [CrossRef]
- Tolstikhin, I.N.; Kramers, J.D. The Evolution of Matter—From the Big Bank to the Present Day; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Wan, Y.; Xie, H.; Wang, H.; Liu, S.; Chu, H.; Xiao, Z.; Li, Y.; Hao, G.; Li, P.; Dong, C.; et al. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, Northn China Craton. Acta Geol. Sin. 2021, 95, 277–291, (In Chinese with English abstract). [Google Scholar]
- Wan, Y.; Liu, D.; Dong, C.; Xie, H.; Kröner, A.; Ma, M.; Liu, S.; Xie, S.; Ren, P. Formation and evolution of Archean continental crust of the North China Craton. In Precambrian Geology of China; Springer: Berlin/Heidelberg, Germany, 2015; pp. 59–136. [Google Scholar]
- Wan, Y.; Xie, H.; Dong, C.; Kröner, A.; Wilde, S.A.; Bai, W.; Liu, S.; Xie, S.; Ma, M.; Li, Y.; et al. Chapter 14—Hadean to Paleoarchean Rocks and Zircons in China. In Earth’s Oldest Rocks, 2nd ed.; Van Kranendonk, M.J., Bennett, V.C., Hoffmann, J.E., Eds.; Elsevier: Berlin, Germany, 2019; pp. 293–327. [Google Scholar]
- Yuan, W.; Yang, Z.; Yang, J. The discovery of hadean detrital zircon in late Devonian strata in Hexi corridor, Northwest China. Acta Petrol. Sin. 2012, 28, 1029–1036, (In Chinese with English abstract). [Google Scholar]
- Nutman, A.P.; Wan, Y.; Du, L.; Friend, C.R.L.; Dong, C.; Xie, H.; Wang, W.; Sun, H.; Liu, D. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei. Precambrian Res. 2011, 189, 43–65. [Google Scholar] [CrossRef]
- Sun, G.; Liu, S.; Cawood, P.A.; Tang, M.; van Hunen, J.; Gao, L.; Hu, Y.; Hu, F. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton. Nat. Commun. 2021, 12, 3888. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Zhao, G.; Zhai, M. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, M.; Wilde, S.A.; Li, S. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Wan, Y.; Ma, M.; Dong, C.; Xie, H.; Xie, S.; Ren, P.; Liu, D. Widespread late neoarchean reworking of Meso- to paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-o isotopes. Am. J. Sci. 2015, 315, 620–670. [Google Scholar] [CrossRef]
- LBGMR (Liaoning Bureau of Geology and Mineral Resources). 1/200,000 Geological Map of Yingkou City and Liaoyang; Geological Survey Report; LBGMR: Jinxian, China, 1975. [Google Scholar]
- Yang, F.; Sun, J.; Song, Y.; Zhang, P.; Bi, Z. SHRIMP U-Pb Age, Hf Isotope Composition and Geochemical Characteristics of Neoarchean Granitic Complex in Liaodong Lianshanguan Area, NE China. Earth Sci. 2016, 41, 2008–2018, (In Chinese with English abstract). [Google Scholar]
- Song, B.; Nutman, A.P.; Liu, D.; Wu, J. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res. 1996, 78, 79–94. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, D.; Song, B.; Wu, J.; Yang, C.; Zhang, Z.; Geng, Y. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. J. Asian Earth Sci. 2005, 24, 563–575. [Google Scholar] [CrossRef]
- Wan, Y.; Song, B.; Geng, Y.; Liu, D. Geochemical characteristics of Archaean basement in the Fushun-Qingyuan area, northern Liaoning Province and its geological significance. Geol. Rev. 2005, 51, 128–137. [Google Scholar]
- Wan, Y.; Dong, C.; Liu, D.; Kröner, A.; Yang, C.; Wang, W.; Du, L.; Xie, H.; Ma, M. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: A review. Precambrian Res. 2012, 222–223, 265–289. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Jin, W.; Zhang, J. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Res. 2015, 263, 88–107. [Google Scholar] [CrossRef]
- Dong, C.; Wan, Y.; Xie, H.; Nutman, A.P.; Xie, S.; Liu, S.; Ma, M.; Liu, D. The Mesoarchean Tiejiashan-Gongchangling potassic granite in the Anshan-Benxi area, North China Craton: Origin by recycling of Paleo-to Eoarchean crust from U-Pb-Nd-Hf-O isotopic studies. Lithos 2017, 290, 116–135. [Google Scholar] [CrossRef]
- Bao, H.; Liu, S.; Wang, M.; Teng, G.; Sun, G. Mesoarchean geodynamic regime evidenced from diverse granitoid rocks in the Anshan-Benxi area of the North China Craton. Lithos 2020, 366–367, 105574. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Jin, W.; Zeng, L.; Zhang, J. Generation and maturation of Mesoarchean continental crust in the Anshan Complex, North China Craton. Precambrian Res. 2020, 341, 105651. [Google Scholar] [CrossRef]
- Wan, Y.; Dong, C.; Xie, H.; Nutman, A.P.; Xie, S.; Wang, Y.; Liu, D. SHRIMP U-Pb zircon dating and geochemistry of the 3.8–3.1 Ga Hujiamiao Complex in Anshan (North China Craton) and the significance of the trondhjemites for early crustal genesis. Precambrian Res. 2023, 388, 106975. [Google Scholar] [CrossRef]
- Wu, J.S.; Geng, Y.S.; Shen, Q.H.; Wan, Y.S.; Liu, D.Y.; Song, B. Archean Geology: Characterization and Tectonic Evolution of China-Korea Paleo-Continent; Geological Publishing House: Beijing, China, 1998; (In Chinese with English abstract). [Google Scholar]
- Wu, F.; Zhang, Y.; Yang, J.; Xie, L.; Yang, Y. Zircon U–Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Res. 2008, 167, 339–362. [Google Scholar] [CrossRef]
- LBGMR (Liaoning Bureau of Geology and Mineral Resources). 1/250,000 Geological Map of Dandong City and Donggang City; Geological Survey Report; LBGMR: Liaoning, China, 2003. (In Chinese) [Google Scholar]
- Wu, D.; Zhuang, T.; Liu, X.; Wang, C. Petrological and geochemical characteristics of remelting chorismite in Lianshanguan area of east Liaoning. World Nucl. Geosci. 2013, 30, 210–216, (In Chinese with English abstract). [Google Scholar]
- Wu, D. Early Precambrian Tectonic Evolution and Uranium Mineralization in Lianshanguan Area, Eastern Liaoning Province. Ph.D. Thesis, Jilin University, Changchun, China, 2021. (In Chinese with English abstract). [Google Scholar]
- Zong, K.; Zhang, Z.; He, Z.; Hu, Z.; Santosh, M.; Liu, Y.; Wang, W. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: Constraints on continental collision in the southern Central Asian Orogenic Belt. J. Metamorph. Geol. 2012, 30, 753–768. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 392–399. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.0: A geochronological toolkit for Microsoft excel. Berkeley Geochronol. Cent. Spec. Publ. 2003, 4, 1–71. [Google Scholar]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Tomaschek, F.; Kennedy, A.K.; Villa, I.M.; Lagos, M.; Ballhaus, C. Zircons from Syros, Cyclades, Greece—Recrystallization and Mobilization of Zircon During High-Pressure Metamorphism. J. Petrol. 2003, 44, 1977–2002. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Amelin, Y.; Lee, D.-C.; Halliday, A.N.; Pidgeon, R.T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 1999, 399, 252–255. [Google Scholar] [CrossRef]
- Griffin, W.L.; O’Reilly, S.Y.; Abe, N.; Aulbach, S.; Davies, R.M.; Pearson, N.J.; Doyle, B.J.; Kivi, K. The origin and evolution of Archean lithospheric mantle. Precambrian Res. 2003, 127, 19–41. [Google Scholar] [CrossRef]
- Streckeisen, A. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data, Evaluation, Presentation, Interpretation; John Wiley & Sons. Inc.: New York, NY, USA, 1993. [Google Scholar]
- Moyen, J.F.; Martin, H.; Jayananda, M.; Auvray, B. Late Archaean granites: A typology based on the Dharwar Craton (India). Precambrian Res. 2003, 127, 103–123. [Google Scholar] [CrossRef]
- Laurent, O.; Martin, H.; Moyen, J.F.; Doucelance, R. The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G. SHRIMP U–Pb zircon geochronology of the Liaoji granitoids: Constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton. Precambrian Res. 2007, 158, 1–16. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G.; Sun, M.; Han, Z.; Luo, Y.; Hao, D.; Xia, X. Deformation history of the Paleoproterozoic Liaohe assemblage in the eastern block of the North China Craton. J. Asian Earth Sci. 2005, 24, 659–674. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G.; Sun, M.; Han, Z.; Zhao, G.; Hao, D. Are the South and North Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Res. 2006, 9, 198–208. [Google Scholar] [CrossRef]
- Liu, F.; Wang, F.; Liu, P.; Liu, C. Multiple metamorphic events revealed by zircons from the Diancang Shan-Ailao Shan metamorphic complex, southeastern Tibetan Plateau. Gondwana Res. 2013, 24, 429–450. [Google Scholar] [CrossRef]
- Liu, P.; Liu, F.; Cai, J.; Wang, F.; Liu, C.; Liu, J.; Yang, H.; Shi, J.; Liu, L. Discovery and geological significance of high-pressure mafic granulites in the Pingdu–Anqiu area of the Jiaobei Terrane, the Jiao–Liao–Ji Belt, the North China Craton. Precambrian Res. 2017, 303, 445–469. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, M.; Zhao, G.; Li, S.; Xu, P.; Ye, K.; Xia, X. LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: Constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Res. 2004, 134, 349–371. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, M.; Zhao, G.; Li, S.; Ayers, J.C.; Xia, X.; Zhang, J. A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Res. 2008, 163, 279–306. [Google Scholar] [CrossRef]
- Meng, E.; Wang, C.Y.; Li, Z.; Li, Y.-G.; Yang, H.; Cai, J.; Ji, L.; Jin, M.Q. Palaeoproterozoic metasedimentary rocks of the Ji’an Group and their significance for the tectonic evolution of the northern segment of the Jiao–Liao–Ji Belt, North China Craton. Geol. Mag. 2018, 155, 149–173. [Google Scholar] [CrossRef]
- Tam, P.Y.; Zhao, G.; Liu, F.; Zhou, X.; Sun, M.; Li, S. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Res. 2011, 19, 150–162. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, G.; Wei, C.; Geng, Y.; Sun, M. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. Am. J. Sci. 2008, 308, 328–350. [Google Scholar] [CrossRef]
- LBGMR (Liaoning Bureau of Geology and Mineral Resources). Regional geology of Liaoning Province. In Regional Geology of China; Li, T.D., Ed.; Geological Publishing House: Beijing, China, 2017. [Google Scholar]
- Zhang, K.J. Destruction of the North China Craton: Lithosphere folding-induced removal of lithospheric mantle? J. Geodyn. 2012, 53, 8–17. [Google Scholar] [CrossRef]
- Heilimo, E.; Halla, J.; Hölttä, P. Discrimination and origin of the sanukitoid series: Geochemical constraints from the Neoarchean western Karelian Province (Finland). Lithos 2010, 115, 27–39. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.P.; Martin, H.; Koga, K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petrol. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol. 1996, 37, 661–691. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas—Petrogenetic issues, models and evidence. Earth-Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; Wan, Y.; Guo, R.; Wang, W.; Wang, K.; Guo, B.; Fu, J.; Hu, F. A reworked ∼3.45 Ga continental microblock of the North China Craton: Constraints from zircon U-Pb-Lu-Hf isotopic systematics of the Archean Beitai-Waitoushan migmatite-syenogranite complex. Precambrian Res. 2017, 303, 332–354. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, L.; Zhu, M.; Wang, C.; Liu, L.; Xiang, P. The composition and genesis of the Mesoarchean Dagushan banded iron formation (BIF) in the Anshan area of the North China Craton. Ore Geol. Rev. 2014, 63, 353–373. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, S.; Yang, C.; Kröner, A.; Ma, M.; Dong, C.; Du, L.; Xie, H.; Liu, D. Early Neoarchean (~2.7 Ga) tectono-thermal events in the North China Craton: A synthesis. Precambrian Res. 2014, 247, 45–63. [Google Scholar] [CrossRef]
- Thompson, A.B.; Connolly, J.A.D. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J. Geophys. Res. 1995, 100, 15565–15579. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, K.J.; Yan, L.L.; Jin, X.; Zhang, Y.X. Was Late Triassic Tanggula granitoid (central Tibet, western China) a product of melting of underthrust Songpan-Ganzi flysch sediments? Tectonics 2017, 36, 902–928. [Google Scholar] [CrossRef]
- Han, C.; Xiao, W.; Su, B.-X.; Sakyi, P.A.; Chen, Z.; Zhang, X.; Ao, S.; Zhang, J.; Wan, B.; Zhang, Z.; et al. Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U–Pb dating. Precambrian Res. 2014, 254, 306–322. [Google Scholar] [CrossRef]
- Fan, Z.; Huang, X.; Tan, L.; Yang, X.; Zhang, H.; Zhou, D.; Liu, Q.; Cao, B. A study of iron deposits in the Anshan area, China based on interactive inversion technique of gravity and magnetic anomalies. Ore Geol. Rev. 2014, 57, 618–627. [Google Scholar] [CrossRef]
- Guo, R.; Liu, S.; Gong, E.; Wang, W.; Wang, M.; Fu, J.; Qin, T. Arc-generated metavolcanic rocks in the Anshan–Benxi greenstone belt, North China Craton: Constraints from geochemistry and zircon U–Pb–Hf isotopic systematics. Precambrian Res. 2017, 303, 228–250. [Google Scholar] [CrossRef]
- Wang, C.; Song, S.; Su, L.; Allen, M.B. Crustal maturation and cratonization in response to Neoarchean continental collision: The Suizhong granitic belt, North China Craton. Precambrian Res. 2022, 377, 106732. [Google Scholar] [CrossRef]
- Fu, J.; Liu, S.; Wang, M.; Chen, X.; Guo, B.; Hu, F. Late Neoarchean monzogranitic–syenogranitic gneisses in the Eastern Hebei–Western Liaoning Province, North China Craton: Petrogenesis and implications for tectonic setting. Precambrian Res. 2017, 303, 392–413. [Google Scholar] [CrossRef]
- Fu, J.; Liu, S.; Cawood, P.A.; Wang, M.; Hu, F.; Sun, G.; Gao, L.; Hu, Y. Neoarchean magmatic arc in the Western Liaoning Province, northern North China Craton: Geochemical and isotopic constraints from sanukitoids and associated granitoids. Lithos 2018, 322, 296–311. [Google Scholar] [CrossRef]
- Fu, J.; Liu, S.; Zhang, B.; Guo, R.; Wang, M. A Neoarchean K-rich granitoid belt in the northern North China Craton. Precambrian Res. 2019, 328, 193–216. [Google Scholar] [CrossRef]
- Wang, W.; Cawood, P.A.; Liu, S.; Guo, R.; Bai, X.; Wang, K. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton. Tectonics 2017, 36, 1724–1742. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S.; Wang, M.; Yan, M. Geochemistry and zircon U-Pb-Hf isotopes of the late Neoarchean granodiorite-monzogranite-quartz syenite intrusions in the Northern Liaoning Block, North China Craton: Petrogenesis and implications for geodynamic processes. Precambrian Res. 2017, 295, 151–171. [Google Scholar] [CrossRef]
- Cheng, C.; Liu, J.; Zhang, J.; Chen, Y.; Yin, C.; Liu, X.; Qian, J.; Gao, P.; Wang, X. Petrogenesis of newly identified Neoarchean granitoids in the Qingyuan of NE China: Implications on crustal growth and reworking of the North China Craton. J. Asian Earth Sci. 2022, 236, 105333. [Google Scholar] [CrossRef]
- Zhao, G.; Wilde, S.A.; Cawood, P.A.; Lu, L. Thermal evolution of two textural types of mafic granulites in the North China craton: Evidence for both mantle plume and collisional tectonics. Geol. Mag. 1999, 136, 223–240. [Google Scholar] [CrossRef]
- Yang, J.; Wu, F.; Wilde, S.A.; Zhao, G. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: Geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Res. 2008, 167, 125–149. [Google Scholar] [CrossRef]
- Wan, Y.; Liu, D.; Wang, S.; Dong, C.; Yang, E.; Wang, W.; Zhou, H.; Ning, Z.; Du, L.; Yin, X. Juvenile magmatism and crustal recycling at the end of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP zircon dating. Am. J. Sci. 2010, 310, 1503–1552. [Google Scholar] [CrossRef]
- Wan, Y. The Formation and Evolution of the Iron-Bearing Rock Series of the Gongchangling Area, Liaoning Province; Beijing Science and Technology Publishing House: Beijing, China, 1993; pp. 1–108. [Google Scholar]
Sample No. | Age (Ma) | Rock Type 1 | References |
---|---|---|---|
21LY24-1 | 2541 ± 22 | flesh-red fine-grained syenogranite | This study |
21LY24-2 | 2517 ±7 | gray–white medium-grained syenogranite | This study |
16LSG66-2 | 2493 ± 130 | medium-fine grained K-feldspar granite | [47] |
15LSG43-1 | 2484 ± 29 | flesh-red K-feldspar granitic pegmatite vein | [47] |
TW6-1 2 | 2512 ± 14 | light-flesh-red syenite | [33] |
TW6-2 3 | 2510 ± 15 | gray–white streaked monzogranite | [33] |
A1214 | 2489 ± 20 | weakly deformed syenogranite | [31] |
A1123 | 2512 ± 29 | gneissic syenogranite | [31] |
065-1 | 2511 ± 15 | flesh-red K-feldspar granite | [46] |
093-2 | 2540 ± 25 | flesh-red K-feldspar granite | [46] |
090-1 | 2533 ± 42 | gray–white remelted migmatite | [46] |
Unknown | 2563 ± 3 | gneissic biotite monzogranite | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wang, W.; Du, L.; Liu, P.; Xu, W. Reworking of Eoarchean to Mesoarchean Continental Crust in the Anshan–Benxi Area, North China Craton—Evidence from Lianshanguan ca. 2.5 Ga Syenogranites. Minerals 2024, 14, 5. https://doi.org/10.3390/min14010005
Zhang W, Wang W, Du L, Liu P, Xu W. Reworking of Eoarchean to Mesoarchean Continental Crust in the Anshan–Benxi Area, North China Craton—Evidence from Lianshanguan ca. 2.5 Ga Syenogranites. Minerals. 2024; 14(1):5. https://doi.org/10.3390/min14010005
Chicago/Turabian StyleZhang, Wen, Wei Wang, Lilin Du, Pinghua Liu, and Wang Xu. 2024. "Reworking of Eoarchean to Mesoarchean Continental Crust in the Anshan–Benxi Area, North China Craton—Evidence from Lianshanguan ca. 2.5 Ga Syenogranites" Minerals 14, no. 1: 5. https://doi.org/10.3390/min14010005
APA StyleZhang, W., Wang, W., Du, L., Liu, P., & Xu, W. (2024). Reworking of Eoarchean to Mesoarchean Continental Crust in the Anshan–Benxi Area, North China Craton—Evidence from Lianshanguan ca. 2.5 Ga Syenogranites. Minerals, 14(1), 5. https://doi.org/10.3390/min14010005