Magnetic Inversion through a Modified Adaptive Differential Evolution
Abstract
:1. Introduction
2. Theory and Method
2.1. Forward Magnetic Modelling
2.2. Improved Differential Evolution
2.2.1. Classic Differential Evolution
2.2.2. JADE Algorithm
- Mutation strategy.
- Control parameters.
2.2.3. The Proposed JADE
- The new generation mechanism is as follows.
- Mutation strategy based on direction information is as follows.
2.3. Magnetic Inversion
2.3.1. Inversion Method
2.3.2. Adaptation of Regularization Factor
3. Test and Application
3.1. Synthetic Data
3.2. Synthetic Data with Noise
3.3. Field Case: Iron Deposit Prospection of Shihe, Shanxi, China
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinze, W.J.; Frese, R.V.; Saad, A.H. Gravity and Magnetic Exploration: Principles, Practices, and Applications; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Bhattacharyya, B.K. A generalized multibody model for inversion of magnetic anomalies. Geophysics 1980, 45, 255–270. [Google Scholar] [CrossRef]
- Azadi, M.; Abedi, M.; Norouzi, G.-H. Two-step inversion of airborne geophysical data: A stable downward continuation approach for physical modelling. Acta Geophys. 2022, 70, 121–139. [Google Scholar] [CrossRef]
- Afshar, A.; Norouzi, G.-H.; Moradzadeh, A.; Riahi, M.-A. Application of magnetic and gravity methods to the exploration of sodium sulfate deposits, case study: Garmab mine, Semnan, Iran. J. Appl. Geophys. 2018, 159, 586–596. [Google Scholar] [CrossRef]
- Yao, C. Iterative 3D gravity and magnetic inversion for physical properties. In SEG Technical Program Expanded Abstracts 2007; SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2007; pp. 805–810. [Google Scholar]
- Meng, Z. Three-dimensional potential field data inversion with L0 quasinorm sparse constraints. Geophys. Prospect. 2018, 66, 626–646. [Google Scholar] [CrossRef]
- Stocco, S.; Godio, A.; Sambuelli, L. Modelling and compact inversion of magnetic data: A Matlab code. Comput. Geosci. 2009, 35, 2111–2118. [Google Scholar] [CrossRef]
- Zuo, B.; Hu, X.; Cai, Y.; Liu, S. 3D magnetic amplitude inversion in the presence of self-demagnetization and remanent magnetization. Geophysics 2019, 84, J69–J82. [Google Scholar] [CrossRef]
- Montesinos, F.G.; Blanco-Montenegro, I.; Arnoso, J. Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm. Phys. Earth Planet. Inter. 2016, 253, 74–87. [Google Scholar] [CrossRef]
- Pace, F.; Santilano, A.; Godio, A. A Review of Geophysical Modeling Based on Particle Swarm Optimization. Surv. Geophys. 2021, 42, 505–549. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Acharya, T. A very fast simulated annealing method for inversion of magnetic anomaly over semi-infinite vertical rod-type structure. Model. Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Liu, S.; Liang, M.; Hu, X. Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China. Geophysics 2018, 83, J43–J59. [Google Scholar] [CrossRef]
- Essa, K.S.; Elhussein, M. PSO (Particle Swarm Optimization) for Interpretation of Magnetic Anomalies Caused by Simple Geometrical Structures. Pure Appl. Geophys. 2018, 175, 3539–3553. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Dhabal, S.; Chakrabarti, R.; Mishra, N.S.; Venkateswaran, P. An improved image denoising technique using differential evolution-based salp swarm algorithm. Soft Comput. 2021, 25, 1941–1961. [Google Scholar] [CrossRef]
- Rajesh, C.; Kumar, S. An evolutionary block based network for medical image denoising using Differential Evolution. Appl. Soft Comput. 2022, 121, 108776. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, F. DESAC: Differential evolution sample consensus algorithm for image registration. Appl. Intell. 2022, 52, 15980–16003. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, Q.; Wang, Z.; Zhang, J.A. Adaptive decomposition-based evolutionary approach for multiobjective sparse reconstruction. Inf. Sci. 2018, 462, 141–159. [Google Scholar] [CrossRef]
- Erkoc, M.E.; Karaboga, N. Evolutionary algorithms for sparse signal reconstruction. Signal Image Video Process. 2019, 13, 1293–1301. [Google Scholar] [CrossRef]
- Abou El Ela, A.A.; Abido, M.A.; Spea, S.R. Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 2010, 80, 878–885. [Google Scholar] [CrossRef]
- Li, S.; Gong, W.; Hu, C.; Yan, X.; Wang, L.; Gu, Q. Adaptive constraint differential evolution for optimal power flow. Energy 2021, 235, 121362. [Google Scholar] [CrossRef]
- Li, S.; Gong, W.; Wang, L.; Yan, X.; Hu, C. Optimal power flow by means of improved adaptive differential evolution. Energy 2020, 198, 117314. [Google Scholar] [CrossRef]
- Piotrowski, A.P. Differential Evolution algorithms applied to Neural Network training suffer from stagnation. Appl. Soft Comput. 2014, 21, 382–406. [Google Scholar] [CrossRef]
- Baioletti, M.; Di Bari, G.; Milani, A.; Poggioni, V. Differential Evolution for Neural Networks Optimization. Mathematics 2020, 8, 69. [Google Scholar] [CrossRef]
- Ekinci, Y.L.; Özyalın, Ş.; Sındırgı, P.; Balkaya, Ç.; Göktürkler, G. Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm. J. Geophys. Eng. 2017, 14, 1492–1508. [Google Scholar] [CrossRef]
- Du, W.; Cheng, L.; Li, Y. lp Norm Smooth Inversion of Magnetic Anomaly Based on Improved Adaptive Differential Evolution. Appl. Sci. 2021, 11, 1072. [Google Scholar] [CrossRef]
- Balkaya, Ç.; Ekinci, Y.L.; Göktürkler, G.; Turan, S. 3D non-linear inversion of magnetic anomalies caused by prismatic bodies using differential evolution algorithm. J. Appl. Geophys. 2017, 136, 372–386. [Google Scholar] [CrossRef]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Song, T.; Hu, X.; Du, W.; Cheng, L.; Xiao, T.; Li, Q. Lp-Norm Inversion of Gravity Data Using Adaptive Differential Evolution. Appl. Sci. 2021, 11, 6485. [Google Scholar] [CrossRef]
- Zhou, Y.; Yi, W.; Gao, L.; Li, X. Adaptive differential evolution with sorting crossover rate for continuous optimization problems. IEEE Trans. Cybern. 2017, 47, 2742–2753. [Google Scholar] [CrossRef]
- Portniaguine, O.; Zhdanov, M.S. 3-D magnetic inversion with data compression and image focusing. Geophysics 2002, 67, 1532–1541. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. 3-D inversion of magnetic data. Geophysics 1996, 61, 394–408. [Google Scholar] [CrossRef]
- Lelièvre, P.G.; Oldenburg, D.W. Magnetic forward modelling and inversion for high susceptibility. Geophys. J. Int. 2006, 166, 76–90. [Google Scholar] [CrossRef]
- Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Das, S.; Mullick, S.S.; Suganthan, P.N. Recent advances in differential evolution—An updated survey. Swarm Evol. Comput. 2016, 27, 1–30. [Google Scholar] [CrossRef]
- Zheng, L.M.; Zhang, S.X.; Tang, K.S.; Zheng, S.Y. Differential evolution powered by collective information. Inf. Sci. 2017, 399, 13–29. [Google Scholar] [CrossRef]
- Cheng, L.; Xiao, T.; Hu, X.; Mohamed, A.W.; Liu, Y.; Du, W. Inversion of Gravity Data with Multiplicative Regularization Using an Improved Adaptive Differential Evolution. Minerals 2023, 13, 1027. [Google Scholar] [CrossRef]
- Sharma, S.P.; Biswas, A. Interpretation of self-potential anomaly over a 2D inclined structure using very fast simulated-annealing global optimization—An insight about ambiguity. Geophysics 2013, 78, WB3–WB15. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Joint inversion of surface and three-component borehole magnetic data. Geophysics 2000, 65, 540–552. [Google Scholar] [CrossRef]
Ores and Rocks | Sample Number | ) |
---|---|---|
Plagioclase amphibolite | 41 | |
Magnetite quartzite | 30 | |
Biotite granulite | 27 | |
Hornblende–plagioclase | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, T.; Cheng, L.; Xiao, T.; Hu, J.; Zhang, B. Magnetic Inversion through a Modified Adaptive Differential Evolution. Minerals 2023, 13, 1518. https://doi.org/10.3390/min13121518
Song T, Cheng L, Xiao T, Hu J, Zhang B. Magnetic Inversion through a Modified Adaptive Differential Evolution. Minerals. 2023; 13(12):1518. https://doi.org/10.3390/min13121518
Chicago/Turabian StyleSong, Tao, Lianzheng Cheng, Tiaojie Xiao, Junhao Hu, and Beibei Zhang. 2023. "Magnetic Inversion through a Modified Adaptive Differential Evolution" Minerals 13, no. 12: 1518. https://doi.org/10.3390/min13121518
APA StyleSong, T., Cheng, L., Xiao, T., Hu, J., & Zhang, B. (2023). Magnetic Inversion through a Modified Adaptive Differential Evolution. Minerals, 13(12), 1518. https://doi.org/10.3390/min13121518