Formation of High-Silica Leucocratic Granitoids on the Late Devonian Peraluminous Series of the Russian Altai: Mineralogical, Geochemical, and Isotope Reconstructions
Abstract
:1. Introduction
2. Geological Background
3. Analytical Methods
3.1. U–Pb Geochronology
3.2. Whole-Rock Geochemical Analyses
3.3. Whole-Rock Isotopic Analyses
3.4. Mineral Analyses
4. Results
4.1. Petrography
4.2. Geochronology
4.3. Geochemistry and Isotope Characteristics of Rocks
4.4. Mineral Chemistry
4.4.1. Mica
4.4.2. Feldspar
4.5. Quartz-Hosted Parental Magma Fluid and Melt Inclusions
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Turkina, O.M.; Sukhorukov, V.P. Early Precambrian granitoid magmatism of the Kitoi block and stages of collision events in the southwestern Siberian craton. Russ. Geol. Geophys. 2022, 63, 745–763. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R.; Wyborn, D. The importance of residual source material (restite) in granite petrogenesis. J. Petrol. 1987, 28, 1111–1138. [Google Scholar] [CrossRef]
- Douse, A.E.P.; Harris, N. Experimental Constrains on Himalayan Anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Debon, F.; Le Fort, P. A Chemical-mineralogical classification of common plutonic rocks and associations. Trans. R. Soc. Edinb. Earth Sci. 1983, 73, 135–149. [Google Scholar] [CrossRef]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Zhenhua, Z.; Xiaolin, X.; Xiaodong, H.; Yixian, W.; Qiang, W.; Zhiwei, B.; Jahn, B. Controls of the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochem. J. 2002, 36, 527–543. [Google Scholar] [CrossRef] [Green Version]
- Zhenhua, Z.; Bao, Z.; Lee, S.G.; Qiao, Y. A composite M- with W-type of REE tetrad effect in North China alkaline complex. Goldschmidt Conf. Abstr. 2008, 72, 1095. [Google Scholar]
- Jahn, B.; Wu, F.; Capdevila, R.; Martineau, F.; Zhenhua, Z.; Wang, Y. Highly evolved juvenile granites with tetrad REE patterns: The Woule and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 2001, 59, 171–198. [Google Scholar] [CrossRef]
- Khodorevskaya, L.I. Granitization of amphibolites. 2. The main regularities of physical and chemical phenomena during the processes of fluid filtration through the rock. Petrology 2004, 12, 321–336. [Google Scholar]
- Zonenshain, L.P.; Kuz’min, M.I.; Natapov, L.M. Geology of the USSR: A plate tectonic synthesis. Geodyn. Ser. 1990, 21, 120. [Google Scholar]
- Berzin, N.A.; Coleman, R.G.; Dobretsov, N.L.; Zonenshain, L.P.; Xiao, X.; Chang, E.Z. Geodynamic map of the Western part of the Paleo-Asian Ocean. Russ. Geol. Geophys. 1994, 38, 5–22. [Google Scholar]
- Berzin, N.A.; Kungurtsev, L.V. Geodynamic interpretation of geological complexes in Altai-Sayar region. Russ. Geol. Geophys. 1996, 37, 63–81. [Google Scholar]
- Shokalsky, S.P.; Babin, G.A.; Vladimirov, A.G.; Borisov, S.M.; Gusev, N.I.; Tokarev, V.N.; Zybin, V.A.; Dubsky, V.S.; Murzin, O.V.; Krivchikov, V.A.; et al. Correlation of Magmatic and Metamorphic Complexes in the Western Part of the Altai-Sayan Fold Belt; Publishing House of SB RAS, Department “Geo”: Novosibirsk, Russia, 2000; p. 188. (In Russian) [Google Scholar]
- Vladimirov, A.G.; Kruk, N.N.; Rudnev, S.N.; Khromykh, S.V. Geodynamics and granitoid magmatism of collision orogens. Russ. Geol. Geophys. 2003, 44, 1321–1338. [Google Scholar]
- Dobretsov, N.L. Evolution of structures of the Ural, Kazakhstan Tien Shan and Altai-Sayan region within the Ural-Mongolian fold belt (Paleoasian ocean). Russ. Geol. Geophys. 2003, 44, 5–27. [Google Scholar]
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 35, 335–360. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Buslov, M.M.; Yu, U.C. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time. J. Asian Earth Sci. 2004, 23, 673–690. [Google Scholar] [CrossRef]
- Buslov, M.M.; Watanabe, T.; Saphonova, I.Y.; Iwata, K.; Travin, A.; Akiyama, M. A Vendian-Cambrian arc system of the Siberian continent in Gorny Altai (Russia, central Asia). Gondwana Res. 2002, 5, 781–800. [Google Scholar] [CrossRef]
- Buslov, M.M.; Geng, H.; Travin, A.V.; Otgonbaator, D.; Kulikova, A.V.; Chen Ming Stijn, G.; Semakov, N.N.; Rubanova, E.S.; Abildaeva, M.A.; Voitishek, A.E. Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russ. Geol. Geophys. 2013, 54, 1250–1271. [Google Scholar] [CrossRef]
- Xiao, W.J.; Windley, B.F.; Yuan, C.; Sun, M.; Han, C.M.; Lin, S.F.; Chen, H.L.; Yan, Q.R.; Liu, D.Y.; Qin, K.Z.; et al. Paleozoic multiple subduction-accretion processes of the southern Altaids. Am. J. Sci. 2009, 309, 221–270. [Google Scholar] [CrossRef]
- Xiao, W.J.; Huang, B.C.; Han, C.M.; Sun, S.; Li, J.L. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Cai, K.; Sun, M.; Buslov, M.M.; Jahn, B.-M.; Xiao, W.; Long, X.; Chen, H.; Wan, B.; Chen, M.; Rubanova, E.S.; et al. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB). Tectonophysics 2016, 674, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, A.G.; Ponomareva, A.P.; Shokalsky, S.P.; Khalilov, V.A.; Kostitsyn, Y.A.; Ponomarchuk, V.A.; Rudnev, S.N.; Vystavnoi, S.A.; Kruk, N.N.; Titov, A.V. Late Paleozoic—Early Mesozoic granitoid magmatism in Altai. Russ. Geol. Geophys. 1997, 38, 715–729. [Google Scholar]
- Vladimirov, A.G.; Kozlov, S.M.; Shokalsky, S.P.; Khalilov, V.A.; Rudnev, S.N.; Kruk, N.N.; Vystavnoi, S.A.; Borisov, S.M.; Berezikov, Y.K.; Metsner, A.N.; et al. The basic boundaries of granitoid magmatism in Kuznetsk Alatau, Altai and Kalba (according to data of U-Pb isotope dating). Russ. Geol. Geophys. 2001, 42, 1149–1170. [Google Scholar]
- Dobretsov, N.L.; Vladimirov, A.G.; Kruk, N.N. Permian-Triassic magmatism in the Altai-Sayan Fold System as a reflection of the Siberian superplume. Transactions (Doklady) of the Rusian Academy of Sciences. Earth Sci. Sect. 2005, 400, 40–43. [Google Scholar]
- Kruk, N.N.; Rudnev, S.N.; Vladimirov, A.G.; Shokalsky, S.P.; Kovach, V.P.; Serov, P.A.; Volkova, N.I. Early–Middle Paleozoic granitoids in Gorny Altai, Russia: Implications for continental crust history and magma sources. J. Asian Earth Sci. 2011, 42, 928–948. [Google Scholar] [CrossRef]
- Kruk, N.N.; Gavryushkina, O.A.; Rudnev, S.N.; Shokalsky, S.P.; Vasyukova, E.A.; Kotov, A.B.; Sal’nikova, E.B.; Kovach, V.P.; Kruk, E.A. Petrology and age of granitoids of the Aturkol Massif, Gorny Altai: Contribution in the problem of formation of intraplate granitoids. Petrology 2017, 25, 318–337. [Google Scholar] [CrossRef]
- Gavryushkina, O.A.; Kruk, N.N.; Semenov, I.V.; Vladimirov, A.G.; Kuibida, Y.V.; Serov, P.A. Petrogenesis of Permian-Triassic intraplate gabbro-granitic rocks in the Russian Altai. Lithos 2019, 326, 71–89. [Google Scholar] [CrossRef]
- Kruk, N.N.; Sennikov, N.V. Geological position, geochemistry, and geodynamic formation environments of late givetian-early frasnian basalts in the central Gornyi Altai region. Dokl. Earth Sci. 2012, 446, 1151–1156. [Google Scholar] [CrossRef]
- Khubanov, V.B.; Buyantuev, M.D.; Tsygankov, A.A. U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: Technique and comparison with SHRIMP. Russ. Geol. Geophys. 2016, 57, 190–205. [Google Scholar] [CrossRef]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues; Short Course Series; Sylvester, P., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 2008; Volume 40, pp. 307–311. [Google Scholar]
- Ludwig, K.R. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Nikolaeva, I.V.; Palesskii, S.V.; Koz’menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma–mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G.J. Sm-Nd evolution of chondrites and achondrites. Earth Planet. Sci. Lett. 1984, 67, 137–150. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Nd and Sr isotopic systematics of rivers water suspended material: Implications for crustal evolution. Earth Planet. Sci. Lett. 1988, 87, 249–265. [Google Scholar] [CrossRef]
- Keto, L.S.; Jacobsen, S.B. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth Planet. Sci. Lett. 1987, 84, 27–41. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Evolution and Composition; Blackwell: London, UK, 1985; p. 312. [Google Scholar]
- Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1036–1357. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology; Longman: New York, NY, USA; London, UK, 1985; 266p. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-type and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Anderson, J.L. Status of thermobarometry in granitic batholiths. Earth Environ. Sci. Trans. R. Soc. Edinb. 1996, 87, 125–138. [Google Scholar]
- Jenkin, G.R.T.; Farrow, C.M.; Fallic, A.E. Oxygen isotope exchange and closure temperatures in cooling rocks. J. Metamorph. Petrol. 1994, 12, 215–221. [Google Scholar] [CrossRef]
- Ague, J.J.; Brimhall, G.H. Regional variations in bulk chemistry, mineralogy, and the compositions of mafic and accessory minerals in the batholiths of California. Geol. Soc. Am. Bull. 1988, 100, 891–911. [Google Scholar] [CrossRef]
- Lalonde, A.E.; Bernard, P. Composition and color of biotite from granites; two useful properties in characterization of plutonic suites from the Hepburn internal zone of Wopmay Orogen, Northwest Territories. Can. Mineral. 1993, 31, 203–217. [Google Scholar]
- Miller, C.F.; Stoddard, E.F.; Bradfish, L.J.; Dollase, W.A. Composition of plutonic muscovite: Genetic implications. Can. Mineral. 1981, 19, 25–34. [Google Scholar]
- Drury, M.R.; Urai, J.L. Deformation-related recrystallization processes. Tectonophysics 1990, 172, 235–253. [Google Scholar] [CrossRef]
- Schmatz, J.; Urai, J.L. The interaction of fluid inclusions and migrating grain boundaries in a rock analogue: Deformation and annealing of polycrystalline camphor–ethanol mixtures. J. Metamorph. Geol. 2010, 28, 1–18. [Google Scholar] [CrossRef]
- Kruk, N.N. Continental crust of Gorny Altai: Stages of formation and evolution; indicative role of granitoids. Russ. Geol. Geophys. 2015, 56, 1097–1113. [Google Scholar] [CrossRef]
- Buslov, M.M.; Safonova, I.Y.; Bobrov, V.A. An exotic terrane of the Late Cambrian-Early Ordovician oceanic crust in the northwestern Gorny Altai (Zasurin formation): Structural position and geochemistry. Dokl. Earth Sci. 1999, 369, 1045–1049. [Google Scholar]
- Kruk, N.N.; Vladimirov, A.G.; Babin, G.A.; Shokalsky, S.P.; Sennikov, N.V.; Rudnev, S.N.; Volkova, N.I.; Kovach, V.P.; Serov, P.A. Continental crust of the Gorny Altai: Nature and composition of protoliths. Russ. Geol. Geophys. 2010, 51, 431–446. [Google Scholar] [CrossRef]
- Safonova, I.Y.; Sennikov, N.; Komiya, T.; Bychkova, Y.; Kurganskaya, E. Geochemical diversity in oceanic basalts hosted by the Zasur’ya accretionary complex, NW Russian Altai, Central Asia: Implications from trace elements and Nd isotopes. J. Asian Earth Sci. 2011, 42, 191–207. [Google Scholar] [CrossRef]
№ | Sp № | Nd ppm | Sm ppm | 147Sm/144Nd | 143Nd/144Nd | ɛNd(0) | ɛNd (t) | TDM | TDM-2 | phase | δ18O |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 11-39 | 8.02 | 38.1 | 0.1272 | 0.512604 ± 2 | −0.7 | 2.7 | 965 | 921 | ||
2 | 12-56 | quartz | 15 | ||||||||
3 | 04-27 | 5.18 | 24.67 | 0.1269 | 0.512453 ± 9 | −3.6 | −0.2 | 1226 | 1166 | ||
4 | 12-53 | quartz | 15.4 | ||||||||
5 | 21-45/1 | quartz | 17.1 | ||||||||
6 | 21-43/1 | feldspar | 15.5 | ||||||||
biotite | 11.1 | ||||||||||
quartz | 16.5 | ||||||||||
5.3 | 24.1 | 0.1329 | 0.51249 ± 10 | −2.9 | 0.2 | 1247 | 1130 | feldspar | 15.7 | ||
7 | 21-41/2 | biotite | 12.7 | ||||||||
quartz | 16.28 | ||||||||||
feldspar | 14.91 | ||||||||||
biotite | 8.31 | ||||||||||
8 | 11-37/1 | 1.69 | 6.7 | 0.1520 | 0.512677 ± 9 | −2.1 | 0.0 | 1536 | 1144 | ||
9 | 21-9/3 | quartz | 16.3 | ||||||||
feldspar | 15.3 | ||||||||||
muscovite | 14 |
Massif | Aba | Borovlyanka | |||
---|---|---|---|---|---|
Rock Sample (Number of Measurement) | Porph.Granite (21-43/1) (10) | Porph.Granite (21-45/1) (11) | Leucogranite Main Phase (21-41/2) (7) | Leucogranite Late Phase (21-19/3) (5) | Granite (12-052) (14) |
SiO2 | 35.2–36.1 | 33.6–34.4 | 33.4–34.3 | 33.8–35.4 | 35.7–36.9 |
35.4 | 34.1 | 33.9 | 34.5 | 36.1 | |
TiO2 | 3.17–4.56 | 3.19–4.34 | 1.56–3.66 | 1.92–2.42 | 2.7–3.7 |
3.84 | 3.65 | 2.84 | 2.17 | 3.3 | |
Al2O3 | 17.1–18.2 | 17.8–19.3 | 18.1–19.6 | 18.4–20.2 | 15.2–17.2 |
17.6 | 18.4 | 18.7 | 19.6 | 16.4 | |
MgO | 6.84–7.74 | 6.38–7.58 | 5.67–7.38 | 2.77–3.24 | 8.8–9.6 |
7.14 | 6.90 | 6.37 | 3.05 | 9.1 | |
FeO | 21.9–22.4 | 21.9–24.4 | 23.1–25.6 | 23.4–26.4 | 21.0–22.2 |
22.1 | 23.0 | 24.4 | 24.7 | 21.7 | |
MnO | 0.43–0.67 | 0.49–0.68 | 0.55–0.63 | 1.16–1.46 | 0.44–0.53 |
0.52 | 0.57 | 0.59 | 1.32 | 0.49 | |
CaO | bdl–0.12 | bdl–0.03 | bdl–0.31 | 0.03–0.36 | bdl–0.11 |
0.06 | 0.02 | 0.13 | 0.14 | 0.07 | |
Na2O | 0.08–0.26 | 0.03–0.15 | bdl–0.08 | 0.02–0.09 | 0.05–0.10 |
0.13 | 0.07 | 0.05 | 0.06 | 0.07 | |
K2O | 8.91–9.6 | 9.13–9.54 | 8.75–9.53 | 7.24–9.13 | 9.4–9.9 |
9.29 | 9.38 | 9.17 | 8.50 | 9.8 | |
Rb2O | bdl–0.24 | bdl–0.18 | bdl–0.15 | 0.13–0.33 | bdl-0.11 |
0.16 | 0.13 | 0.13 | 0.22 | 0.11 | |
Cs2O | bdl–0.04 | n.d. | n.d. | 0.05–0.13 | n.d. |
0.04 | 0.08 | ||||
BaO | bdl–0.33 | bdl–0.49 | bdl–0.17 | bdl–0.05 | bdl–0.18 |
0.23 | 0.15 | 0.11 | 0.04 | 0.11 | |
F | 0.65–0.92 | 0.58–0.78 | 0.56–0.80 | 0.56–0.73 | 0.37–0.59 |
0.80 | 0.71 | 0.65 | 0.64 | 0.49 | |
Cl | 0.04–0.07 | 0.02–0.03 | 0.02–0.05 | bdl–0.04 | 0.02–0.07 |
0.05 | 0.02 | 0.03 | 0.03 | 0.04 | |
Total | 96.6–98.3 | 96.6–97.4 | 95.8–97.7 | 93.7–96.2 | 95.9–98.6 |
97.2 | 97.0 | 97.0 | 95.0 | 97.5 | |
Formula units | |||||
Si | 2.68–2.70 | 2.59–2.63 | 2.58–2.64 | 2.68–2.75 | 2.71–2.76 |
2.69 | 2.61 | 2.61 | 2.71 | 2.73 | |
Ti | 0.18–0.26 | 0.18–0.25 | 0.09–0.21 | 0.11–0.14 | 0.15–0.21 |
0.22 | 0.21 | 0.16 | 0.13 | 0.19 | |
Al | 1.53–1.62 | 1.61–1.74 | 1.65–1.78 | 1.73–1.85 | 1.39–1.53 |
1.57 | 1.66 | 1.70 | 1.81 | 1.46 | |
Mg | 0.78–0.88 | 0.73–0.87 | 0.65–0.84 | 0.33–0.38 | 0.99–1.08 |
0.81 | 0.79 | 0.73 | 0.36 | 1.03 | |
Fe | 1.39–1.43 | 1.41–1.57 | 1.48–1.65 | 1.52–1.75 | 1.33–1.43 |
1.40 | 1.47 | 1.57 | 1.63 | 1.37 | |
Mn | 0.03–0.04 | 0.03–0.04 | 0.04–0.04 | 0.08–0.10 | 0.03–0.03 |
0.03 | 0.04 | 0.04 | 0.09 | 0.03 | |
Ca | 0.001–0.009 | bdl–0.002 | bdl–0.026 | 0.003–0.031 | bdl–0.009 |
0.005 | 0.002 | 0.011 | 0.012 | 0.005 | |
Na | 0.01–0.04 | 0.00–0.02 | bdl–0.01 | 0.0–0.01 | 0.01–0.01 |
0.02 | 0.01 | 0.01 | 0.01 | 0.01 | |
K | 0.86–0.93 | 0.89–0.93 | 0.87–0.94 | 0.73–0.90 | 0.91–0.96 |
0.90 | 0.92 | 0.90 | 0.85 | 0.94 | |
Rb | bdl–0.01 | bdl–0.01 | bdl–0.01 | bdl–0.02 | bdl–0.01 |
0.01 | 0.01 | 0.01 | 0.01 | 0.01 | |
Cs | bdl–0.001 | n.d. | n.d. | 0.002–0.004 | n.d. |
0.001 | 0.003 | ||||
Ba | bdl–0.010 | bdl–0.015 | bdl–0.005 | bdl–0.001 | bdl–0.005 |
0.007 | 0.004 | 0.003 | 0.001 | 0.003 | |
F | 0.16–0.22 | 0.14–0.19 | 0.14–0.19 | 0.14–0.18 | 0.09–0.14 |
0.19 | 0.17 | 0.16 | 0.16 | 0.12 | |
Cl | 0.01–0.01 | 0.00 | 0.00–0.01 | 0.00–0.01 | 0.00–0.01 |
0.01 | 0.00 | 0.00 | 0.01 | ||
OH− | 1.77–1.84 | 1.81–1.85 | 1.80–1.86 | 1.81–1.85 | 1.86–1.90 |
1.80 | 1.82 | 1.84 | 1.84 | 1.88 | |
f | 0.74–0.76 | 0.75–0.79 | 0.76–0.82 | 0.88–00.90 | 0.69–0.72 |
0.76 | 0.77 | 0.79 | 0.89 | 0.70 |
Rock Sample | Porph.Granite (21-43/1) | Leucogranite Late Phase (21-19/3) | ||
---|---|---|---|---|
Mineral (Number of Measurement) | KFsp (7) | Pl (8) | KFsp (2) | Pl (8) |
SiO2 | 63.7–65.0 | 63.3–68.4 | 63.2–65.1 | 64.6–68.8 |
64.6 | 67.0 | 64.1 | 66.5 | |
Al2O3 | 18.0–18.6 | 19.4–22.4 | 18.5–18.6 | 19.5–22.2 |
18.4 | 20.3 | 18.5 | 20.7 | |
FeO | bdl–0.05 | bdl–0.07 | 0.02–0.03 | bdl–0.04 |
0.03 | 0.05 | 0.02 | 0.03 | |
MnO | bdl–0.01 | bdl–0.07 | bdl–0.02 | bdl–0.02 |
0.01 | 0.05 | 0.02 | 0.02 | |
CaO | bdl–0.04 | 0.14–3.44 | 0.03–0.05 | 0.09–2.71 |
0.03 | 0.84 | 0.04 | 1.34 | |
Na2O | 0.36–0.93 | 10.0–12.1 | 0.45–0.52 | 9.9–11.9 |
0.58 | 11.5 | 0.48 | 11.1 | |
K2O | 16.2–17.5 | 0.05–0.13 | 16.6–17.1 | 0.04–0.65 |
16.9 | 0.08 | 16.8 | 0.23 | |
Rb2O | bdl–0.07 | bdl–0.07 | bdl–0.12 | bdl |
0.07 | 0.07 | 0.12 | ||
Cs2O | bdl–0.03 | bdl | bdl–0.02 | bdl–0.04 |
0.03 | 0.02 | 0.03 | ||
SrO | ||||
bdl | 0.03–0.33 | bdl-0.05 | bdl | bdl-0.04 |
0.15 | 0.03 | 0.03 | ||
Total | 100.2–101.0 | 99.3–100.5 | 99.5–100.9 | 99.4–100.4 |
100.7 | 99.8 | 100.2 | 99.9 | |
Formula units | ||||
Si | 2.96–3.00 | 2.82–2.99 | 2.96–2.99 | 2.85–3.00 |
2.99 | 2.95 | 2.98 | 2.92 | |
Al | 0.99–1.02 | 1.01–1.17 | 1.00–1.03 | 1.00–1.15 |
1.00 | 1.05 | 1.01 | 1.07 | |
Fe | 0.001–0.002 | 0.001–0.002 | 0.001–0.001 | bdl–0.002 |
0.001 | 0.001 | 0.001 | 0.001 | |
Mn | bdl–0.000 | bdl–0.001 | bdl–0.001 | bdl–0.001 |
0.000 | 0.001 | 0.001 | 0.001 | |
Ca | bdl–0.000 | 0.01–0.16 | 0.00–0.00 | 0.00–0.13 |
0.000 | 0.04 | 0.00 | 0.06 | |
Na | 0.03–0.08 | 0.86–1.02 | 0.04–0.05 | 0.85–1.01 |
0.05 | 0.98 | 0.04 | 0.95 | |
K | 0.95–1.04 | 0.003–0.007 | 1.02–0.97 | 0.002–0.037 |
0.99 | 0.005 | 0.99 | 0.013 | |
Rb | bdl–0.002 | bdl–0.002 | bdl–0.004 | bdl |
0.002 | 0.002 | 0.004 | ||
Cs | bdl–0.001 | bdl | bdl–0.000 | bdl–0.001 |
0.001 | 0.000 | 0.001 | ||
Sr | ||||
bdl | 0.001–0.006 | bdl-0.001 | bdl | bdl-0.001 |
0.003 | 0.001 | 0.001 | ||
Ab | 0.031–0.080 | 0.835–0.990 | 0.039–0.045 | 0.839–0.992 |
0.050 | 0.956 | 0.042 | 0.926 | |
An | 0.000–0.002 | 0.007–0.158 | 0.002–0.003 | 0.004–0.127 |
0.001 | 0.039 | 0.002 | 0.062 | |
Or | 0.920–0.969 | 0.003–0.007 | 0.953–0.959 | 0.002–0.036 |
0.950 | 0.005 | 0.956 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruk, N.N.; Gavryushkina, O.A.; Smirnov, S.Z.; Kruk, E.A.; Rudnev, S.N.; Semenova, D.V. Formation of High-Silica Leucocratic Granitoids on the Late Devonian Peraluminous Series of the Russian Altai: Mineralogical, Geochemical, and Isotope Reconstructions. Minerals 2023, 13, 496. https://doi.org/10.3390/min13040496
Kruk NN, Gavryushkina OA, Smirnov SZ, Kruk EA, Rudnev SN, Semenova DV. Formation of High-Silica Leucocratic Granitoids on the Late Devonian Peraluminous Series of the Russian Altai: Mineralogical, Geochemical, and Isotope Reconstructions. Minerals. 2023; 13(4):496. https://doi.org/10.3390/min13040496
Chicago/Turabian StyleKruk, Nikolay N., Olga A. Gavryushkina, Sergey Z. Smirnov, Elena A. Kruk, Sergey N. Rudnev, and Dina V. Semenova. 2023. "Formation of High-Silica Leucocratic Granitoids on the Late Devonian Peraluminous Series of the Russian Altai: Mineralogical, Geochemical, and Isotope Reconstructions" Minerals 13, no. 4: 496. https://doi.org/10.3390/min13040496