Mineralogical, Petrological and Geochemical Characterisation of Chrysotile, Amosite and Crocidolite Asbestos Mine Waste from Southern Africa in Context of Risk Assessment and Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Locations and Geological Background
2.2. Polarised Light Microscopy (PLM)
2.3. Crushing
2.4. X-ray Diffraction (XRD)
2.5. X-ray Fluorescence (XRF)
2.6. BET-N2 Specific Surface Area Determination
2.7. Bio-Durability Tests
3. Results
3.1. Bulk Material Description
3.2. Polarised Light Microscopy (PLM)
3.3. X-ray Diffraction (XRD)
3.4. X-ray Fluorescence (XRF) Major and Trace Elemental Analysis
3.5. BET-N2 Specific Surface Aarea
3.6. Bio-Durability Tests
4. Discussion
4.1. Mineralogical Impact
4.2. Geochemical Impact
4.3. Geographic Impact and Rehabilitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornelissen, H.; Watson, I.; Adam, E.; Malefetse, T. Challenges and strategies of abandoned mine rehabilitation in South Africa: The case of asbestos mine rehabilitation. J. Geochem. Explor. 2019, 205, 106354. [Google Scholar] [CrossRef]
- Harris, L.V.; Kahwa, I.A. Asbestos: Old foe in 21st century developing countries. Sci. Total Environ. 2003, 307, 1–9. [Google Scholar] [CrossRef]
- Ndlovu, N.; teWater Naude, J.; Murray, J. Compensation for environmental asbestos-related diseases in South Africa: A neglected issue. Glob. Health Action 2013, 6, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.; Dell, L.; Adams, R.; Rose, T.; Van Orden, D.R. State-of-the-science assessment of non-asbestos amphibole exposure: Is there a cancer risk? Environ. Geochem. Health 2013, 35, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, A.A. Nature and paragenesis of asbestos minerals. Philos. Trans. R. Soc. Lond. A 1977, 286, 611–624. [Google Scholar]
- Okayasu, R.; Takahashi, S.; Yamada, S.; Hei, T.K.; Ullrich, R.L. Asbestos and DNA double strand breaks. Cancer Res. 1999, 59, 298–300. [Google Scholar] [PubMed]
- Kilburn, K.H. Indoor air effects after building renovation and in manufactured homes. Am. J. Med. Sci. 2000, 320, 249–254. [Google Scholar] [CrossRef]
- Unfried, K.; Schurkes, C.; Abel, J. Distinct spectrum of mutations induced by crocidolite asbestos clue for 8-hydroxydeoxyguanosine-dependent mutagenesis in vivo. Cancer Res. 2002, 62, 99–104. [Google Scholar]
- Mossman, B.T.; Lippmann, M.; Hesterberg, T.W.; Kelsey, K.T.; Barchowsky, A.; Bonner, J.C. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J. Toxicol. Environ. Health 2011, 14, 76–121. [Google Scholar] [CrossRef]
- Pugnaloni, A.; Giantomassi, F.; Lucarini, G.; Capella, S.; Bloise, A.; Di Primio, R.; Belluso, E. Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: An in vitro pilot study. Acta Histochem. 2013, 115, 100–112. [Google Scholar] [CrossRef]
- Bloise, A.; Barca, D.; Gualtieri, A.F.; Pollastri, S.; Belluso, E. Trace elements in hazardous mineral fibres. Environ. Pollut. 2016, 216, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.; Punturo, R.; Catalano, M.; Miriello, D.; Cirrincione, R. Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: The monitoring example of selected sites in Calabria (southern Italy). Ital. J. Geosci. 2016, 135, 268–279. [Google Scholar] [CrossRef]
- Bloise, A.; Catalono, M.; Gualtieri, A.F. Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment. Minerals 2018, 8, 135. [Google Scholar] [CrossRef]
- Harper, M. 10th Anniversary critical review: Naturally occurring asbestos. J. Environ. Monit. 2008, 10, 1394–1408. [Google Scholar] [CrossRef]
- Culley, M.R.; Zorland, J.; Freire, K. Community responses to naturally occurring asbestos: Implications for public health practice. Health Educ. Res. 2010, 25, 877–891. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Critelli, T.; Catalano, M.; Apollaro, C.; Miriello, D.; Barrese, E. Amphibole asbestos and other fibrous minerals in the meta-basalt of the gimigliano-mount reventino unit (Calabria, South-Italy). Rend. Online Soc. Geol. Ital. 2012, 21, 847–848. [Google Scholar]
- Bloise, A.; Critelli, T.; Catalano, M.; Apollaro, C.; Miriello, D.; Croce, A.; Barrese, E.; Liberi, F.; Piluso, E.; Rinaudo, C.; et al. Asbestos and other fibrous minerals contained in the serpentinites of the Gimigliano-Mount Reventino Unit (Calabria, S-Italy). Environ. Earth Sci. 2014, 71, 3773–3786. [Google Scholar] [CrossRef]
- Punturo, R.; Ricchiuti, C.; Mengel, K.; Apollaro, C.; De Rosa, R.; Bloise, A. Serpentinite-derived soils in southern Italy: Potential for hazardous exposure. J. Mediterr. Earth Sci. 2018, 10, 51–61. [Google Scholar]
- Apollaro, C.; Fuoco, I.; Vespasiano, G.; De Rosa, R.; Cofone, F.; Miriello, D.; Bloise, A. Geochemical and mineralogical characterization of tremolite asbestos contained in the Gimigliano-Monte Reventino Unit (Calabria, south Italy). J. Mediterr. Earth Sci. 2018, 10, 5–15. [Google Scholar]
- Braun, L.; Kisting, S. Asbestos-Related Disease in South Africa: The Social Production of an Invisible Epidemic. Am. J. Public Health 2006, 96, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.; Myers, J.E.; Goodman, K.; Fourie, E.; Blignaut, C.; Chapman, R.; Bachmann, M.O. Case-Control Study of Mesothelioma in South Africa. Am. J. Ind. Med. 1999, 35, 213–222. [Google Scholar] [CrossRef]
- Ramazzini, C. The global health dimensions of asbestos and asbestos related diseases. J. Occup. Health 2011, 58, 220–223. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Viani, A.; Sgarbi, G.; Lusvardi, G. In vitro biodurability of the product of thermal transformation of cement–asbestos. J. Hazard. Mater. 2012, 205–206, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Fubini, B.; Otero-Arèan, C. Chemical aspects of the toxicity of inhaled mineral dusts. Chem. Soc. Rev. 1999, 28, 373–381. [Google Scholar] [CrossRef]
- Fubini, B.; Bolis, V.; Cavenago, A.; Volante, M. Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses. Scand. J. Work Environ. Health 1995, 21, 9–15. [Google Scholar] [PubMed]
- Higueras, P.; Oyarzun, R.; Iraizoz, J.M.; Lorenzo, S.; Esbrí, J.M.; Martínez-Coronado, A. Low-cost geochemical surveys for environmental studies in developing countries: Testing a field portable XRF instrument under quasi-realistic conditions. J. Geochem. Explor. 2012, 113, 3–12. [Google Scholar] [CrossRef]
- Anhaeusser, C.R. The nature of chrysotile asbestos occurrences in southern Africa: A review. Econ. Geol. 1976, 71, 96–116. [Google Scholar] [CrossRef]
- Hunter, D.R.; Jones, D.H. Geological Map Series (1:25,000); Sheet 2; Swaziland Geological Survey: Piggs Peak, Swaziland, 1969. [Google Scholar]
- Viljoen, R.P.; Viljoen, M.J. The geology and geochemistry of the layered ultramafic bodies of the Kaapmuiden area, Barberton Mountain Land. Geol. Soc. S. Afr. Spec. Publ. 1969, 1, 661–688. [Google Scholar]
- Biljon, V. The chrysotile deposits of the eastern Transvaal and Swaziland. In The Geology of Some Ore Deposits in Southern Africa; Haughton, S.H., Ed.; Geological Society of South Africa: Johannesburg, South Africa, 1964; pp. 625–669. [Google Scholar]
- Abbott, P. A Review of Asbestos Resources. Master Thesis, Rhodes University, Grahamstown, South Africa, 1983. [Google Scholar]
- Hart, H.P. Asbestos in South Africa. J.S. Afr. Inst. Min. Metall. 1988, 88, 185–198. [Google Scholar]
- Riordon, P.H. The genesis of asbestos in ultrabasic rocks. Econ. Geol. 1955, 50, 67–81. [Google Scholar] [CrossRef]
- Cairncross, B. Field Guide to Rocks and Minerals of Southern Africa; Struik Nature: Cape Town, South Africa, 2004. [Google Scholar]
- Dreyer, C.J.B.; Sohnge, A.P.G. The Crocidolite and Amosite Deposits of the Republic of South Africa and Bophuthatswana; Handbook; Geological Survey of South Africa: Pretoria, South Africa, 1992; Volume 12, p. 126. [Google Scholar]
- Miyano, T.; Beukes, N.J. Mineralogy and Petrology of the Contact Metamorphosed Amphibole Asbestos-bearing Penge Iron Formation, Eastern Transvaal, South Africa. J. Petrol. 1997, 38, 651–676. [Google Scholar] [CrossRef]
- Genis, J.H. The Genesis of the Blue Amphibole Asbestos of the Union of South Africa. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1961. [Google Scholar]
- Reinecke, L.; McClure, L. Variations in the quality of amosite asbestos at Penge, Transvaal. Trans. Geol. Soc. S. Afr. 1933, 36, 29–39. [Google Scholar]
- Howlling, G.E. Asbestos; Imperial Institute: London, UK, 1937; p. 88. [Google Scholar]
- Strohmeier, B.R.; Huntington, J.C.; Bunker, K.L.; Sanchez, M.S.; Allison, K.; Lee, R.J. What is asbestos and why is it important? Challenges of defining and characterizing asbestos. Int. Geol. Rev. 2010, 52, 801–872. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Morman, S.A.; Ziegler, T.L. The toxicological geochemistry of earth minerals: An overview of processes and the interdisciplinary methods used to understand them. Rev. Mineral. Geochem. 2006, 64, 5–57. [Google Scholar] [CrossRef]
- Ilgren, E.B. The fiber length of coalinga chrysotile: Enhanced clearance due to its short nature in aqueous solution with a brief critique on ‘Short Fiber Toxicity’. Indoor Built Environ. 2008, 17, 5–26. [Google Scholar] [CrossRef]
- Rietveld, H.M. The Rietveld method. Physica Scripta 2014, 89, 098002. [Google Scholar] [CrossRef]
- Norrish, K.; Hutton, J.T. An accurate X-ray spectrographic method for the analysis of geologic samples. Geochem. Et Cosmochim. Acta 1969, 33, 431–454. [Google Scholar] [CrossRef]
- Wilson, A.H. A chill sequence to the Bushveld Complex: Insight into the first stage of emplacement and implications for the parental magmas. J. Petrol. 2012, 53, 1123–1168. [Google Scholar] [CrossRef]
- Bismarck, A.; Aranberri-Askargorta, I.; Springer, J.; Lampke, T.; Wielage, B.; Stamboulis, A.; Shenderovich, I.; Limbach, H.-H. Surface Characterization of Flax, Hemp and Cellulose Fibers; Surface Properties and the Water Uptake Behavior. Polym. Compos. 2002, 23, 872–894. [Google Scholar] [CrossRef]
- Boulanger, G.; Andujar, P.; Pairon, J.-C.; Billon-Galland, M.-A.; Dion, C.; Dumortier, P.; Brochard, P.; Sobaszek, A.; Bartsch, P.; Paris, C.; et al. Quantification of short and long asbestos fibers to assess asbestos exposure: A review of fiber size toxicity. Environ. Health 2014, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F. Bridging the gap between toxicity and carcinogenicity of mineral fibres by connecting the fibre crystal-chemical and physical parameters to the key characteristics of cancer. Curr. Res. Toxicol. 2021, 2, 42–52. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Aust, A.E.; Cook, P.M.; Dodson, R.F. Morphological and chemical mechanisms of elongated mineral particle toxicities. J. Toxicol. Environ. Health Part B 2011, 14, 40–75. [Google Scholar] [CrossRef]
- Deng, Z.J.; Liang, M.L.; Tóth, I.; Monteiro, M.J.; Michin, R.F. Molecular interaction of poly (acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 2012, 6, 8962–8969. [Google Scholar] [CrossRef]
- Di Giuseppe, D. Characterization of Fibrous Mordenite: A First Step for the Evaluation of Its Potential Toxicity. Crystals 2020, 10, 769. [Google Scholar] [CrossRef]
- Kaszuba, J.; Yardley, B.; Andreani, M. Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Rev. Mineral. Geochem. 2013, 77, 153–188. [Google Scholar] [CrossRef]
- Oze, C.; Solt, K.-L. Biodurability of chrysotile and tremolite asbestos in simulated lung and gastric fluids. Am. Mineral. 2010, 95, 825–831. [Google Scholar] [CrossRef]
- Rozalen, M.; Huertas, F.J. Comparative effect of chrysotile leaching in nitric, sulfuric and oxalic acid at room temperature. Chem. Geol. 2013, 352, 134–142. [Google Scholar] [CrossRef]
- Rozalen, M.; Ramos, M.E.; Gervilla, F.; Kerestedjian, T.; Fiore, S.; Huertas, F.J. Dissolution study of tremolite and anthophyllite: pH effect on the reaction kinetics. Appl. Geochem. 2014, 49, 46–56. [Google Scholar] [CrossRef]
- Karunaratne, P.C.T.; Fernando, G.W.A.R. Characterisation and radiation impact of corrugated asbestos roofing sheets in Sri Lanka. J. Geol. Soc. Sri Lanka 2015, 17, 31–40. [Google Scholar]
- Fischer, C.; Kurganskaya, I.; Schäfer, T.; Lüttge, A. Variability of crystal surface reactivity: What do we know? Appl. Geochem. 2014, 43, 132–157. [Google Scholar] [CrossRef]
- Donaldson, K.; Murphy, F.A.; Duffin, R.; Poland, C.A. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Fibre Tox. 2010, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers. Toxicol. Appl. Pharmacol. 2018, 361, 89–98. [Google Scholar] [CrossRef]
- McCrone, W.; McCrone, L.; Delly, J. Polarized Light Microscopy; Ann Arbor Science Publishers, Inc.: Ann Arbor, MI, USA, 1978. [Google Scholar]
- Middleton, A.P. The identification of asbestos in solid materials. In Asbestos: Properties Applications and Hazards; Michaels, L., Chissick, S.S., Eds.; John Wiley and Sons, Inc.: Chichester, UK, 1979. [Google Scholar]
- Vaughan, N.P.; Rooker, S.J.; LeGuen, J.M. In situ identification of asbestos fibres collected on membrane filters for counting. Ann. Occup. Hyg. 1981, 24, 281–290. [Google Scholar]
- Bernstein, D.; Dunnigan, J.; Hesterberg, T.; Brown, R.; Velasco, J.A.L.; Barrera, R.; Hoskins, J.; Gibbs, A. Health risk of chrysotile revisited. Crit. Rev. Toxicol. 2013, 43, 154–183. [Google Scholar] [CrossRef]
- Walton, W.H. The nature, hazards, and assessment of occupational exposure to airborne asbestos dust: A review. Ann. Occup. Hyg. 1982, 25, 117–247. [Google Scholar]
- Stanton, M.F.; Layard, M.; Tegeris, A.; Miller, E.; May, M.; Morgan, E.; Smith, A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J. Natl. Cancer Inst. 1981, 67, 965–975. [Google Scholar] [PubMed]
- Churg, A. Asbestos lung burden and disease patterns in man. In Health Effects of Mineral Dust. Review in Mineralogy and Geochemistry; Guthrie, G.D., Mossman, B.T., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 1993; Volume 28, pp. 409–426. [Google Scholar]
- Pollastri, S.; Gualtieri, A.F.; Gualtieri, M.L.; Hanuskova, M.; Cavallo, A.; Gaudino, G. The zeta potential of mineral fibers. J. Hazard. Mater. 2014, 276, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Pollastri, S.; D’Acapito, F.; Trapananti, A.; Colantoni, I.; Andreozzi, G.B.; Gualtieri, A.F. The chemical environment of iron in mineral fibers. A combined X-ray absorption and Mossbauer spectroscopic study. J. Hazard. Mater. 2015, 298, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Vigliaturo, R.; Ventura, G.D.; Choi, J.K.; Marengo, A.; Lucci, F.; O’Shea, M.J.; Pérez-Rodríguez, I.; Gieré, R. Mineralogical Characterization and Dissolution Experiments in Gamble’s Solution of Tremolitic Amphibole from Passo di Caldenno (Sondrio, Italy). Minerals 2018, 8, 557. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal. Toxicol. 2002, 14, 29–56. [Google Scholar] [CrossRef]
- Singer, A.; Kirsten, W.F.A.; Buhmann, C. Occurance of sepiolite in the northern Transvaal, South Africa. S. Afr. J. Geol. 1992, 95, 165–170. [Google Scholar]
- Turci, T.; Tomatis, M.; Pacella, A. Surface and bulk properties of mineral fibres relevant to toxicity. Eur. Mineral. Union Notes Mineral. 2017, 18, 171–214. [Google Scholar]
- Iqbal, J.; Shah, M.H. Occurrence, risk assessment, and source apportionment of heavy metals in surface sediments from Khanpur Lake, Pakistan. J. Anal. Sci. Technol. 2014, 5, 28–32. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Pollastri, S.; Gandolfi, N.B.; Gualtieri, M.L. In vitro acellular dissolution of mineral fibres: A comparative study. Sci. Rep. 2018, 8, 7071. [Google Scholar] [CrossRef] [PubMed]
- Nemery, B. Metal toxicity and the respiratory tract. Eur. Respir. J. 1990, 3, 202–219. [Google Scholar] [CrossRef]
- Fubini, B.; Mollo, L. Role of iron in the reactivity of mineral fibers. Toxicol. Lett. 1995, 82/83, 951–960. [Google Scholar] [CrossRef]
- Gazzano, E.; Foresti, E.; Lesci, I.G.; Tomatis, M.; Riganti, C.; Fubini, B.; Roveri, N.; Ghigo, D. Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos. Toxicol. Appl. Pharmacol. 2005, 206, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Gazzano, E.; Turci, F.; Foresti, E.; Putzu, M.G.; Aldieri, E.; Silvagno, F.; Lesci, I.G.; Tomatis, M.; Riganti, C.; Romano, C.; et al. Iron loaded synthetic chrysotile: A new model solid for studying the role of iron in asbestos toxicity. Chem. Res. Toxicol. 2007, 20, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Dobashi, K.; Kusakbe, T.; Nagamine, T.; Oikawa, M.; Satoh, T.; Haga, J.; Ishii, Y.; Ohkubo, T.; Kamiya, T.; et al. In-air micro-particle induced X-ray emission analysis of asbestos and metals in lung tissue. Int. J. Immunopathol. Pharmacol. 2008, 21, 567–576. [Google Scholar] [CrossRef]
- Nakamura, E.; Makishima, A.; Hagino, K.; Okabe, K. Accumulation of radium in ferruginous protein bodies formed in lung tissue: Association of resulting radiation hotspots with malignant mesothelioma and other malignancies. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2009, 85, 229–239. [Google Scholar] [CrossRef]
- Hamilton, R.F., Jr.; Thakur, S.A.; Holian, A. Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 2008, 44, 1246–1258. [Google Scholar] [CrossRef] [PubMed]
- Barabasz, W.; Albinska, D.; Jaskowska, M.; Lipiec, J. Ecotoxicology of Aluminium. Pol. J. Environ. Stud. 2002, 11, 199–203. [Google Scholar]
- Gupta, N.; Gaurav, S.S.; Kumar, A. Molecular Basis of Aluminium Toxicity in Plants: A Review. Am. J. Plant Sci. 2013, 4, 21–37. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock Forming Minerals. 3B. In Layered Silicates Excluding Micas and Clay Minerals, 2nd ed.; The Geological Society: London, UK, 2009. [Google Scholar]
- Wicks, F.J.; Plant, A.G. Electron-Microprobe and X-Ray-Microbeam studies of serpentine textures. Can. Mineral. 1979, 17, 785–830. [Google Scholar]
- Oberti, R.; Hawthorne, F.C.; Cannillo, E.; Camara, F. Longrange order in amphiboles. In Amphiboles: Crystal Chemistry, Occurrence, and Health Issues; Hawthorne, F.C., Oberti, R., Della Ventura, G., Mottana, A., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2007; pp. 125–172. [Google Scholar]
- Hudnell, H.K. Effects from environmental Mn exposures: A review of the evidence from non-occupational exposure studies. Neurotoxicology 1999, 20, 379–398. [Google Scholar] [PubMed]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Fukuda, H.; Ebara, M.; Yamada, H.; Arimoto, M.; Okabe, S.; Obu, M.; Yoshikawa, M.; Sugiura, N.; Saisho, H. Trace elements and cancer. Jpn. Med. Assoc. J. 2004, 47, 391–395. [Google Scholar]
- Bargagli, E.; Monaci, F.; Bianchi, N.; Bucci, C.; Rottoli, P. Analysis of trace elements in bronchoalveolar lavage of patients with diffuse lung diseases. Biol. Trace Elem. Res. 2008, 124, 225–235. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L.; Zhu, O.; Yu, J.; Jia, X. Multivariate analysis of trace elements distribution in hair of pleural plaques patients and health group in a rural area from China. Hair Ther. Transplant. J. 2014, 4, 2167–3118. [Google Scholar] [CrossRef]
- IARC. A Review of Human Carcinogens. Part C: Arsenic, Metals, Fibers, and Dusts; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Bloise, A.; Barrese, E.; Apollaro, C. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers. Neuses Jahrb. Fur Mineral. Abh. 2009, 185, 297–304. [Google Scholar] [CrossRef]
- Bloise, A.; Belluso, E.; Fornero, E.; Rinaudo, C.; Barrese, E.; Capella, S. Influence of synthesis conditions on growth of Ni-doped chrysotile. Microporous Mesoporous Mater. 2010, 132, 239–245. [Google Scholar] [CrossRef]
- Wicks, F.J.; O’Hanley, D.S. Serpentine minerals; structures and petrology. Rev. Mineral. Geochem. 1988, 19, 91–167. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Mathew, B.B.; Tiwari, A.; Jatawa, S.K. Free radicals and antioxidants: A review. J. Pharm. Res. 2011, 4, 4340–4343. [Google Scholar]
- Wadhwa, N.; Mathew, B.B.; Jatawa, S.; Tiwari, A. Lipid peroxidation: Mechanism, models and significance. Int. J. Curr. Sci. 2012, 3, 29–38. [Google Scholar]
- Oller, A.R.; Costa, M.; Oberdörster, G. Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol. 1997, 143, 152–166. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.B.; Baan, R.A.; Partensky, C.; Rice, J.M.; Wilbourn, J.D. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies—A report of an IARC Monographs Programme Meeting. Eur. J. Cancer 2000, 36, 307–313. [Google Scholar] [CrossRef]
- Seilkop, S.K.; Oller, A.R. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef]
- Horie, M.; Nishio, K.; Fujita, K.; Kato, H.; Nakamura, A.; Kinugasa, S.; Endoh, S.; Miyauchi, A.; Yamamoto, K.; Murayama, H.; et al. Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem. Res. Toxicol. 2009, 22, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, M.; Jacobs, J.J.; Reddy, A.; Hallab, N.J. Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. J. Biomed. Mater. Res. 2007, 84, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Scharf, B.; Clement, C.C.; Zolla, V.; Perino, G.; Yan, B.; Elci, G.; Purdue, E.; Goldring, S.; Macaluso, F.; Cobelli, N.; et al. Molecular analysis of chromium and cobalt-related toxicity. Sci. Rep. 2014, 4, 5729. [Google Scholar] [CrossRef]
- 106 Gualtieri, A.F.; Andreozzi, G.B.; Tomatis, M.; Turci, F. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radic. Biol. Med. 2019, 133, 21–37. [Google Scholar] [CrossRef]
- O’Flaherty, E.J. A physiologically-based model of chromium kinetics in the rat. Toxicol. Appl. Pharmacol. 1996, 138, 54–64. [Google Scholar] [CrossRef]
- Beaumont, J.J.; Sedman, R.M.; Reynolds, S.D.; Sherman, C.D.; Li, L.H.; Howd, R.A.; Sandy, M.S.; Zeise, L.; Alexeeff, G.V. Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water. Epidemiology 2008, 19, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium Toxicity and its Health Hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Gualtieri, A.F.; Lusvardi, G.; Zoboli, A.; Di Giuseppe, D.; Gualtieri, M.L. Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite. Environ. Res. 2019, 171, 550–557. [Google Scholar] [CrossRef]
- Rodríguez-Mercado, J.J.; Mateos-Nava, R.A.; Altamirano-Lozano, M.A. DNA damage induction in human cells exposed to vanadium oxides in vitro. Toxicol. In Vitro 2011, 25, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- WHO. Environmental Health Criteria 81: Vanadium; WHO: Geneva, Switzerland, 1990; pp. 1–35. [Google Scholar]
- WHO. Vanadium Pentoxide and other Inorganic Vanadium Compounds; Concise International Chemical Assessment Document: 29; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- ATSDR (Agency for Toxic substances and Disease Registry). Draft Toxicological Profile for Several Trace Elements; US Dept. Health Human Services, Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2002. [Google Scholar]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.C.; Herbert, R.A.; Roycroft, J.H.; Haseman, J.K.; Grumbein, S.L.; Miller, R.A.; Chouf, B.J. Lung Tumor Induction by Inhalation Exposure to Molybdenum Trioxide in Rats and Mice. Toxicol. Sci. 1998, 45, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Ott, H.C.; Prior, C.; Herold, M.; Riha, M.; Laufer, G.; Ott, G. Respiratory symptoms and bronchoalveolar lavage abnormalities in molybdenum exposed workers. Wien. Klin. Wochenschr. 2004, 116, 25–30. [Google Scholar] [PubMed]
- Ballirano, P.; Bloise, A.; Gualtieri, A.F.; Lezzerini, M.; Pacella, A.; Perchiazzi, N.; Dogan, M.; Dogan, A.U. The crystal structure of mineral fibres. In Mineral Fibres: Crystal Chemistry, Chemical Physical Properties, Biological Interaction and Toxicity; Gualtieri, A.F., Ed.; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland: London, UK, 2017; Volume 18, pp. 17–64. [Google Scholar]
- Andreozzi, G.B.; Ballirano, P.; Gianfagna, A.; Mazziotti-Tagliani, S.; Pacella, A. Structural and spectroscopic characterization of a suite of fibrous amphiboles with high environmental and health relevance from Biancavilla (Sicily, Italy). Am. Mineral. 2009, 94, 1333–1340. [Google Scholar] [CrossRef]
- Bloise, A.; Ricchiuti, C.; Punturo, R.; Pereira, D. Potentially toxic elements (PTEs) associated with asbestos chrysotile, tremolite and actinolite in the Calabria region (Italy). Chem. Geol. 2020, 558, 119896. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Y.; Teng, Y.; Yu, X. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan. Env. Monit Assess 2015, 187, 627. [Google Scholar] [CrossRef]
- Vanoeteren, C.; Cornelis, R.; Verbeeck, P. Evaluation of trace elements in human lung tissue III. Corresp. Analysis. Sci. Total Environ. 1986, 54, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Lippmann, M. Asbestos Exposure Indices. Environ. Res. 1988, 48, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.R.; Lowe, D.B.; Richards, D.E.; Cralley, L.J.; Stokinger, H.E. The role of trace metals in chemical carcinogenesis: Asbestos cancers. Cancer Res. 1970, 30, 1068–1074. [Google Scholar] [PubMed]
- Visonà, S.D.; Capella, S.; Bodini, S.; Borrelli, P.; Villani, S.; Crespi, E.; Colosio, C.; Previderè, C.; Belluso, E. Evaluation of Deposition and Clearance of Asbestos (Detected by SEM-EDS) in Lungs of Deceased Subjects Environmentally and/or Occupationally Exposed in Broni (Pavia, Northern Italy). Front. Public Health 2021, 9, 678040. [Google Scholar] [CrossRef]
- Scambelluri, M.; Piccardo, G.B.; Philippot, P.; Robbiano, A.; Negretti, L. High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet. Sci. Lett. 1997, 148, 485–499. [Google Scholar] [CrossRef]
- Tiepolo, M.; Oberti, R.; Zanetti, A.; Vannucci, R.; Foley, S.F. Trace-element partitioning between amphibole and silicate melt. In Amphiboles: Crystal Chemistry, Occurrence, and Health Issues; Hawthorne, F.C., Oberti, R., Della Ventura, G., Mottana, A., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2007; pp. 417–452. [Google Scholar]
- Kumar, A.; Maiti, S.K. Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environ. Earth Sci. 2015, 74, 2617–2633. [Google Scholar] [CrossRef]
- Holmes, A.; Morgan, A.; Sandalls, F.J. Determination of iron, chromium, cobalt, nickel, and scandium in asbestos by neutron activation analysis. Am. Ind. Hyg. Assoc. J. 1971, 32, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Tashakor, M.; Yaacob, W.Z.W.; Mohamad, H.; Ghani, A.A. Geochemical characteristics of serpentinite soils from Malaysia. Malays. J. Soil Sci. 2014, 18, 35–49. [Google Scholar]
- Punturo, R.; Bloise, A.; Critelli, T.; Catalano, M.; Fazio, E.; Apollaro, C. Environmental implications related to natural asbestos occurrences in the ophiolites of the Gimigliano-Mount Reventino Unit (Calabria, Southern Italy). Int. J. Environ. Res. 2015, 9, 405–418. [Google Scholar]
- Mendez, M.O.; Maier, R.M. Phytoremediation of mine tailings in temperate and arid environments. Rev. Environ. Sci. Biotechnol. 2008, 7, 47–59. [Google Scholar] [CrossRef]
- Huang, L.; Baumgartl, T.; Mulligan, D. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings. Annu. Bot. 2012, 110, 223–238. [Google Scholar] [CrossRef]
- Kumaresan, D.; Cross, A.T.; Moreira-Grez, B.; Kariman, K.; Nevill, P.; Stevens, J.; Allcock, R.J.N.; O’Donnell, A.G.; Dixon, K.W.; Whiteley, A.S. Microbial functional capacity is preserved within engineered soil formulations used in mine site restoration. Sci. Rep. 2017, 7, 564. [Google Scholar] [CrossRef]
- Schimmer, C. Synergistic Use of Soil Microbes and Plants to Facilitate Rehabilitation on Gold Tailings Materials. Master’s Thesis, North-West University, Potchefstroom, South Africa, 2017. [Google Scholar]
- Northwatch, Mining Watch Canada and Associates. The Boreal Below: Mining Issues and Activities in Canada’s Boreal Forest; Mining Watch Canada: Ottawa, ON, Canada, 2008; p. 205. [Google Scholar]
- Pentreath, R.J. The Discharge of Waters from Active and Abandoned Mines. In Mining and its Environmental Impact; Hester, R.E., Harrison, R.M., Eds.; Royal Society of Chemistry: London, UK, 1994; pp. 121–131. [Google Scholar]
- Lamb, D.; Erskine, P.D.; Fletcher, A. Widening gap between expectations and practice in Australian mine site rehabilitation. Ecol. Manag. Restor. 2015, 16, 186–195. [Google Scholar] [CrossRef]
- Cross, A.T.; Stevens, J.C.; Sadler, R.; Moreira-Grez, B.; Ivanov, D.; Zhong, H.; Dixon, K.W.; Lambers, H. Compromised root development constrains the establishment potential of native plants in unamended alkaline post-mining substrates. Plant Soil 2019, 461, 163–179. [Google Scholar] [CrossRef]
Chrysotile | Amosite | Crocidolite | |
---|---|---|---|
Sample number | Ch1 | Am2 | Cr3 |
Sampling locations | Havelock Mine, Bulembu, Swaziland (Eswatini) | Penge, Sekhukhune District, Limpopo, South Africa | Prieska Division, Northern Cape, South Africa |
Location coordinates | 25°57′21″ S 31°07′51″ E | 24°25′07″ S 30°20′14″ E | 28°19′01″ S 23°06′05″ E |
Occurrence | Cross-vein fibres (growth of fibres at right angles to the walls of cracks) | Cross-fibre seams in banded ironstones | Cross-fibre seams in banded ironstones |
Number of samples collected | Three | Two | Two |
Chrysotile | Amosite | Crocidolite | ||||
---|---|---|---|---|---|---|
Counts | Length (cm) | Width (µm) | Length (cm) | Width (µm) | Length (cm) | Width (µm) |
1 | 2.5 | 12.5 | 20 | 28.5 | 6 | 6.25 |
2 | 0.5 | 12 | 5 | 26.5 | 10 | 6.2 |
3 | 1.2 | 12.2 | 15 | 28 | 11 | 6.3 |
4 | 1.8 | 12.2 | 10 | 23.8 | 8 | 6 |
5 | 2.2 | 12.6 | 9 | 25.5 | 8 | 6 |
6 | 0.9 | 12.1 | 13 | 28 | 6 | 6 |
7 | 1.36 | 12.3 | 19 | 25 | 10 | 6.2 |
8 | 2.4 | 12.3 | 7 | 26.5 | 10 | 6.2 |
9 | 2.5 | 12.4 | 18 | 28 | 9 | 6.2 |
10 | 1.9 | 12.5 | 18 | 22.3 | 6 | 6.2 |
11 | 1.7 | 12 | 16 | 20.5 | 6 | 6.3 |
12 | 2.1 | 12.1 | 15 | 28.1 | 8 | 6 |
13 | 0.8 | 12.4 | 13 | 28.2 | 9 | 6.1 |
14 | 2 | 12.6 | 8 | 28 | 10 | 6 |
15 | 2 | 12.4 | 15 | 20.2 | 10 | 6.2 |
16 | 1.1 | 12.3 | 5 | 17 | 10 | 6.2 |
17 | 0.6 | 12.2 | 8 | 20 | 6 | 6.2 |
18 | 2.5 | 12.2 | 11 | 18.9 | 8 | 6.3 |
19 | 2.3 | 12.2 | 19 | 20 | 10 | 6.1 |
20 | 1.7 | 12.2 | 20 | 28.5 | 6 | 6.2 |
21 | 2 | 12.6 | 20 | 27.1 | 6 | 6.2 |
Average | 1.72 | 12.3 | 13.52 | 24.7 | 8.24 | 6.16 |
Minimum | 0.5 | 12 | 5 | 17 | 6 | 6 |
Maximum | 2.5 | 12.6 | 20 | 28.57 | 11 | 6.3 |
Variance | 0.40 | 0.30 | 25.11 | 13.87 | 3.13 | 0.01 |
Standard dev. | 0.63 | 0.18 | 5.01 | 3.72 | 1.77 | 0.10 |
Asbestos Rock Sample | Phases Detected (% Composition) |
---|---|
Chrysotile | Chrysotile (100%) |
Amosite | Amosite (94.5%) >> Quarts low (4.1%) > Sepiolite (1.4%) |
Crocidolite | Magnesio-riebeckite (100%) |
Oxides (wt%) | Chrysotile | Amosite | Crocidolite |
---|---|---|---|
SiO2 | 42.08 | 48.93 | 51.52 |
Al2O3 | 0.59 | 0.36 | 0.07 |
Fe2O3 | 2.00 | 41.37 | 38.31 |
MnO | 0.03 | 0.64 | 0.06 |
MgO | 40.83 | 5.84 | 2.23 |
CaO | 0.06 | 2.02 | 0.35 |
Na2O | 0.07 | 0.00 | 6.22 |
K2O | 0.01 | 0.24 | 0.10 |
TiO2 | 0.03 | 0.03 | 0.03 |
P2O5 | 0.01 | 0.02 | 0.01 |
Cr2O3 | 0.01 | 0.02 | 0.01 |
NiO | 0.19 | 0.01 | 0.01 |
LOI | 12.18 | 0.48 | 1.24 |
Total | 100.08 | 99.87 | 100.15 |
Element (ppm) | Chrysotile | Amosite | Crocidolite |
---|---|---|---|
Sc | 6.4 | 4.64 | D.L.* |
V | 16.42 | 3.51 | 3.91 |
Cr | 83.4 | 4.61 | D.L.* |
Co | 52.55 | D.L.* | D.L.* |
Ni | 1518.54 | 51.24 | 11.86 |
Cu | 21.99 | 36.77 | 35 |
Zn | 16.19 | 41.62 | 12.66 |
Ga | D.L.* | D.L.* | 1.63 |
Rb | D.L.* | 20.77 | 1.02 |
Sr | 0.74 | 26.63 | 0.86 |
Y | 0.77 | 3.78 | 1.82 |
Zr | 0.49 | 3.7 | 0.38 |
Nb | D.L.* | 0.85 | D.L.* |
Mo | D.L.* | 0.62 | D.L.* |
Ba | D.L.* | 28.17 | 1.69 |
Pb | 6.62 | 5.32 | 5.06 |
Th | D.L.* | D.L.* | D.L.* |
U | D.L.* | D.L.* | D.L.* |
Time (Hours) | Chrysotile | Amosite | Crocidolite |
---|---|---|---|
0 | 50 | 50 | 50 |
24 | 25.2 | 39.1 | 37.7 |
48 | 24 | 38.6 | 33.6 |
168 | 21 | 36.3 | 32.3 |
334 | 18.6 | 35.5 | 31.7 |
720 | 16.6 | 35.4 | 31.1 |
Total mass loss (mg) | 33.4 | 14.6 | 18.9 |
Metals (ppm) | Chrysotile | Amosite | Crocidolite | Concentration Range of Trace Elements in Normal Human Lungs (ppm) [122] |
---|---|---|---|---|
Al | 11,147.8 | 6802.1 | 1322.6 | |
Fe | 13,988 | 289,340 | 267,940 | 40–500 |
Mn | 230 | 4987 | 465 | 0.01–3 |
Mg | 246,200 | 35,220 | 13,449 | |
Cr | 83.4 | 4.61 | D.L. | 0.002–0.50 |
Co | 52.55 | D.L. | D.L. | 0.002–0.1 |
Ni | 1518.54 | 51.24 | 11.86 | 0.01–1.00 |
Cu | 21.99 | 36.77 | 35 | 1–5.00 |
Zn | 16.19 | 41.62 | 12.66 | 1–30.00 |
Zr | 0.49 | 3.7 | 0.38 | |
Ba | D.L. | 28.17 | 1.69 | >1.10 |
Pb | 6.62 | 5.32 | 5.06 | 0.02–0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schapira, J.S.; Bolhar, R.; Master, S.; Wilson, A.H. Mineralogical, Petrological and Geochemical Characterisation of Chrysotile, Amosite and Crocidolite Asbestos Mine Waste from Southern Africa in Context of Risk Assessment and Rehabilitation. Minerals 2023, 13, 1352. https://doi.org/10.3390/min13101352
Schapira JS, Bolhar R, Master S, Wilson AH. Mineralogical, Petrological and Geochemical Characterisation of Chrysotile, Amosite and Crocidolite Asbestos Mine Waste from Southern Africa in Context of Risk Assessment and Rehabilitation. Minerals. 2023; 13(10):1352. https://doi.org/10.3390/min13101352
Chicago/Turabian StyleSchapira, Jessica Shaye, Robert Bolhar, Sharad Master, and Allan H. Wilson. 2023. "Mineralogical, Petrological and Geochemical Characterisation of Chrysotile, Amosite and Crocidolite Asbestos Mine Waste from Southern Africa in Context of Risk Assessment and Rehabilitation" Minerals 13, no. 10: 1352. https://doi.org/10.3390/min13101352