An Overview of Soil Pollution and Remediation Strategies in Coal Mining Regions
Abstract
:1. Introduction
2. Methodology
3. Contents and Chemical Forms of Trace Metals and Metalloids in Coal
3.1. Cr
3.2. Ni
3.3. Cu
3.4. Zn and Cd
3.5. As
3.6. Pb
4. Levels of Soil Pollution in Coal Mining Areas
4.1. Heavy Metals and Metalloids
Country | Mine Type | Status | HMs (mg/kg) | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Hg | Cu | Ni | Pb | Zn | As | Cr | |||||
South Korea: Gangreung coalfield | unknown | abandoned | 1.10 | n.a. | 41.0 | 42.6 | 32.9 | 87.3 | n.a. | 35.8 | [82] | |
China: Linhuan coal mining area | underground | active | 0.17 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | [12] | |
China: Coal mining region of Tai’an | underground | active | 0.20 | 0.03 | 26.5 | 29.61 | 27.6 | 66.7 | 9 | 56.4 | [58] | |
China: Zhundong mining | surface | active | n.a. | 0.01 | n.a. | n.a. | 16.3 | 0.0067 | 9.0 | 53.0 | [60] | |
China: Kaili City | unknown | abandoned | 0.52 | 0.11 | 13.3 | n.a. | 30.7 | 56.2 | 28.2 | 75.6 | [83] | |
China: Yulin | underground | active | n.a. | n.a. | 15.0 | 17.9 | 21.5 | 57.6 | 5.3 | 45.1 | [84] | |
China: Xilinguole League | surface | active | 0.11 | n.a. | 15.0 | n.a. | 20.0 | 49.3 | 9.1 | 52.9 | [85] | |
China: Xuzhou coal mining region | unknown | active | 0.88 | n.a. | 22.9 | n.a. | 19.0 | 128.3 | 17.1 | 58.1 | [86] | |
China: Tangshan City | underground | active | 0.15 | 0.06 | 22.4 | 16.8 | 22.9 | 70.3 | 5.9 | 37 | [59] | |
China: Weibei coalfield | underground | active | 0.28 | n.a. | 58.1 | 88.1 | 11.49 | 1139.8 | n.a. | 143.1 | [87] | |
China: Zhangji coal mine | underground | active | 0.54 | n.a. | 64.4 | 27.7 | 20.3 | 118.0 | 23.4 | 85.3 | [61] | |
China: Yanzhou | underground | active | 0.14 | n.a. | 23.1 | 29.5 | 23.7 | 66.3 | n.a. | 72.1 | [88] | |
China: Eastern Junggar coal mine | surface | active | n.a. | n.a. | 19.3 | n.a. | 16.7 | 47.8 | 33.5 | 68.5 | [89] | |
China: Xinzhuangzi | unknown | unknown | 0.09 | n.a. | 36.8 | 28.4 | 25.4 | 62.0 | 3.7 | n.a. | [48] | |
China: Datong coal mine | underground | abandoned | n.a. | n.a. | 26.4 | 34.3 | 50.2 | 76.1 | n.a. | 188.6 | [90] | |
China: Xingren coal mine | unknown | active | 1.09 | 0.71 | 134.1 | 64. 9 | 240.6 | n.a. | 477.5 | 173.6 | [91] | |
China: Liuxin mining area | unknown | abandoned | 0.40 | 0.03 | 31.8 | n.a. | 12.9 | 91.3 | 24.3 | 44.5 | [62] | |
Mongolia: Sharyn Gol | surface | active | 1.46 | n.a. | 22.1 | n.a. | 69.0 | 87.6 | n.a. | n.a. | [64] | |
Mongolia | Shengli | surface | active | n.a. | 0.03 | 19.6 | 25.0 | 16.8 | 60.7 | 9.0 | n.a. | [63] |
Baorixile | surface | active | n.a. | 0.08 | 19.7 | 20.8 | 26.3 | 64.2 | 8.6 | n.a. | ||
Bangladesh: Barapukuria coal mine | underground | active | n.a. | n.a. | 31.6 | 56.5 | n.a. | 101.9 | n.a. | 82.3 | [65] | |
0.25 | n.a. | 27.4 | 48.0 | 11.2 | 128.0 | 5.1 | 17.5 | [11] | ||||
n.a. | n.a. | n.a. | n.a. | 433.0 | 296.0 | 17.5 | n.a. | [66] | ||||
n.a. | n.a. | 29.9 | 98.5 | 188.6 | 160.0 | 22.4 | 107.3 | [92] | ||||
Bangladesh: Farmland around Barapukuria coal mine | underground | active | 0.09 | n.a. | 2.1 | n.a. | 0.9 | 8.2 | n.a. | n.a. | [93] | |
India: Neturia block | surface | active | n.a. | n.a. | 677.0 | 811.5 | 265.2 | 893.7 | 33.7 | 851.7 | [10] | |
India: Jharia coalfield | underground and surface | active | 0.80 | n.a. | 11.3 | 11.3 | 11.4 | 19.9 | n.a. | 23.4 | [67] | |
0.40 | n.a. | 66.3 | 64.1 | 27.8 | 127.0 | n.a. | 43.0 | [94] | ||||
India: Rohini | surface | active | 1.11 | 0.58 | n.a. | n.a. | 16.9 | n.a. | 3.1 | 17.5 | [68] | |
India: Korba coalfield | surface | active | n.a. | n.a. | 218.0 | n.a. | 311.0 | 426.0 | n.a. | 567.0 | [95] | |
India: Raniganj coalfield | underground and surface | active | n.a. | n.a. | 256.6 | 347.3 | 88.2 | 369.1 | 15.4 | 306.3 | [96] | |
India: Eastern part of Jharia coalfield | underground and surface | active | 2.49 | 1.19 | 26.0 | n.a. | 15.7 | 55 | 2.7 | 55.0 | [97] | |
India: Ledo coal mining area | surface | active | 2.60 | n.a. | n.a. | 87.5 | 183.1 | n.a. | n.a. | 112.3 | [69] | |
India: Surat district | unknown | active | 0.77 | n.a. | 57.0 | 16.0 | 9.0 | 60.0 | n.a. | 8.0 | [98] | |
Pakistan | Dukki coal mines | underground | active | n.a. | n.a. | 421.6 | 125.1 | n.a. | 131.2 | n.a. | 149.1 | [70] |
Sharigh coal mines | underground | active | n.a. | n.a. | 53.7 | 115.4 | n.a. | 68.5 | n.a. | 95.7 | ||
Iran: Aghdarband coal mine | underground | active | n.a. | n.a. | 33.0 | 14.0 | 52.0 | 89.0 | 33.3 | 39.0 | [99] | |
Iran: Tazareh coal mine area | underground | active | 0.31 | n.a. | 27.1 | 43.1 | 19.2 | 78.8 | 0.2 | 91.5 | [100] | |
Turkey: Oltu coal mine district | underground | active | 0.05 | 1.15 | 28.0 | 97.0 | 49.4 | 36.8 | n.a. | 180.2 | [101] | |
Turkey: Ovacik–Yaprakli | underground and surface | abandoned | n.a. | n.a. | 58.0 | 296.8 | n.a. | 101.1 | n.a. | 348.0 | [102] | |
Australia | Glenbawn | surface | active | n.a. | n.a. | 59.0 | n.a. | 12.8 | 137.0 | 14.2 | n.a. | [103] |
Traralgon | surface | active | n.a. | n.a. | 22.6 | n.a. | 22.1 | 132.8 | 5.6 | n.a. | ||
Mozambique: Moatize district | surface | active | n.a. | n.a. | 34.0 | 31.0 | 26.0 | 78.0 | 3.0 | 95.0 | [71] | |
South Africa: Witbank coalfield | underground | active | 0.40 | n.a. | 33.1 | 98.3 | 30.7 | 110.6 | 19.4 | 653.3 | [72] | |
South Africa: Emalahleni | underground | active | n.a. | n.a. | 22.0 | 20.0 | 19.0 | 36.0 | 0.5 | 419.0 | [104] | |
Nigeria: Okaba | surface | active | 1.05 | n.a. | 5.9 | n.a. | n.a. | n.a. | 1.4 | 5.2 | [73] | |
Morocco: Jerada coal mine | underground | abandoned | n.a. | n.a. | 32.6 | n.a. | 60.6 | 144.3 | 24.2 | n.a. | [105] | |
Botswana: Morupule coal mine area | underground | active | n.a. | n.a. | 40.3 | 60.5 | 36.6 | 304.5 | 13.2 | 155.6 | [106] | |
Russia: Kizel Coal Basin | unknown | abandoned | n.a. | n.a. | n.a. | 69.0 | n.a. | 80.0 | 10.0 | 178.0 | [107] | |
0.93 | 2.59 | 33.0 | 41.9 | 36.5 | 61.4 | 2.9 | 1653.0 | [108] | ||||
Russia: Lipovtsy coalfield mine | surface | abandoned | 0.03 | n.a. | 20.7 | 34.2 | 12. 8 | 187.8 | n.a. | 8.2 | [109] | |
Russia: Rostov Oblast | underground | active | n.a. | n.a. | 57.0 | 41.0 | 29.0 | 65.0 | n.a. | 90.0 | [75] | |
Russia: Vorkuta coal mining area | underground | active | 1.0 | n.a. | 27.0 | 31.0 | 38.0 | 380.0 | 5.6 | 27.0 | [110] | |
Russia: Tula coal mining region | unknown | abandoned | n.a. | n.a. | n.a. | n.a. | n.a. | 164.5 | 17.4 | n.a. | [111] | |
Greece: Ptolemais lignite basin | surface | abandoned | n.a. | n.a. | n.a. | 10.1 | n.a. | n.a. | 12.3 | 17.5 | [112] | |
0.4 | n.a. | 44.4 | 65 | 62.1 | 110.0 | 11.7 | 876.0 | [113] | ||||
Poland: Upper Silesian Coal Basin | underground | active | 2.55 | n.a. | 16.5 | 7.1 | 106.0 | 273.9 | n.a. | 67.1 | [114] | |
0.80 | 0.07 | 8.5 | 6.3 | 39.8 | 62.5 | 8.8 | 34.4 | [115] | ||||
Poland: Smolnica hard coal mine | underground | abandoned | n.a. | n.a. | 39.5 | n.a. | 61.5 | 80.0 | n.a. | n.a. | [76] | |
Czechia: Litvínov City area | surface and | active | 0.46 | n.a. | 31.1 | 26.0 | 48.9 | 175.0 | 41.7 | 45.6 | [116] | |
underground | abandoned | |||||||||||
Czechia: Sokolov Coal Basin | surface | active | 0.98 | n.a. | 36.1 | 19.1 | 40.7 | 118.0 | 33.7 | 40.0 | [117] | |
Czechia: Ostrava City | underground | active | 0.21 | 0.19 | 21.1 | n.a. | 37.7 | 204.5 | n.a. | 17.4 | [118] | |
Czechia: North Bohemian Region | surface | active | 0.33 | 0.17 | 35.7 | 32.6 | 51.5 | 107.9 | 33.8 | n.a. | [79] | |
Croatia: Raša coal mine | underground | abandoned | 1.00 | 0.09 | 55.0 | 74.0 | 45.0 | 169.0 | 17.0 | 123.0 | [119] | |
Croatia: Labin City area | underground | abandoned | 2.01 | n.a. | 2226.0 | 176.0 | 484.4 | 2778.0 | 21.9 | 684.6 | [77] | |
Spain: Langreo | underground | abandoned | 0.60 | 0.40 | 39.0 | 18.3 | 91.6 | 136.2 | 21.8 | 18.9 | [81] | |
Portugal: São Pedro da Cova | underground | abandoned | 0.11 | n.a. | 50.2 | 24.3 | 50.2 | 97.0 | 22.6 | 74.1 | [120] | |
Portugal: Douro coalfield | underground | abandoned | 0.20 | n.a. | 36.5 | 21.4 | 30.8 | 57.0 | 38.3 | 92.3 | [80] | |
Norway: Svalbard | underground | abandoned | n.a. | n.a. | n.a. | 5.1 | 2.0 | 29.3 | 0.3 | 5.6 | [52] | |
Wales (U.K.): Varteg mine | surface | abandoned | 1.16 | n.a. | 63.9 | n.a. | 224.0 | 192.8 | n.a. | n.a. | [121] |
4.2. PAHs
5. Applied Soil Remediation Strategies in Coal Mining Areas
5.1. Bioaugmentation
5.2. Phytoremediation
5.3. Biochar
6. Conclusions and Future Perspectives
- (1)
- Countries should identify and categorize the extent of mining-related disturbances, evaluate the pollution type and extent, and follow established guidelines for assessments and ecological remediation in mining regions.
- (2)
- Coal consumption and transportation activities within the mining area can result in the release of other elements of concern into the environment. Two elements of concern, Hg and Tl, can have detrimental effects on ecosystems and pose a potential risk to human health through bioaccumulation in the food web. However, these hazardous metals, as well as others have not received attention in studies conducted around coal mining areas. Therefore, it is recommended to consider these elements in particular in future studies.
- (3)
- Only a few studies focused on the remediation of coal-mine-degraded lands using the application of biochar. Further knowledge is needed to increase its use for reclamation and soil pollution remediation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zocche, J.J.; Sehn, L.M.; Pillon, J.G.; Schneider, C.H.; Olivo, E.F.; Raupp-Pereira, F. Technosols in coal mining areas: Viability of combined use of agro-industry waste and synthetic gypsum in the restoration of areas degraded. Clean. Eng. Technol. 2023, 13, 100618. [Google Scholar] [CrossRef]
- Bian, Z.; Dong, J.; Lei, S.; Leng, H.; Mu, S.; Wang, H. The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ. Geol. 2009, 58, 625–634. [Google Scholar] [CrossRef]
- Byrne, C.F.; Stormont, J.C.; Stone, M.C. Soil water balance dynamics on reclaimed mine land in the southwestern United States. J. Arid. Environ. 2017, 136, 28–37. [Google Scholar] [CrossRef]
- Yu, X. Coal mining and environmental development in southwest China. Environ. Dev. 2017, 21, 77–86. [Google Scholar] [CrossRef]
- Skousen, J.; Zipper, C. Post-mining policies and practices in the Eastern USA coal region. Int. J. Coal Sci. Technol. 2014, 1, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Weiler, J.; Firpo, B.A.; Schneider, I.A.H. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Miner. Eng. 2020, 147, 106179. [Google Scholar] [CrossRef]
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Daozhong, C.H.; Qingli, Z.H.; Jie, W.A.; Xiaozhi, Z.H. Comparative analysis of ecological rucksack between open-pit and underground coal mine. Energy Procedia 2011, 5, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Mitra, A.K. Mobilization of heavy metals from mine spoils in a part of Raniganj coalfield, India: Causes and effects. Environ. Geosci. 2004, 11, 65–76. [Google Scholar] [CrossRef]
- Chakraborty, B.; Bera, B.; Roy, S.; Adhikary, P.P.; Sengupta, D.; Shit, P.K. Assessment of non-carcinogenic health risk of heavy metal pollution: Evidences from coal mining region of eastern India. Environ. Sci. Pollut. Res. 2021, 28, 47275–47293. [Google Scholar] [CrossRef]
- Siddique, M.A.; Alam, M.K.; Islam, S.; Diganta, M.T.; Akbor, M.A.; Bithi, U.H.; Chowdhury, A.I.; Ullah, A.A. Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100366. [Google Scholar] [CrossRef]
- Tang, Q.; Chang, L.; Wang, Q.J.; Miao, C.; Zhang, Q.; Zheng, L.; Zhou, Z.; Ji, Q.; Chen, L.; Zhang, H. Distribution and accumulation of cadmium in soil under wheat-cultivation system and human health risk assessment in coal mining area of China. Ecotoxicol. Environ. Saf. 2023, 253, 114688. [Google Scholar] [CrossRef] [PubMed]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, A.; Makki, M.; Hejcman, M.; Shirzad, R.; Gusiatin, M.Z. Risk Assessment and Spatial Distribution of Heavy Metals with an Emphasis on Antimony (Sb) in Urban Soil in Bojnourd, Iran. Sustainability 2023, 15, 3495. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Gorecka, H.; Gorecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 2005, 337, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.Y.; Zhao, F.H.; Dai, S.F.; Zhang, J.Y.; Luo, K.L. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006. [Google Scholar]
- Fan, J.; Sun, Y.; Li, X.; Zhao, C.; Tian, D.; Shao, L.; Wang, J. Pollution of organic compounds and heavy metals in a coal gangue dump of the Gequan Coal Mine, China. Chin. J. Geochem. 2013, 32, 241–247. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Dave, S.R.; Tipre, D.R. Coal Mine Drainage Pollution and Its Remediation. In Microorganisms in Environmental Management: Microbes and Environment; Springer: Berlin/Heidelberg, Germany, 2012; pp. 719–743. [Google Scholar] [CrossRef]
- Wagner, N.J. Geology of Coal. Encyclopedia of Geology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Equeenuddin, S.M.; Powell, M.A. Trace elements in soils around coal mines: Current scenario, impact and available techniques for management. Curr. Pollut. Rep. 2016, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, J.; Wang, H.; Han, X.; Ma, J.; Ma, Y.; Luan, H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2020, 713, 135292. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Rouhani, A.; Gusiatin, M.Z.; Hejcman, M. An overview of the impacts of coal mining and processing on soil: Assessment, monitoring, and challenges in the Czech Republic. Environ. Geochem. Health 2023, 2023, 1–32. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B.; French, D.M.; Hower, J.C.; Graham, I.T.; Zhao, F. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- Finkelman, R.B. The Origin, Occurrence, and Distribution of the Inorganic Constituents in Low-Rank Coals. In Proceedings of the Basic Coal Science Workshop; US Department of Energy: Houston, TX, USA, 1981; pp. 69–90. [Google Scholar]
- Finkelman, R.B.; Greb, S.F. Environmental and Health Impacts. In Applied Coal Petrology; Suarez-Ruiz, I., Crelling, J.C., Eds.; Academic Press: Amsterdam, The Netherlands, 2008; pp. 263–287, Chapter 10. [Google Scholar]
- Ribeiro, J.; Suarez-Ruiz, I.; Ward, C.R.; Flores, D. Petrography and mineralogy of self-burning coal wastes from anthracite mining in the El Bierzo Coalfield (NW Spain). Int. J. Coal Geol. 2016, 154, 92–106. [Google Scholar] [CrossRef]
- Medunić, G.; Grigore, M.; Dai, S.; Berti, D.; Hochella, M.F.; Mastalerz, M.; Valentim, B.; Guedes, A.; Hower, J.C. Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. Int. J. Coal Geol. 2020, 217, 103344. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Goodarzi, F.; Huggins, F.E.; Sanei, H. Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. Int. J. Coal Geol. 2008, 74, 1–12. [Google Scholar] [CrossRef]
- Mukherjee, K.N.; Dutta, N.R.; Chandra, D.; Singh, M.P. Geochemistry of trace elements of Tertiary coals of India. Int. J. Coal Geol. 1992, 20, 99–113. [Google Scholar] [CrossRef]
- Orem, W.H.; Finkelman, R.B. Coal Formation and Geochemistry. In Sediments, Diagenesis, and Sedimentary Rocks: Treatise on Geochemistry; Mackenzie, F.T., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 7, pp. 191–222. [Google Scholar]
- Goodarzi, F.; Sanei, H.; Stasiuk, L.D.; Bagheri-Sadeghi, H.; Reyes, J. A preliminary study of mineralogy and geochemistry of four coal samples from northern Iran. Int. J. Coal Geol. 2006, 65, 35–50. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Karayiğit, A.I.; Bircan, C.; Oskay, R.G.; Türkmen, I.; Querol, X. The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balıkesir (Western Turkey). Int. J. Coal Geol. 2020, 228, 103548. [Google Scholar] [CrossRef]
- Kolker, A.; Senior, C.; van Alphen, C.; Koenig, A.; Geboy, N. Mercury and trace element distribution in density separates of a South African Highveld (# 4) coal: Implications for mercury reduction and preparation of export coal. Int. J. Coal Geol. 2017, 170, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Riley, K.W.; French, D.H.; Farrell, O.P.; Wood, R.A.; Huggins, F.E. Modes of occurrence of trace and minor elements in some Australian coals. Int. J. Coal Geol. 2012, 94, 214–224. [Google Scholar] [CrossRef]
- Hower, J.C.; Campbell, J.L.; Teesdale, W.J.; Nejedly, Z.; Robertson, J.D. Scanning proton microprobe analysis of mercury and other trace elements in Fe-sulfides from a Kentucky coal. Int. J. Coal Geol. 2008, 75, 88–92. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A. Arsenic, cadmium, lead, and zinc in the Danville and Springfield coal members (Pennsylvanian) from Indiana. Int. J. Coal Geol. 2007, 71, 37–53. [Google Scholar] [CrossRef]
- Swaine, D.J. Trace Elements in Coal; Butterworth: London, UK, 1990; 278p. [Google Scholar]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Zhuang, X.G.; Hower, J.C.; Lopez-Soler, A.; Plana, F.; Zeng, R.S. Petrology, mineralogy and geochemistry of the Permian and Triassic coals in the Leping area, Jiangxi Province, southeast China. Int. J. Coal Geol. 2001, 48, 23–45. [Google Scholar] [CrossRef]
- Wang, J.; Yamada, O.; Nakazato, T.; Zhang, Z.G.; Suzuki, Y.; Sakanishi, K. Statistical analysis of the concentrations of trace elements in a wide diversity of coals and its implications for understanding elemental modes of occurrence. Fuel 2008, 87, 2211–2222. [Google Scholar] [CrossRef]
- Xie, P.; Li, Q.; Liu, J.; Song, H.; Wei, J. Geochemistry of arsenic and selenium in a Ge-poor coal from the Wulantuga coal-hosted Ge ore deposit, Inner Mongolia, North China. Int. J. Coal Sci. Technol. 2014, 1, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Qiao, M.; Cai, C.; Huang, Y.; Liu, Y.; Lin, A.; Zheng, Y. Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environ. Monit. Assess. 2011, 172, 353–365. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, L.; Xu, C. Accumulation behavior of toxic elements in the soil and plant from Xinzhuangzi reclaimed mining areas, China. Environ. Earth Sci. 2017, 76, 226. [Google Scholar] [CrossRef]
- Candeias, C.; da Silva, E.A.; Salgueiro, A.R.; Pereira, H.G.; Reis, A.P.; Patinha, C.; Matos, J.X.; Ávila, P.H. Assessment of soil contamination by potentially toxic elements in the aljustrel mining area in order to implement soil reclamation strategies. Land Degrad. Dev. 2011, 22, 565–585. [Google Scholar] [CrossRef] [Green Version]
- Skousen, J.; Ziemkiewicz, P.; McDonald, L. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Zhou, J.; Dang, Z.; Cai, M.F.; Liu, C.Q. Soil heavy metal pollution around the Dabaoshan mine, Guangdong province, China. Pedosphere 2007, 17, 588–594. [Google Scholar] [CrossRef]
- Askaer, L.; Schmidt, L.B.; Elberling, B.; Asmund, G.; Jónsdóttir, I.S. Environmental impact on an Arctic soil–plant system resulting from metals released from coal mine waste in Svalbard (78 N). Water Air Soil Pollut. 2008, 195, 99–114. [Google Scholar] [CrossRef]
- Larsen, D.; Mann, R. Origin of high manganese concentrations in coal mine drainage, eastern Tennessee. J. Geochem. Explor. 2005, 86, 143–163. [Google Scholar] [CrossRef]
- Cui, X.; Geng, Y.; Sun, R.; Xie, M.; Feng, X.; Li, X.; Cui, Z. Distribution, speciation and ecological risk assessment of heavy metals in Jinan Iron & Steel Group soils from China. J. Clean. Prod. 2021, 295, 126504. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Liu, L.; Ouyang, X. Impact of soil heavy metal pollution on food safety in China. PLoS ONE 2015, 10, e0135182. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, A.; Shadloo, S.; Naqibzadeh, A.; Hejcman, M.; Derakhsh, M. Pollution and Health Risk Assessment of Heavy Metals in the Soil Around an Open Landfill Site in a Developing Country (Kazerun, Iran). Chem. Afr. 2023, 6, 2139–2149. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.-G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Yan, T.; Zhao, W.; Yu, X.; Li, H.; Gao, Z.; Ding, M.; Yue, J. Evaluating heavy metal pollution and potential risk of soil around a coal mining region of Tai’an City, China. Alex. Eng. J. 2022, 61, 2156–2165. [Google Scholar] [CrossRef]
- Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena 2019, 175, 101–109. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Dai, M.; Wang, Z.; Dong, X.; Fang, T. Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. Environ. Monit. Assess. 2019, 19, 518. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yang, Q.-W.; Sun, L.-N.; Zeng, Q.; Liu, S.-J.; Pan, J.; Liu, X.L. Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China. Environ. Earth Sci. 2011, 64, 1317–1321. [Google Scholar] [CrossRef]
- Kou, J.; Gan, Y.; Lei, S.; Meng, W.; Feng, C.; Xiao, H. Soil health and ecological risk assessment in the typical coal mines on the Mongolian Plateau. Ecol. Indic. 2022, 142, 109189. [Google Scholar] [CrossRef]
- Pecina, V.; Juřička, D.; Hedbávný, J.; Klimánek, M.; Kynický, J.; Brtnický, M.; Komendova, R. The impacts of mining on soil pollution with metal(loid)s in resource-rich Mongolia. Sci. Rep. 2023, 13, 2763. [Google Scholar] [CrossRef]
- Hossen, M.A.; Chowdhury, A.I.; Mullick, M.R.; Hoque, A. Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100469. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Siddiqui, A.U.; Jain, M.K.; Masto, R.E. Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The case study of eastern India. Environ. Sci. Pollut. Res. 2020, 27, 10822–10834. [Google Scholar] [CrossRef]
- Raj, D.; Kumar, A.; Maiti, S.K. Evaluation of toxic metal(loid)s concentration in soils around an open-cast coal mine (Eastern India). Environ. Earth Sci. 2019, 78, 645. [Google Scholar] [CrossRef]
- Reza, S.K.; Baruah, U.; Singh, S.K.; Das, T.H. Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India. Environ. Earth Sci. 2014, 73, 5425–5433. [Google Scholar] [CrossRef]
- Ahmad, N.; Niamatullah; Hussain, J.I.; Ahmad, I.; Asif, M. Estimation of health risk to humans from heavy metals in soil of coal mines in Harnai, Balochistan. Int. J. Environ. Anal. Chem. 2020, 102, 3894–3905. [Google Scholar] [CrossRef]
- Marove, C.A.; Sotozono, R.; Tangviroon, P.; Tabelin, C.B.; Igarashi, T. Assessment of soil, sediment and water contaminations around open-pit coal mines in Moatize, Tete province, Mozambique. Environ. Adv. 2022, 8, 100215. [Google Scholar] [CrossRef]
- Zerizghi, T.; Guo, Q.; Tian, L.; Wei, R.; Zhao, C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Sci. Total Environ. 2022, 814, 152653. [Google Scholar] [CrossRef] [PubMed]
- Ameh, E.G.; Aina, D.O. Search for autochthonous plants as accumulators and translocators in a toxic metal-polluted coal mine soil in Okaba, Nigeria. Sci. Afr. 2020, 10, e00630. [Google Scholar] [CrossRef]
- Galunin, E.V.; Ferreti, J.; Zapelini, I.W.; Vieira, I.; Ricardo Teixeira Tarley, C.; Abrão, T.; Santos, M.J. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment. J. Hazard. Mater. 2014, 265, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Alekseenko, V.; Bech, J.; Alekseenko, A.V.; Shvydkaya, N.; Roca, N. Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. J. Geochem. Explor. 2018, 184, 261–270. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Socha, J.; van Doorn, N.S. Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Sci. Total Environ. 2014, 470–471, 501–510. [Google Scholar] [CrossRef]
- Fiket, Ž.; Medunić, G.; Vidaković-Cifrek, Ž.; Jezidžić, P.; Cvjetko, P. Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils. Environ. Sci. Pollut. Res. 2019, 27, 6613–6627. [Google Scholar] [CrossRef]
- Boahen, F.A.; Száková, J.; Kališová, A.; Najmanová, J.; Tlustoš, P. The assessment of the soil–plant-animal transport of the risk elements at the locations affected by brown coal mining. Environ. Sci. Pollut. Res. 2022, 30, 337–351. [Google Scholar] [CrossRef]
- Vácha, R.; Skála, J.; Čechmánková, J.; Horváthová, V.; Hladík, J. Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. J. Soils Sediments 2015, 15, 1813–1824. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Silva, E.; Li, Z.; Ward, C.R.; Flores, D. Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. Int. J. Coal Geol. 2010, 83, 456–466. [Google Scholar] [CrossRef]
- Boente, C.; Albuquerque, M.T.; Fernández-Braña, A.; Gerassis, S.; Sierra, C.; Gallego, J.P. Combining raw and compositional data to determine the spatial patterns of Potentially Toxic Elements in soils. Sci. Total Environ. 2018, 631, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Chon, H.T. Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea. Appl. Geochem. 2001, 16, 1387–1396. [Google Scholar] [CrossRef]
- Chen, D.; Feng, Q.; Liang, H. Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: Microbial community structure, interaction patterns, and metabolic functions. Environ. Sci. Pollut. Res. 2021, 28, 53936–53952. [Google Scholar] [CrossRef] [PubMed]
- He, A.; Li, X.; Ai, Y.; Li, X.; Li, X.; Zhang, Y.; Gao, Y.; Liu, B.; Zhang, X.; Zhang, M.; et al. Potentially toxic metals and the risk to children’s health in a coal mining city: An investigation of soil and dust levels, bioaccessibility and blood lead levels. Environ. Int. 2020, 141, 105788. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Lei, S.; Bian, Z.; Zhao, Y.; Li, Y.; Gan, Y. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 2020, 387, 121666. [Google Scholar] [CrossRef]
- Maqbool, A.; Bian, Z.; Akram, M.W. Bioassessment of heavy metals in wheat crop from soil and dust in a coal mining area. Pollution 2019, 5, 323–337. [Google Scholar] [CrossRef]
- Hussain, R.; Luo, K.; Liang, H.; Hong, X. Impact of the coal mining-contaminated soil on the food safety in Shaanxi, China. Environ. Geochem. Health 2019, 41, 1521–1544. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Hou, L.; Shao, A. Impact of the Coal Mining on the Spatial Distribution of Potentially Toxic Metals in Farmland Tillage Soil. Sci. Rep. 2018, 8, 14925. [Google Scholar] [CrossRef] [Green Version]
- Abliz, A.; Shi, Q.; Keyimu, M.; Sawut, R. Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China. Arab. J. Geosci. 2018, 11, 793. [Google Scholar] [CrossRef]
- Niu, S.; Gao, L.; Zhao, J. Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China. Environ. Monit. Assess. 2017, 189, 484. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Wei, C.; Zhong, S.; Huang, X.; Pang, W.; Jiang, X. Soil heavy metal(loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China. J. Cent. South Univ. 2016, 23, 2205–2213. [Google Scholar] [CrossRef]
- Halim, M.A.; Majumder, R.K.; Zaman, M.N. Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arab. J. Geosci. 2015, 8, 3391–3401. [Google Scholar] [CrossRef]
- Hossain, M.N.; Paul, S.K.; Hasan, M.M. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh. Environ. Monit. Assess. 2015, 187, 187. [Google Scholar] [CrossRef] [PubMed]
- Pandey, B.; Agrawal, M.; Singh, S. Ecological risk assessment of soil contamination by trace elements around coal mining area. J. Soils Sediments 2015, 16, 159–168. [Google Scholar] [CrossRef]
- Das, A.K.; Patel, S.S.; Kumar, R.R.; Krishna, K.S.; Dutta, S.; Saha, M.C.; Sengupta, S.; Guha, D. Geochemical sources of metal contamination in a coal mining area in Chhattisgarh, India using lead isotopic ratios. Chemosphere 2018, 197, 152–164. [Google Scholar] [CrossRef]
- Manna, A.; Maiti, R. Geochemical contamination in the mine affected soil of Raniganj Coalfield—A river basin scale assessment. Geosci. Front. 2017, 9, 1577–1590. [Google Scholar] [CrossRef]
- Raj, D.; Chowdhury, A.; Maiti, S.K. Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 767–787. [Google Scholar] [CrossRef]
- Ladwani, K.D.; Ladwani, K.D.; Manik, V.S.; Ramteke, D.S. Assessment of heavy metal contaminated soil near coal mining area in Gujarat by toxicity characteristics leaching procedure. Int. J. Life Sci. Biotechnol. Pharma Res. 2012, 1, 73–80. [Google Scholar]
- Dabiri, R.; Adli, F.; Javanbakht, M. Environmental impacts of Aghdarband coal mine: Pollution by heavy metals. Geopersia 2017, 7, 311–321. [Google Scholar] [CrossRef]
- Sakizadeh, M.; Mirzaei, R.; Ghorbani, H. Support vector machine and artificial neural network to model soil pollution: A case study in Semnan Province, Iran. Neural Comput. Appl. 2017, 28, 3229–3238. [Google Scholar] [CrossRef]
- Tozsin, G. Hazardous elements in soil and coal from the Oltu coal mine district, Turkey. Int. J. Coal Geol. 2014, 131, 1–6. [Google Scholar] [CrossRef]
- Yenilmez, F.; Kuter, N.; Emil, M.K.; Aksoy, A. Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int. J. Coal Geol. 2011, 86, 12–19. [Google Scholar] [CrossRef]
- Schneider, L.; Rose, N.L.; Lintern, A.; Sinclair, D.; Zawadzki, A.; Holley, C.; Aquino-López, M.A.; Haberle, S. Assessing environmental contamination from metal emission and relevant regulations in major areas of coal mining and electricity generation in Australia. Sci. Total Environ. 2020, 728, 137398. [Google Scholar] [CrossRef] [PubMed]
- Maya, M.; Musekiwa, C.; Mthembi, P.; Crowley, M. Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank), Mpumalanga. S. Afr. J. Geomat. 2015, 4, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco. Minerals 2023, 13, 181. [Google Scholar] [CrossRef]
- Zhai, M.; Totolo, O.; Modisi, M.P.; Finkelman, R.B.; Kelesitse, S.M.; Menyatso, M. Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environ. Geochem. Health 2009, 31, 759–777. [Google Scholar] [CrossRef] [PubMed]
- Dziuba, E.; Buzmakov, S.; Khotyanovskaya, Y. Study of geochemical features of soils on the territory of an abandoned coal mining area using geoinformation technologies. Environ. Geochem. Health 2023, 2023, 1–21. [Google Scholar] [CrossRef]
- Ushakova, E.; Menshikova, E.; Blinov, S.; Osovetsky, B.; Belkin, P. Environmental assessment impact of acid mine drainage from Kizel coal basin on the Kosva bay of the Kama Reservoir (Perm Krai, Russia). Water 2022, 14, 727. [Google Scholar] [CrossRef]
- Arefieva, O.D.; Tregubova, V.G.; Gruschakova, N.V.; Starozhilov, V.T. Properties of Soils of Abandoned Coal Mine Industrial Areas (Primorsky Krai, Russia). J. Geosci. Environ. Prot. 2018, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Dymov, A.A.; Kaverin, D.A.; Gabov, D.N. Properties of soils and soil-like bodies in the Vorkuta area. Eurasian Soil Sci. 2013, 46, 217–224. [Google Scholar] [CrossRef]
- Komnitsas, K.; Modis, K. Soil risk assessment of As and Zn contamination in a coal mining region using geostatisretics. Sci. Total Environ. 2006, 371, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Modis, K.; Vatalis, K.I. Assessing the risk of soil pollution around an industrialized mining region using a geostatistical approach. Soil Sediment Contam. Int. J. 2014, 23, 63–75. [Google Scholar] [CrossRef]
- Pentari, D.; Typou, J.; Goodarzi, F.; Foscolos, A.E. Comparison of elements of environmental concern in regular and reclaimed soils, near abandoned coal mines Ptolemais–Amynteon, northern Greece: Impact on wheat crops. Int. J. Coal Geol. 2006, 65, 51–58. [Google Scholar] [CrossRef]
- Sutkowska, K.; Teper, L.; Czech, T.; Walker, A. Assessment of the Condition of Soils before Planned Hard Coal Mining in Southern Poland: A Starting Point for Sustainable Management of Fossil Fuel Resources. Energies 2023, 16, 737. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Hanousková, B.; Száková, J.; Rychlíková, E.; Najmanová, J.; Košnář, Z.; Tlustoš, P. The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry. Environ. Monit. Assess. 2021, 193, 68. [Google Scholar] [CrossRef]
- Zádrapová, D.; Titěra, A.; Száková, J.; Čadková, Z.; Cudlín, O.; Najmanová, J.; Tlustoš, P. Mobility and bioaccessibility of risk elements in the area affected by the long-term opencast coal mining. J. Environ. Sci. Health 2019, 54, 1159–1169. [Google Scholar] [CrossRef]
- Doležalová Weissmannová, H.; Mihočová, S.; Chovanec, P.; Pavlovský, J. Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. Int. J. Environ. Res. Public Health 2019, 16, 4495. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, N.R.; Izquierdo, M.T.; Muñoz-Quirós, C.; Cohen, H.; Chenery, S.R. Geochemical signature of superhigh organic sulphur Raša coals and the mobility of toxic trace elements from combustion products and polluted soils near the Plomin coal-fired power station in Croatia. Appl. Geochem. 2020, 114, 104472. [Google Scholar] [CrossRef]
- Santos, P.; Espinha Marques, J.; Ribeiro, J.; Mansilha, C.; Melo, A.; Fonseca, R.; Sant’Ovaia, H.; Flores, D. Geochemistry of Soils from the Surrounding Area of a Coal Mine Waste Pile Affected by Self-Burning (Northern Portugal). Minerals 2023, 13, 28. [Google Scholar] [CrossRef]
- Desai, M.; Haigh, M.; Walkington, H. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land. Sci. Total Environ. 2019, 656, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Osipova, N.A.; Tkacheva, E.V.; Arbuzov, S.I.; Yazikov, E.G.; Matveenko, I.A. Mercury in coals and soils from coal-mining regions. Solid Fuel Chem. 2019, 53, 411–417. [Google Scholar] [CrossRef]
- Miller, C.L.; Watson, D.B.; Lester, B.P.; Lowe, K.A.; Pierce, E.M.; Liang, L. Characterization of soils from an industrial complex contaminated with elemental mercury. Environ. Res. 2013, 125, 20–29. [Google Scholar] [CrossRef]
- Ouyang, D.; Liu, K.; Wu, Q.; Wang, S.; Tang, Y.; Li, Z.; Liu, T.; Han, L.; Cui, Y.; Li, G.; et al. Effect of the coal preparation process on mercury flows and emissions in coal combustion systems. Environ. Sci. Technol. 2021, 55, 13687–13696. [Google Scholar] [CrossRef]
- Peter, A.J.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef]
- Gao, B.; Sun, K.; Ren, M.Z.; Liang, X.R.; Peng, P.A.; Sheng, G.Y.; Fu, J.M. Ecological risk assessment of thallium pollution in the surface sediment of Beijiang River. Ecol. Environ. 2008, 17, 528–532. [Google Scholar]
- Zhang, C.; Ren, S.; Cheng, H.; Zhang, W.; Ma, J.; Zhang, C.; Guo, Z. Thallium pollution and potential ecological risk in the vicinity of coal mines in Henan Province, China. Chem. Speciat. Bioavailab. 2018, 30, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Wu, S.; Zhou, S.; Tong, G.; Li, F.; Wang, Y.; Li, B. Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: A review. Environ. Pollut. 2019, 248, 804–814. [Google Scholar] [CrossRef]
- Wilcke, W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 2007, 141, 157–166. [Google Scholar] [CrossRef]
- Coxon, T.; Goldstein, L.; Odhiambo, B.K. Analysis of spatial distribution of trace metals, PCB, and PAH and their potential impact on human health in Virginian Counties and independent cities, USA. Environ. Geochem. Health 2019, 41, 783–801. [Google Scholar] [CrossRef]
- Hendryx, M.; Wang, S.; Romanak, K.A.; Salamova, A.; Venier, M. Personal exposure to polycyclic aromatic hydrocarbons in Appalachian mining communities. Environ. Pollut. 2020, 257, 113501. [Google Scholar] [CrossRef]
- Boente, C.; Matanzas, N.; García-González, N.; Rodríguez-Valdés, E.; Gallego, J.R. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach. Chemosphere 2017, 183, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Bandowe, B.A.M.; Nkansah, M.A. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci. Total Environ. 2016, 553, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Sun, R.; Liu, G.; Yousaf, B.; Wu, D.; Chen, J.; Zhang, H. A review of the biogeochemical controls on the occurrence and distribution of polycyclic aromatic compounds (PACs) in coals. Earth-Sci. Rev. 2017, 171, 400–418. [Google Scholar] [CrossRef]
- Achten, C.; Hofmann, T. Native polycyclic aromatic hydrocarbons (PAH) in coals–a hardly recognized source of environmental contamination. Sci. Total Environ. 2009, 407, 2461–2473. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Qian, Y.; Hong, X.; Luo, Z.Y.; Gao, X.; Liang, H. Contamination characteristics of polycyclic aromatic compounds from coal sources in typical coal mining areas in Huaibei area, China. Sci. Total Environ. 2023, 873, 162311. [Google Scholar] [CrossRef]
- Liang, M.; Liang, H.; Gao, P.; Rao, Z.; Liang, Y. Characterization and risk assessment of polycyclic aromatic hydrocarbon emissions by coal fire in northern China. Environ. Geochem. Health 2021, 44, 933–942. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Huang, H.; Wang, R.; Xu, B. Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbons in surface soils from a large-scale coal mine, Huainan, China. Ecotoxicol. Environ. Saf. 2020, 192, 110269. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, G.; Chou, C.; Liu, J.; Zhang, J. Environmental Assessment of PAHs in Soils Around the Anhui Coal District, China. Arch. Environ. Contam. Toxicol. 2010, 59, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, G.; Zhang, J.; Yin, H.; Wang, R. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in soil from the Tiefa coal mine district, Liaoning, China. J. Environ. Monit. 2012, 14, 2634–2642. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Fan, J.S.; Qin, P.; Niu, H. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China. Environ. Geochem. Health 2009, 31, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Mizwar, A.; Priatmadi, B.J.; Abdi, C.; Trihadiningrum, Y. Assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface soil of coal stockpile sites in South Kalimantan, Indonesia. Environ. Monit. Assess. 2016, 188, 152. [Google Scholar] [CrossRef] [PubMed]
- Masto, R.E.; Sheik, S.; Nehru, G.; Selvi, V.A.; George, J.C.; Ram, L.C. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth 2015, 6, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Yakovleva, E.V.; Gabov, D.; Beznosikov, V.A.; Kondratenok, B.M.; Dubrovskiy, Y.A. Accumulation of PAHs in Tundra Plants and Soils under the Influence of Coal Mining. Polycycl. Aromat. Compd. 2017, 37, 203–218. [Google Scholar] [CrossRef]
- Jakovljević, I.; Mešić, I.; Pehnec, G. Soil pollution of the Labin city area with polycyclic aromatic hydrocarbons derived from Raša coal mining and associated industries. Rud.-Geološko-Naft. Zb. 2022, 37, 139–150. [Google Scholar] [CrossRef]
- Boente, C.; Baragaño, D.; Gallego, J.L. Benzo[a]pyrene sourcing and abundance in a coal region in transition reveals historical pollution, rendering soil screening levels impractical. Environ. Pollut. 2020, 266, 115341. [Google Scholar] [CrossRef]
- Hindersmann, B.; Achten, C. Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environ. Pollut. 2018, 242, 1217–1225. [Google Scholar] [CrossRef]
- Pies, C.; Yang, Y.; Hofmann, T. Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. J. Soils Sediments 2007, 7, 216–222. [Google Scholar] [CrossRef]
- Ugwu, K.E.; Ukoha, P.O. Analysis and sources of polycyclic aromatic hydrocarbons in soil and plant samples of a coal mining area in Nigeria. Bull. Environ. Contam. Toxicol. 2016, 96, 383–387. [Google Scholar] [CrossRef]
- Tan, G.L.; Shu, W.S.; Zhou, W.H.; Li, X.L.; Lan, C.Y.; Huang, L.N. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site. FEMS Microbiol. Ecol. 2009, 70, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez-García, C.; Peláez, A.I.; Mesa, V.; Sánchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, J.; Pathak, N.; Dowrah, J.; Boruah, H.P.D.; Gogoi, J.; Pathak, N.; Dowrah, J.; Deka Boruah, H.P. In situ selection of tree species in environmental restoration of opencast coalmine wasteland. In Proceedings of Int. Sem. on MPT; Allied Publisher: Mumbai, India, 2007; pp. 678–681. [Google Scholar]
- Williamson, J.C.; Johnson, D.B. Determination of the activity of soil microbial populations in stored and restored soils at opencast coal sites. Soil Biol. Biochem. 1990, 22, 671–675. [Google Scholar] [CrossRef]
- Gandhi, V.; Priya, A.; Priya, S.; Daiya, V.; Kesari, J.; Prakash, K.; Kumar Jha, A.; Kumar, K.; Kumar, N. Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India. Pollution 2015, 1, 287–295. [Google Scholar] [CrossRef]
- Majumder, P.; Palit, D. Microbial diversity of soil in some coal mine generated wasteland of raniganj coalfield, West Bengal, India. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Shylla, L.; Barik, S.K.; Joshi, S.R. Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment. Arch. Microbiol. 2021, 203, 2379–2392. [Google Scholar] [CrossRef]
- Murthy, S.; Bali, G.; Sarangi, S.K. Lead biosorption by a bacterium isolated from industrial effluents. Int. J. Microbiol. Res. 2012, 4, 196–200. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhang, B.; Lu, J.; Qiu, R. A newly discovered function of nitrate reductase in chemoautotrophic vanadate transformation by natural mackinawite in aquifer. Water Res. 2020, 189, 116664. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Chatterjee, C.; Gupta, B. Isolation and characterization of heavy metal tolerant Gram-positive bacteria with bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia 2012, 67, 827–836. [Google Scholar] [CrossRef]
- Upadhyay, N.; Vishwakarma, K.; Singh, J.; Mishra, M.; Kumar, V.; Rani, R.; Mishra, R.K.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front. Plant Sci. 2017, 8, 778–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, S.; Chinthala, P. Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica 2015, 2015, 319760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahaghi, Z.; Shirvani, M.; Nourbakhsh, F.; de la Peña, T.C.; Pueyo, J.J.; Talebi, M. Isolation and characterization of Pb-solubilizing bacteria and their effects on pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation. Environ. Microbiol. Biotechnol. 2018, 28, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Tiwary, B.N. Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatal. Agric. Biotechnol. 2017, 10, 20–29. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ramli, N.N.; Said, N.S.M.; Alias, J.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon 2022, 8, e08995. [Google Scholar] [CrossRef]
- Vithanage, M.; Dabrowska, B.B.; Mukherjee, A.B.; Sandhi, A.; Bhattacharya, P. Arsenic uptake by plants and possible phytoremediation applications: A brief overview. Environ. Chem. Lett. 2012, 10, 217–224. [Google Scholar] [CrossRef]
- Gadi, B.R.; Kumar, R.; Goswami, B.; Rankawat, R.; Rao, S.R. Recent developments in understanding fluoride accumulation, toxicity, and tolerance mechanisms in plants: An overview. J. Soil Sci. Plant Nutr. 2020, 21, 209–228. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bauddh, K. Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Shojaee Barjoee, S.; Malverdi, E.; Kouhkan, M.; Alipourfard, I.; Rouhani, A.; Farokhi, H.; Khaledi, A.A. Health assessment of industrial ecosystems of Isfahan (Iran) using phytomonitoring: Chemometric, micromorphology, phytoremediation, air pollution tolerance and anticipated performance indices. Urban Clim. 2023, 48, 101394. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From Theory toward Practice. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Wang, R.; Li, Z.; Sun, S.; Qin, G.; Song, Y. Effects of Vegetation Restoration on Soil Enzyme Activity in Copper and Coal Mining Areas. Environ. Manag. 2021, 68, 366–376. [Google Scholar] [CrossRef]
- Bai, D.S.; Yang, X.; Lai, J.L.; Wang, Y.W.; Zhang, Y.; Luo, X.G. In situ restoration of soil ecological function in a coal gangue reclamation area after 10 years of elm/poplar phytoremediation. J. Environ. Manag. 2022, 305, 114400. [Google Scholar] [CrossRef]
- Feng, H.; Zhou, J.; Zhou, A.; Bai, G.; Li, Z.; Chen, H.; Su, D.; Han, X. Grassland ecological restoration based on the relationship between vegetation and its below-ground habitat analysis in steppe coal mine area. Sci. Total Environ. 2021, 778, 146221. [Google Scholar] [CrossRef] [PubMed]
- Monei, N.L.; Puthiya Veetil, S.K.; Gao, J.; Hitch, M. Selective removal of selenium by phytoremediation from post/mining coal wastes: Practicality and implications. Int. J. Min. Reclam. Environ. 2021, 35, 69–77. [Google Scholar] [CrossRef]
- Matanzas, N.; Afif, E.; Díaz, T.E.; Gallego, J.R. Phytoremediation potential of native herbaceous plant species growing on a paradigmatic brownfield site. Water Air Soil Pollut. 2021, 232, 290. [Google Scholar] [CrossRef]
- Fernández-Braña, A.; Salgado, L.; Gallego, J.L.R.; Afif, E.; Boente, C.; Forján, R. Phytoremediation potential depends on the degree of soil pollution: A case study in an urban brownfield. Environ. Sci. Pollut. Res. 2023, 30, 67708–67719. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Rana, V.; Maiti, S.K. Chronological variation of metals in reclaimed coal mine soil and tissues of Eucalyptus hybrid tree after 25 years of reclamation, Jharia coal field (India). Bull. Environ. Contam. Toxicol. 2018, 101, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Mellem, J.J.; Baijnath, H.; Odhav, B. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr. J. Agric. Res. 2012, 7, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Favas, P.J.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M.S. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. Environ. Risk Assess. Soil Contam. 2014, 3, 485–516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Liu, M.; Che, Y.; Wang, L.; Zhao, Z.; Zhang, Y.; Wei, L.; Xiao, Y. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. Chemosphere 2019, 235, 32–39. [Google Scholar] [CrossRef]
- Beiyuan, J.; Awad, Y.M.; Beckers, F.; Wang, J.; Tsang, D.C.W.; Ok, Y.S.; Wang, S.-L.; Wang, H.; Rinklebe, J. (Im) mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environ. Int. 2020, 135, 105376. [Google Scholar] [CrossRef]
- Yang, W.; Qu, T.; Flury, M.; Zhang, X.; Gabriel, S.; Shang, J.; Li, B. PAHs sorption to biochar colloids changes their mobility over time. J. Hydrol. 2021, 603, 126839. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Nú~nez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429–440. [Google Scholar] [CrossRef]
- Xie, T.; Reddy, K.R.; Wang, C.; Yargicoglu, E.; Spokas, K. Characteristics and applications of biochar for environmental remediation: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 939–969. [Google Scholar] [CrossRef]
- Mohamed, I.; Zhang, G.S.; Li, Z.G.; Liu, Y.; Chen, F.; Dai, K. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecol. Eng. 2015, 84, 67–76. [Google Scholar] [CrossRef]
- Ghosh, D.; Maiti, S.K. Can biochar reclaim coal mine spoil? J. Environ. Manag. 2020, 272, 111097. [Google Scholar] [CrossRef]
- Chandra, S.; Medha, I.; Bhattacharya, J.; Vanapalli, K.R.; Samal, B. Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. Sustainability 2022, 14, 7266. [Google Scholar] [CrossRef]
- Mujtaba Munir, M.A.; Liu, G.; Yousaf, B.; Ali, M.; Cheema, A.I.; Rashid, M.S.; Rehman, A. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil. Environ. Pollut. 2020, 265, 114816. [Google Scholar] [CrossRef]
- Dai, S.; Li, H.; Yang, Z.; Dai, M.; Dong, X.; Ge, X.; Sun, M.; Shi, L. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1887–1900. [Google Scholar] [CrossRef]
- Jain, S.; Khare, P.; Mishra, D.; Shanker, K.; Singh, P.; Singh, R.P.; Das, P.; Yadav, R.; Saikia, B.K.; Baruah, B.P. Biochar aided aromatic grass [Cymbopogon martini (Roxb.) Wats.] vegetation: A sustainable method for stabilization of highly acidic mine waste. J. Hazard. Mater. 2020, 390, 121799. [Google Scholar] [CrossRef]
- Jain, S.; Singh, A.; Khare, P.; Chanda, D.; Mishra, D.; Shanker, K.; Karak, T. Toxicity assessment of Bacopa monnieri L. grown in biochar amended extremely acidic coal mine spoils. Ecol. Eng. 2017, 108, 211–219. [Google Scholar] [CrossRef]
- Roberts, D.A.; Cole, A.J.; Paul, N.A.; De Nys, R. Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J. Environ. Manag. 2015, 161, 173–180. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouhani, A.; Skousen, J.; Tack, F.M.G. An Overview of Soil Pollution and Remediation Strategies in Coal Mining Regions. Minerals 2023, 13, 1064. https://doi.org/10.3390/min13081064
Rouhani A, Skousen J, Tack FMG. An Overview of Soil Pollution and Remediation Strategies in Coal Mining Regions. Minerals. 2023; 13(8):1064. https://doi.org/10.3390/min13081064
Chicago/Turabian StyleRouhani, Abdulmannan, Jeff Skousen, and Filip M. G. Tack. 2023. "An Overview of Soil Pollution and Remediation Strategies in Coal Mining Regions" Minerals 13, no. 8: 1064. https://doi.org/10.3390/min13081064
APA StyleRouhani, A., Skousen, J., & Tack, F. M. G. (2023). An Overview of Soil Pollution and Remediation Strategies in Coal Mining Regions. Minerals, 13(8), 1064. https://doi.org/10.3390/min13081064