Dehydration of Diaspore and Goethite during Low-Temperature Heating as Criterion to Separate Unheated from Heated Rubies and Sapphires
Abstract
:1. Introduction
2. Materials and Methods
3. Experiments and Results
3.1. Heating of Diaspore in Ruby and Sapphires
3.2. Heating of Goethite in Ruby
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, R.W.; Manorotkul, W.; Hughes, E.B. Ruby & Sapphire: A Gemologist’s Guide; RWH Publishing/Lotus Publishing: Bangkok, Thailand, 2017; p. 886. [Google Scholar]
- Notari, F.; Hainschwang, T.; Caplan, C.; Ho, K. The heat treatment of corundum at moderate temperature. InColor Mag. 2019, 42, 76–85. [Google Scholar]
- Nassau, K. Heat treating ruby and sapphires: Technical aspects. Gems Gemol. 1981, 17, 121–131. [Google Scholar] [CrossRef]
- Themelis, T. The Heat Treatment of Ruby and Sapphire; Publisher Gemlab Inc.: Wheatland, PA, USA, 1992. [Google Scholar]
- GIT. A brief history of gem corundum heat treatment in Thailand. InColor Mag. 2019, 68–74, Spring issue. [Google Scholar]
- Karampelas, S.; Hennebois, U.; Mevellec, J.-Y.; Pardieu, V.; Delaunay, A.; Fritsch, E. Pink to purple sapphires from Ilakaka, Madagascar: Insights to separate unheated from heated samples. Minerals 2023, 13, 704. [Google Scholar] [CrossRef]
- Hughes, E.B.; Vertriest, W. A Canary in the ruby mine: Low-temperature heat treatment experiments on ruby. Gems Gemol. 2022, 58, 400–423. [Google Scholar] [CrossRef]
- Smith, C.P. A contribution to understanding the infrared spectra of rubies from Mong Hsu, Myanmar. J. Gemmol. 1995, 24, 321–335. [Google Scholar] [CrossRef]
- Smith, C.P. Infrared spectra of gem corundum. Gems Gemol. 2006, 42, 92–93. [Google Scholar]
- Beran, A.; Rossman, G.R. OH in naturally occurring corundum. Eur. J. Mineral. 2006, 18, 441–447. [Google Scholar] [CrossRef]
- Krzemnicki, M.S. New Research by SSEF Studies Methods for Detecting Low-Temperature Heated Rubies from Mozambique. SSEF Press Release, 2018. Available online: https://www.ssef.ch/detecting-low-temperature-heated-rubies-from-mozambique/ (accessed on 1 July 2023).
- Saeseaw, S.; Khowpong, C.; Vertriest, W. Low-temperature heat treatment of pink sapphires from Ilakaka, Madagascar. Gems Gemol. 2020, 56, 448–457. [Google Scholar] [CrossRef]
- Balmer, W.; Leelawatanasuk, T.; Atichat, W.; Wathanakul, P.; Somboon, C. Update on FTIR characteristics of heated and unheated yellow sapphire. In Proceedings of the GIT Conference, Bangkok, Thailand, 6–9 December 2006; Volume 6–7, p. 91. [Google Scholar]
- Balmer, W.A. Petrology, Geochemistry, and Gemological Characteritics of Marble-Hosted Ruby Deposits of the Morogoro Region, Tanzania. Unpublished. Ph.D. Thesis, Depart. of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 2011; p. 185p. [Google Scholar]
- Wang, W.; Scarratt, K.; Emmett, J.L.; Breeding, C.M.; Douthit, T.R. The effects of heat treatment on zircon inclusions in Madagascar sapphires. Gems Gemol. 2006, 42, 134–150. [Google Scholar] [CrossRef]
- Krzemnicki, M.S.; Lefèvre, P.; Zhou, W.; Wang, H.A.O. Zircon inclusions in unheated pink sapphires from Ilakaka, Madagascar: A Raman spectroscopic study. In Proceedings of the International Gemmological Conference, Online, 20–21 November 2021. [Google Scholar]
- Saeseaw, S.; Kongsomart, B.; Atikarnsakul, U.; Khowpong, C.; Vertriest, W.; Soonthorntantikul, W. Update on “Low-Temperature” Heat Treatment of Mozambican Ruby: A Focus on Inclusions and Ftir Spectroscopy. GIA Lab Report. 2018. Available online: https://www.gia.edu/doc/low_HT_Moz_report.pdf (accessed on 1 July 2023).
- Pardieu, V.; Saeseaw, S.; Detroyat, S.; Raynaud, V.; Sangsawong, S.; Bhusrisom, T.; Engniwat, S.; Muyal, J. GIA Lab Reports on Low-Temperature Heat Treatment of Mozambique Ruby. GIA Lab Report, 2015. Available online: https://www.gia.edu/gia-news-research-low-temperature-heat-treatment-mozambique-ruby (accessed on 25 September 2023).
- Nasdala, L.; Irmer, G.; Wolf, D. The degree of metamictization in zircon: A Raman spectroscopic study. Eur. J. Mineral. 1995, 7, 471–478. [Google Scholar] [CrossRef]
- Nasdala, L.; Wenzel, M.; Vavra, G.; Irmer, G.; Wenzel, T.; Kober, B. Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 2001, 141, 125–144. [Google Scholar] [CrossRef]
- Xu, W.; Krzemnicki, M.S. Raman spectroscopic investigation of zircon in gem-quality sapphire: Application in origin determination. J. Raman Spectrosc. 2021, 52, 1011–1021. [Google Scholar] [CrossRef]
- Deflandre, M.M. La structure cristalline du diaspore. Bull. Minéralogie 1932, 55, 140–165. [Google Scholar] [CrossRef]
- Goldsztaub, M.S. Etude de quelques derives de l’oxyde ferrique (FeOOH, FeO2Na, FeOCl); determination de leurs structures. Bull. De Minéralogie 1935, 58, 6–76. [Google Scholar]
- Rooksby, H.P. X-ray Identification and Crystal Structure of Clay Minerals; Brindley, G.W., Ed.; Mineralogical Society: London, UK, 1951; p. 250. [Google Scholar]
- Ervin, G., Jr. Structural interpretation of the diaspore–corundum and boehmite–a-Al2O3 transitions. Acta Crystallogr. 1952, 5, 103–108. [Google Scholar] [CrossRef]
- De Faria, L.J.; Gay, P. Disordered structural states in the dehydration of goethite and diaspore. Mineral. Mag. 1962, 33, 37–41. [Google Scholar]
- De Faria, L.J. Dehydration of goethite and diaspore. Z. Krist. 1963, 119, 176–203. [Google Scholar] [CrossRef]
- Ruan, H.D.; Frost, R.L.; Kloprogge, J.T.; Duong, L. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 967–981. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Ruan, H.D.; Frost, R.L. Thermal decomposition of bauxite minerals: Infrared emission spectroscopy of gibbsite, boehmite and diaspore. J. Mater. Sci. 2002, 37, 1121–1129. [Google Scholar] [CrossRef]
- Iwai, S.-I.; Yamamoto, H.; Morikawa, H.; Isobel, M. Topotactic thermal-transformation of diaspore to corundum. Mineral. J. 1973, 7, 137–158. [Google Scholar] [CrossRef]
- Carim, A.H.; Rohrer, G.S.; Dando, N.R.; Tzeng, S.-Y.; Rohrer, C.L.; Perrotta, A.J. Conversion of diaspore to corundum: A new alpha-alumina transformation sequence. J. Am. Ceram. Soc. 1997, 80, 2677–2680. [Google Scholar] [CrossRef]
- Pomiès, M.P.; Morin, G.; Vigneuad, C. XRD study of the goethite-hematite transformation: Application to the identification of heated prehistoric pigments. Eur. J. Solid State Inorg. Chem. 1998, 35, 9–25. [Google Scholar] [CrossRef]
- Grevel, K.D.; Burchard, M.; Fasshauer, D.W. Pressure-volume-temperature behavior of diaspore and corundum: An in-situ X-ray diffraction study comparing different pressure media. J. Geophys. Res. Solid Earth 2000, 105, 27877. [Google Scholar] [CrossRef]
- Löffler, L.; Mader, W. Transformation mechanism of the dehydration of diaspore. J. Am. Ceram. Soc. 2003, 86, 534–540. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- De Faria, D.L.A.; Lopes, F.N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 2007, 45, 117–121. [Google Scholar] [CrossRef]
- Gialanella, S.; Girardi, F.; Ischia, G.; Lonardelli, I.; Mattarelli, M.; Montagna, M. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 2010, 102, 867–873. [Google Scholar] [CrossRef]
- Canımoglu, A.; Garcia-Guinea, J.; Correcher, V.; Karabulut, Y.; Tuncer, Y.; Can, N. Luminescent, structural, and thermal properties of the unusual “Anatolian” diaspore (zultanite) from Turkey. Spectrosc. Lett. 2014, 47, 292–300. [Google Scholar] [CrossRef]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Koivula, J.I. Goethite inclusion alteration during the heat conversion of amethyst to citrine. Aust. Gemmol. 1987, 16, 271–272. [Google Scholar]
- Kammerling, R.C.; Koivula, J.I. Thermal alteration of Inclusions in “rutilated” topaz. Gems Gemol. 1989, 25, 165–167. [Google Scholar] [CrossRef]
- Koivula, J.I. Useful visual clue indicating corundum heat treatment. Gems Gemol. 2013, 49, 160–161. [Google Scholar] [CrossRef]
- Sripoonjan, T.; Wanthanachaisaeng, B.; Leelawatanasuk, T. Phase transformation of epigenetic iron staining: Indication of low-temperature heat treatment in Mozambique ruby. J. Gemmol. 2016, 35, 156–161. [Google Scholar] [CrossRef]
- Porto, S.P.S.; Krishnan, R.S. Raman Effect of Corundum. J. Chem. Phys. 1967, 47, 1009–1012. [Google Scholar] [CrossRef]
- Delattre, S.; Balan, E.; Lazzeri, M.; Blanchard, M.; Guillaumet, M.; Beyssac, O.; Haussühl, E.; Winkler, B.; Salie, E.K.H.; Calas, G. Experimental and theoretical study of the vibrational properties of diaspore (α-AlOOH). Phys. Chem. Miner. 2012, 39, 93–102. [Google Scholar] [CrossRef]
- Abrashev, M.V.; Ivanov, V.G.; Stefanov, B.S.; Todorov, N.D.; Rosell, J.; Skumrye, V. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition. J. Appl. Phys. 2020, 127, 205108. [Google Scholar] [CrossRef]
- Beattie, I.R.; Gibson, T.R. The single crystal Raman spectra of nearly opaque materials. Iron (III) oxide and chromium (III) oxide. J. Chem. Soc. 1970, A 6, 980–986. [Google Scholar] [CrossRef]
- Frost, R.L.; Kloprogge, J.T.; Russell, S.C.; Szetu, J. Dehydroxylation and the vibrational spectroscopy of aluminium (oxo)hydroxides using infrared emission spectroscopy. Part III: Diaspore. Appl. Spectrosc. 1999, 53, 829–835. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Zou, X.; Qing, C.; Frost, R. Thermal treatment of natural goethite: Thermal transformation and physical properties. Thermochim. Acta 2013, 568, 115–121. [Google Scholar] [CrossRef]
- Schmetzer, K.; Medenbach, O. Examination of three-phase inclusions in colorless, yellow, and blue sapphires from Sri Lanka. Gems Gemol. 1988, 24, 107–111. [Google Scholar] [CrossRef]
- Abraham, J.S.D. Heat treating corundum: The Bangkok operation. Gems Gemol. 1982, 18, 79–82. [Google Scholar] [CrossRef]
- Emmett, J.L.; Douthit, T.R. Heat treating the sapphires of Rock Creek, Montana. Gems Gemol. 1993, 29, 250–272. [Google Scholar] [CrossRef]
Sample | ID | Weight (ct) | Shape | Colour | Origin | Heating | Max T °C | Colour after Heating | |
---|---|---|---|---|---|---|---|---|---|
97003 | Diaspore | 0.40 | flat fragment | colourless | Muğla Prov., Turkey | Electric furnace | 800 | whitish | |
126993_6 | Ruby with diaspore | 0.19 | polished slab | red | Mogok, Myanmar | Heating stage | 700 | no change | |
106424_21 | Sapphire with diaspore | 1.03 | faceted | blue | Mogok, Myanmar | Heating stage | 700 | no change | |
85933_C3 | Ruby with goethite | 0.52 | polished slab | red | Montepuez, Mozambique | Heating stage | 400 | no change | |
120553_B | Ruby with goethite | 1.31 | polished slab | red | Montepuez, Mozambique | Electric furnace | 1000 | no change |
Samples 126993_6 (ruby with diaspore), 106424_21 (sapphire with diaspore), and 85933_C3 (ruby with goethite) were heated in air to different temperatures using a heating stage (Linkam TS-1500) fixed to the Raman sample stage. |
|
Samples 97003 (diaspore) and 120553_B (ruby with goethite) were heated in air to different temperatures using an electric muffle furnace (Nabertherm LHT 18). |
|
Diaspore | Corundum | Goethite | Hematite |
---|---|---|---|
157 | 119 * | ||
247 | 223 | ||
331 | 301 | 291 | |
378 | |||
447 | 416 | 394–400 | 411 |
500 | 480 | 500 | |
553 | 615 | ||
665 | 643 | 683 | 665 |
792 | 750 | ||
1192 | 1320 | 1320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemnicki, M.S.; Lefèvre, P.; Zhou, W.; Braun, J.; Spiekermann, G. Dehydration of Diaspore and Goethite during Low-Temperature Heating as Criterion to Separate Unheated from Heated Rubies and Sapphires. Minerals 2023, 13, 1557. https://doi.org/10.3390/min13121557
Krzemnicki MS, Lefèvre P, Zhou W, Braun J, Spiekermann G. Dehydration of Diaspore and Goethite during Low-Temperature Heating as Criterion to Separate Unheated from Heated Rubies and Sapphires. Minerals. 2023; 13(12):1557. https://doi.org/10.3390/min13121557
Chicago/Turabian StyleKrzemnicki, Michael S., Pierre Lefèvre, Wei Zhou, Judith Braun, and Georg Spiekermann. 2023. "Dehydration of Diaspore and Goethite during Low-Temperature Heating as Criterion to Separate Unheated from Heated Rubies and Sapphires" Minerals 13, no. 12: 1557. https://doi.org/10.3390/min13121557
APA StyleKrzemnicki, M. S., Lefèvre, P., Zhou, W., Braun, J., & Spiekermann, G. (2023). Dehydration of Diaspore and Goethite during Low-Temperature Heating as Criterion to Separate Unheated from Heated Rubies and Sapphires. Minerals, 13(12), 1557. https://doi.org/10.3390/min13121557