Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Absorption
2.2. Precipitation/Regeneration
2.3. Preparation
2.4. Parameter
2.4.1. CO2 Absorption Capacity
2.4.2. Degradation Efficiency
2.4.3. Conversion Efficiency
3. Results
3.1. Characteristics of CO2 Absorption
3.2. Characteristics of CO2 Conversion
4. Discussion
4.1. Absorption Behavior
4.2. Degradation Efficiency
4.3. Conversion Efficiency
4.4. Optimization of Multicycle IAM Operation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzanedo, R.D.; Manning, P. COVID-19: Lessons for the climate change emergency. Sci. Total Env. 2020, 742, 140563. [Google Scholar] [CrossRef] [PubMed]
- Aktar, M.A.; Alam, M.M.; Al-Amin, A.Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19. Sustain. Prod. Consum. 2021, 26, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.P.; Hoang, A.T.; Ölçer, A.I.; Huynh, T.T. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energ. Source Part A 2021, 1, 1–4. [Google Scholar] [CrossRef]
- O’Brien, G.; O’keefe, P.; Rose, J.; Wisner, B. Climate change and disaster management. Disasters 2006, 30, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Smil, V. Energy Transitions: Global and National Perspectives, 2nd ed.; ABC-CLIO: Santa Barbara, CA, United States, 2016; pp. 23–74. [Google Scholar]
- Shalaeva, D.S.; Kukartseva, O.I.; Tynchenko, V.S.; Kukartsev, V.V.; Aponasenko, S.V.; Stepanova, E.V. Analysis of the Development of Global Energy Production and Consumption by Fuel Type in Various Regions of the World. In Proceedings of the Name of the Materials Science and Engineering, Boston, MA, USA, 13–14 October 2020. [Google Scholar]
- Liu, W.; Teng, L.; Rohani, S.; Qin, Z.; Zhao, B.; Xu, C.C.; Ren, S.; Liu, Q.; Liang, B. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Tiseo, I. Annual production of plastics worldwide from 1950 to 2020 (in million metric tons). Stat. Portal 2021, 10, 2021. [Google Scholar]
- Legg, S. IPCC, 2021: Climate change 2021-the physical science basis. Interaction 2021, 49, 44–45. [Google Scholar]
- Bataille, C.; Åhman, M.; Neuhoff, K.; Nilsson, L.J.; Fischedick, M.; Lechtenböhmer, S.; Solano-Rodriquez, B.; Denis-Ryang, A.; Stieberth, S.; Waismana, H.; et al. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J. Clean. Prod. 2018, 187, 960–973. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, C.J. The 2015 Paris climate change conference: COP21. Sci. Prog. 2016, 9, 97–104. [Google Scholar] [CrossRef]
- Bachu, S. Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada. Int. J. Greenh. Gas Control 2016, 44, 152–165. [Google Scholar] [CrossRef]
- Rodrigues, C.; Pinheiro, H.; de Sousa, M.L. Clean Energy Transition Challenge: The Contributions of Geology. Afford. Clean Energy 2022, 47. [Google Scholar] [CrossRef]
- Aleluia, J.; Tharakan, P.; Chikkatur, A.P.; Shrimali, G.; Chen, X. Accelerating a clean energy transition in Southeast Asia: Role of governments and public policy. Renew. Sustain. Energy Rev. 2022, 159, 112226. [Google Scholar] [CrossRef]
- IEA. Putting CO2 to Use. Paris, 2019. Available online: https://www.iea.org/reports/putting-co2-to-use (accessed on 9 December 2022).
- Valluri, S.; Claremboux, V.; Kawatra, S. Opportunities and challenges in CO2 utilization. J. Environ. Sci. 2022, 113, 322–344. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z. Developments on CO2-utilization technologies. Clean Energy 2019, 3, 85–100. [Google Scholar]
- Meng, J.; Liao, W.; Zhang, G. Emerging CO2-mineralization technologies for co-utilization of industrial solid waste and carbon resources in China. Minerals 2021, 11, 274. [Google Scholar] [CrossRef]
- Kang, D.; Jo, H.; Lee, M.G.; Park, J. Carbon dioxide utilization using a pretreated brine solution at normal temperature and pressure. Chem. Eng. J. 2016, 284, 1270–1278. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Gierke, J.S.; Kawatra, S.K.; Eisele, T.C.; Sutter, L.L. Carbon dioxide sequestration in cement kiln dust through mineral carbonation. Environ. Sci. Technol. 2009, 43, 1986–1992. [Google Scholar] [CrossRef]
- Eloneva, S.; Said, A.; Fogelholm, C.J.; Zevenhoven, R. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl. Energy 2012, 90, 329–334. [Google Scholar] [CrossRef]
- Thamsiriprideeporn, C.; Suekane, T. Investigation and development of the multicycle of CO2 mineralization with wastewater under standard conditions. Greenh. Gases Sci. Technol. 2021, 12, 67–84. [Google Scholar] [CrossRef]
- Thamsiriprideeporn, C.; Suekane, T. Effects of alkanolamine absorbents in integrated absorption–mineralization. Minerals 2022, 12, 1386. [Google Scholar] [CrossRef]
- Wang, Y.; Song, L.; Ma, K.; Liu, C.; Tang, S.; Yan, Z.; Yue, H.; Liang, B. An integrated absorption–mineralization process for CO2 capture and sequestration: Reaction mechanism, recycling stability, and energy evaluation. ACS Sustain. Chem. Eng. 2021, 9, 16577–16587. [Google Scholar] [CrossRef]
- Yu, C.; Huang, C.; Tan, C. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Rochelle, G.T. Absorption-Based Post-Combustion Capture of Carbon Dioxide; Conventional amine scrubbing for CO2 capture; Woodhead Publishing: Sawston, UK, 2016; pp. 35–67. [Google Scholar]
- Li, Y.N.; He, L.N.; Diao, Z.F.; Yang, Z.Z. Carbon capture with simultaneous activation and its subsequent transformation. Adv. Inorg. Chem. 2014, 66, 289–345. [Google Scholar]
- Vega, F.; Cano, M.; Camino, S.; Fernández, L.M.G.; Portillo, E.; Navarrete, B. Solvents for carbon dioxide capture. Carbon Dioxide Chem. Capture Oil Recovery 2018, 1, 142–163. [Google Scholar]
- Teir, S.; Eloneva, S.; Fogelholm, C.J.; Zevenhoven, R. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 2007, 32, 528–539. [Google Scholar] [CrossRef]
- Soliman, M.N.; Guen, F.Z.; Ahmed, S.A.; Saleem, H.; Khalil, M.J.; Zaidi, S.J. Energy consumption and environmental impact assessment of desalination plants and brine disposal strategies. Process Saf. Environ. Prot. 2021, 147, 589–608. [Google Scholar] [CrossRef]
- Samco Technologies, Inc. How Much Does It Cost to Treat Brine for Reuse and/or Disposal? 2018. Available online: https://samcotech.com/cost-treat-brine-reuse-disposal/ (accessed on 10 December 2022).
- Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 2016, 380, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Q.; Clements, B.; Li, B. Emerging new types of absorbents for Postcombustion carbon capture. Recent Adv. Carbon Capture Storage 2017, 91–116. [Google Scholar] [CrossRef] [Green Version]
- Saeed, I.M.; Alaba, P.; Mazari, S.A.; Basirun, W.J.; Lee, V.S.; Sabzoi, N. Opportunities and challenges in the development of monoethanolamine and its blends for post-combustion CO2 capture. Int. J. Greenh. Gas Control 2018, 79, 212–233. [Google Scholar] [CrossRef]
- Salih, H.A.; Pokhrel, J.; Reinalda, D.; AlNashf, I.; Khaleel, M.; Vega, L.F.; Karanikolos, G.N.; Zahra, M.A. Hybrid–Slurry/Nanofluid systems as alternative to conventional chemical absorption for carbon dioxide capture: A review. Int. J. Greenh. Gas Control 2021, 110, 103415. [Google Scholar] [CrossRef]
- Karamé, I.; Janah, S.; Hassan, S. Carbon Dioxide Chemistry, Capture and Oil Recovery, 1st ed.; Books on Demand: London, UK, 2018; pp. 142–163. [Google Scholar]
- Zhang, J.; Nwani, O.; Tan, Y.; Agar, D.W. Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction. Chem. Eng. Res. Des. 2011, 89, 1190–1196. [Google Scholar] [CrossRef]
- Kim, Y.E.; Lim, J.A.; Jeong, S.K.; Yoon, Y.I.; Bae, S.T.; Nam, S.C. Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions. Bull. Korean Chem. Soc. 2013, 34, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Putta, K.R.; Svendsen, H.F.; Knuutila, H.K. Kinetics of CO2 absorption in to aqueous MEA solutions near equilibrium. Energy Procedia 2017, 114, 1576–1583. [Google Scholar] [CrossRef]
- Shakir, S.W.; Wiheeb, A.D.; Ahmed, S.A. Tertiary Amine Blend for CO2 Capture: A Kinetic Investigation Using Monoethanolamine, Triethanolamine and Piperazine. In Proceedings of the Materials Science and Engineering, Diyala, Iraq, 16–17 December 2020. [Google Scholar]
- Littel, R.J.; Versteeg, G.F.; Van Swaaij, W.P.M. Kinetics of CO2 with primary and secondary amines in aqueous solutions—I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines. Chem. Eng. Sci. 1992, 47, 2027–2035. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bautista, A.; Palmero, E.M.; Moya, A.J.; Gómez-Díaz, D.; La Rubia, M.D. Characterization of alkanolamine blends for carbon dioxide absorption. Corrosion and regeneration studies. Sustainability 2021, 13, 4011. [Google Scholar] [CrossRef]
- Wincek, R.T.; Miller, B.G.; Johnson, D.K.; Decker, G.E.; Hart, P.J.; DE, W.P.U.G.N.; No, S. On-Site Treatment of Brine. Hart Resource Technologies, Inc. 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.2188&rep=rep1&type=pdf (accessed on 1 January 2023).
- Smit, B.; Reimer, J.A.; Oldenburg, C.M.; Bourg, I.C. Introduction to Carbon Capture and Sequestration; World Scientific: Singapore, 2014. [Google Scholar]
- Steel, K.M.; Alizadehhesari, K.; Balucan, R.D.; Bašíc, B. Conversion of CO2 into mineral carbonates using a regenerable buffer to control solution pH. Fuel 2013, 111, 40–47. [Google Scholar] [CrossRef]
- Yiin, B.S.; Margerum, D.W. Non-metal redox kinetics: Reactions of trichloramine with ammonia and with dichloramine. Inorg. Chem. 1990, 29, 2135–2141. [Google Scholar] [CrossRef]
- Yamasaki, H.; Kamei, S.; Kuroki, T.; Okubo, M. Adsorbed CO2 dissociation using argon and helium nonthermal plasma flows. IEEE Trans. Ind. Appl. 2020, 56, 6983–6989. [Google Scholar] [CrossRef]
- Huertas, J.I.; Gomez, M.D.; Giraldo, N.; Garzón, J. CO2 absorbing capacity of MEA. J. Chem. 2015, 2015, 965015. [Google Scholar] [CrossRef] [Green Version]
- Yeh, A.C.; Bai, H. Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions. Sci. Total Environ. 1999, 228, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Fang, M.; Zhong, L.; Zhang, C.; Luo, Z. Semi-batch experimental study on CO2 absorption characteristic of aqueous ammonia. Energy Procedia 2011, 4, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.J. Overview of Conversion of Greenhouse Gas Carbon Dioxide to Hydrocarbons. In Proceedings of the Annual Gas Processing Symposium, Doha, Qatar, 11–14 January 2010. [Google Scholar]
- Rochelle, G.T. Thermal degradation of amines for CO2 capture. Curr. Opin. Chem. Eng. 2012, 1, 183–190. [Google Scholar] [CrossRef]
- Reynolds, A.J.; Verheyen, T.V.; Meuleman, E. Degradation of amine-based solvents. In Absorption-Based Post-Combustion Capture of Carbon Dioxide, 1st ed.; Feron, P.H.M., Ed.; Woodhead: Cambridge, UK, 2016; pp. 399–423. [Google Scholar]
- Vevelstad, S.J.; Eide-Haugmo, I.; da Silva, E.F.; Svendsen, H.F. Degradation of MEA; a theoretical study. Energy Procedia 2011, 4, 1608–1615. [Google Scholar] [CrossRef] [Green Version]
- Veetil, S.K.P.; Hitch, M. Aqueous mineral carbonation of ultramafic material: A pre-requisite to integrate into mineral extraction and tailings management operation. Environ. Sci. Pollut. Res. 2021, 28, 29096–29109. [Google Scholar] [CrossRef]
- Kakizawa, M.; Yamasaki, A.; Yanagisawa, Y. A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 2001, 26, 341–354. [Google Scholar] [CrossRef]
- Gerdemann, S.J.; Dahlin, D.C.; O’Connor, W.K.; Penner, L.R.; Rush, G.E. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals. In Proceedings of the 29th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL, USA, 18–22 April 2004. [Google Scholar]
- Teir, S.; Eloneva, S.; Zevenhoven, R. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Convers. Manag. 2005, 46, 2954–2979. [Google Scholar] [CrossRef]
- Knaak, J.B.; Leung, H.W.; Stott, W.T.; Busch, J.; Bilsky, J. Toxicology of mono-, di-, and triethanolamine. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 1st ed.; Ware, G.W., Ed.; Springer: New York, NY, USA, 1997; Volume 149, pp. 1–86. [Google Scholar]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Cosmetic Ingredient Review Expert Panel; Andersen, F.A. Final amended report on safety assessment on aminomethyl propanol and aminomethyl propanediol. Int. J. Toxicol. 2009, 1, 141S–161S. [Google Scholar] [CrossRef] [PubMed]
- Intratec Solutions. Monoethanolamine and Diethanolamine Price. Available online: https://www.intratec.us/chemical-markets/ (accessed on 24 March 2023).
- ChemAnalyst. Triethanolamine Price. Available online: https://www.chemanalyst.com/Pricing-data/ (accessed on 24 March 2023).
- MadeInChina. Aminomethyl Propanol Price. Available online: https://www.made-in-china.com/ (accessed on 24 March 2023).
- Chen, P.C.; Cho, H.H.; Jhuang, J.H.; Ku, C.H. Selection of mixed amines in the CO2 capture process. C 2021, 7, 25. [Google Scholar] [CrossRef]
Puthiya Veetil et al., (2021) [55] | Kakizawa et al., (2001) [56] | Kakizawa et al., (2001) [56] | Gerdemann et al., (2004) [57] | Teir et al., (2005) [58] | |
---|---|---|---|---|---|
Conditions | 23 °C and 1 atm | 25 °C and 1 atm | 25 °C and 74 atm | 185 °C and 150 atm | 60–80 °C and 1 atm |
Method | indirect aqueous carbonation | indirect carbonation with acetic acid | indirect carbonation with acetic acid | direct aqueous carbonation | indirect carbonation with acetic acid |
Conversion efficiency | 60% | 40% | 75% | >70% | 95.6%–98.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thamsiriprideeporn, C.; Tetsuya, S. Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization. Minerals 2023, 13, 487. https://doi.org/10.3390/min13040487
Thamsiriprideeporn C, Tetsuya S. Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization. Minerals. 2023; 13(4):487. https://doi.org/10.3390/min13040487
Chicago/Turabian StyleThamsiriprideeporn, Chanakarn, and Suekane Tetsuya. 2023. "Development of CO2 Absorption Using Blended Alkanolamine Absorbents for Multicycle Integrated Absorption–Mineralization" Minerals 13, no. 4: 487. https://doi.org/10.3390/min13040487