Potential Soil Remineralizers from Silicate Rock Powders (SRP) as Alternative Sources of Nutrients for Agricultural Production (Amazon Region)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rocks and Quarrys
2.2. Sampling
2.3. Lithochemical Analysis
2.4. Petrographic Analysis
2.5. Granulometric Analysis
3. Results and Discussion
3.1. Água Branca Suite (EBAM Quarry/PB-01)
3.2. Apoteri Formation (Granada Mineração Quarry/PB-10)
3.3. Iricoumé Group (Samauma Quarry/PB-05)
3.4. Lithochemical Considerations and Agromineral Potential
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Swoboda, P.; Döring, T.F.; Hamer, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci. Total Environ. 2022, 807, 18. [Google Scholar] [CrossRef]
- Manning, D.A.C. How will minerals feed the world in 2050? Proc. Geol. Assoc. 2015, 126, 14–17. [Google Scholar] [CrossRef]
- ANDA. Principais Indicadores do Setor de Fertilizantes. Available online: https://anda.org.br/wp-content/uploads/2021/06/Principais_Indicadores_2020.pdf (accessed on 15 September 2023).
- Manning, D.A.C.; Theodoro, S.H. Enabling food security through use of local rocks and minerals. Extr. Ind. Soc. 2020, 7, 480–487. [Google Scholar] [CrossRef]
- Van Straaten, P.B. Agrogeology: The Use of Rocks for Crops; Enviroquest: Cambridge, UK, 2007; 426p. [Google Scholar]
- Brasil, Ministério da Agricultura Pecuária e Abastecimento—MAPA. Instrução Normativa n° 5, de 10 de março de 2016; MAPA: Brasília, Brazil, 2016; 8p. [Google Scholar]
- Brasil, Secretaria Especial de Assuntos Estratégicos—SAE. Plano Nacional de Fertilizantes 2050 (PNF 2050); SAE: Brasília, Brazil, 2021; 195p. [Google Scholar]
- Krahl, L.L. Mineral Formation and Element Release from Aluminosilicate Rocks Promoted by Maize Rhizosphere. Doctoral Thesis, Universidade de Brasília, Brasília, Brazil, 1 July 2020. [Google Scholar]
- Gillman, G.P.; Burkett, D.C.; Coventry, R.J. Amending highly weathered soils with finely ground basalt rock. Appl. Geochem. 2002, 17, 987–1001. [Google Scholar] [CrossRef]
- Melo, V.F.; Uchôa, S.C.P.; Dias, F.O.; Barbosa, G.F. Doses de basalto moído nas propriedades químicas de um Latossolo Amarelo distrófico da savana de Roraima. Acta Amaz. 2012, 42, 471–476. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Fonseca, J.A.; Balbinot, J.A.A.; Spagnollo, E. Efeito de pó de basalto no solo e em culturas anuais durante quatro safras, em sistema de plantio direto. Rev. Bras. Agropecu. Sustent. 2013, 3, 100–107. [Google Scholar]
- Alovisi, A.M.T.; Taques, M.M.; Alovisi, A.A.; Tokura, L.K.; Silva, R.S.; Piesanti, G.H.L. Alterações nos atributos químicos do solo com aplicação de pó de basalto. Acta Iguazu 2017, 6, 69–79. [Google Scholar]
- Alovisi, A.M.T.; Taques, M.M.; Alovisi, A.A.; Tokura, L.K.; Silva, R.S.; Piesanti, G.H.L.; Cassol, C.J. Rochagem como alternativa sustentável para a fertilização de solos. Rev. Gestão Sustentabilidade Ambient. 2020, 9, 918–932. [Google Scholar] [CrossRef]
- Colin, Y.; Nicolitch, O.; Turpault, M.P.; Uroz, S. Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl. Environ. Microbiol. 2017, 83, e02684-16. [Google Scholar] [CrossRef]
- Ribeiro, G.M.; Almeida, J.A.; Silva, L. Solubilização de fonolito, basalto e olivina melilitito em ácido cítrico e ácido acético. In Proceedings of the Anais do III Congresso Brasileiro de Rochagem, Brasília, Brazil, 8–11 November 2016; pp. 39–44. [Google Scholar]
- Uroz, S.; Kelly, L.C.; Turpault, M.P.; Lepleux, C.; Frey-Klett, P. The mineralosphere concept: Mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends Microbiol. 2015, 23, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Uroz, S.; Turpault, M.P.; Delaruell, C.; Mareschal, L.; Pierrat, J.C.; Frey-Klett, P. Minerals affect the specific diversity of forest soil bacterial communities. Geomicrobiol. J. 2012, 29, 88–98. [Google Scholar] [CrossRef]
- Cola, G.P.A.; Simão, J.B.P. Rochagem como forma alternativa na suplementação de potássio na agricultura agroecológica. Rev. Verde Agroecol. Desenvolv. Sustentável 2012, 7, 15–27. [Google Scholar]
- IBGE. Estimativas da População Residente no Brasil e Unidades da Federação Com Data de Referência em 1° de Julho de 2021. Available online: https://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2021/POP2021_20230710.pdf (accessed on 15 September 2023).
- Benevides Filho, P.R.R.; Blaskowski, A.E. Avaliação do Potencial Agromineral do Brasil: Eixo Manaus—Boa Vista; CPRM: Manaus, Brazil, 2022; pp. 35–42. [Google Scholar]
- Valério, C.S.; Souza, V.S.; Macambira, M.J.B.; Galarza, M.A. Geoquímica e geocronologia Pb-Pb em zircão da suíte intrusiva de colisão no paleoproterozóico da Amazônia Ocidental. Rev. Bras. Geociênc. 2006, 36, 359–370. [Google Scholar] [CrossRef]
- Pinto, V.M.; Santos, J.O.S.; Ronchi, L.H.; Hartmann, L.A.; Bicudo, C.A.; Souza, V. Field and geochemical constraints on the relationship between the Apoteri basalts (northern Brazil, southwestern Guyana) and the Central Atlantic Magmatic Province. J. S. Am. Earth Sci. 2017, 79, 384–393. [Google Scholar] [CrossRef]
- Bergmann, M.; Holanda, J.L.R. Rochagem. In Geodiversidade do Estado de Roraima; Holanda, J.L.R., Marmos, J.L., Maia, M.A.M., Eds.; CPRM: Manaus, Brazil, 2014; pp. 196–200. [Google Scholar]
- Bacon, C.R. Magmatic inclusions in silicic and intermediate volcanic rocks. J. Geophys. Res. 1986, 91, 6091–6112. [Google Scholar] [CrossRef]
- Walker, G.P.L. Basaltic-volcano systems, magmatic processes and plate tectonics. Geol. Soc. Spec. Publ 1993, 76, 3–38. [Google Scholar] [CrossRef]
- Goff, F. Vesicle cylinders in vapor-differentiated basalt flows. J. Volcanol. Geotherm. Res. 1996, 71, 167–185. [Google Scholar] [CrossRef]
- Fornero, S. Caracterização faciológica de rochas vulcânicas e vulcanoclásticas por meio de perfis de imagem microresistiva e acústica: Estudo de caso no pré-sal, bacia de santos. Master’s Thesis, UFF, Rio de Janeiro, Brazil, 16 January 2018. [Google Scholar]
- Pierosan, R.; Lima, E.F.; Nardi, L.V.S.; Bastos Neto, A.C.; Campos, C.P.; Jarvis, K.; Ferron, J.M.T.M.; Prado, M. Geochemistry of Palaeoproterozoic volcanic rocks of the Iricoume Group, Pitinga Mining District, Amazonian craton, Brazil. Int. Geol. Rev. 2011, 53, 946–979. [Google Scholar] [CrossRef]
- Marques, S.N.S.; Souza, V.S.; Dantas, E.L.; Valério, C.S.; Nascimento, R.S.C. Contributions to the petrography, geochemistry and geochronology (U-Pb and Sm-Nd) of the Paleoproterozoic effusive rocks from Iricoumé Group, Amazonian Craton, Brazil. Braz. J. Geol. 2014, 44, 121–138. [Google Scholar] [CrossRef]
- Qiu, W.H.W.; Curtin, D.; Motoi, L. Soil particle size range correction for im-proved calibration relationship between the laser-diffraction method and sieve-pipette method. Pedosphere 2021, 31, 134–144. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elementos da Natureza e Propriedades dos Solos; Bookman: Porto Alegre, Brazil, 2013; 684p. [Google Scholar]
- Ciceri, D.; Oliveira, M.; Stokes, R.M.; Skorina, T.; Allanore, A. Characterization of potassium agrominerals: Correlations between petrographic features, comminution and leaching of ultrapotassic syenites. Miner. Eng. 2017, 102, 42–57. [Google Scholar] [CrossRef]
Amostra | CaO | K2O | MgO | SB | P2O5 | SiO2 | Fe2O3 | As | Cd | Hg | Pb | Mn | Ni | Co |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | |||||||||||||
PB 01A | 4.28 | 3.29 | 2.69 | 10.26 | 0.41 | 60.3 | 8.57 | <1 | 0.65 | <0.01 | 27.5 | 1239.4 | 24.8 | 20 |
PB 01B | 1.91 | 4.96 | 0.68 | 7.55 | 0.18 | 66.2 | 5 | 2 | 0.22 | <0.01 | 32.9 | 852.1 | 2.7 | 5.6 |
PB 01C | 8.56 | 1.63 | 9.16 | 19.35 | 0.36 | 47.4 | 11.6 | <1 | 0.14 | <0.01 | 7.9 | 1781.7 | 190.8 | 49.3 |
PB 01E | 3.89 | 3.5 | 2.1 | 9.49 | 0.38 | 61 | 7.5 | 1 | 0.14 | 0.01 | 20.1 | 1084.5 | 14 | 15.4 |
PB-10A | 7.91 | 0.85 | 5.26 | 14.02 | 0.17 | 52.9 | 8.47 | <1 | 0.08 | <0.01 | 3.5 | 1471.83 | 44.3 | 44.7 |
PB-10B | 7.98 | 0.71 | 5.23 | 13.92 | 0.18 | 53.3 | 8.61 | <1 | 0.08 | <0.01 | 4 | 1394.37 | 46.3 | 45 |
PB-10C | 8.49 | 1.14 | 5.3 | 14.93 | 0.17 | 53.5 | 8.47 | <1 | 0.11 | <0.01 | 4.9 | 1394.37 | 49 | 45.4 |
PB-05A | 0.78 | 5.35 | 0.22 | 6.35 | 0.03 | 73.5 | 1.88 | <1 | 0.12 | 0.02 | 23.7 | 542.25 | 2.2 | 1.4 |
PB-05C | 0.8 | 5.2 | <0.1 | 6 | 0.03 | 74.3 | 1.9 | 2 | 0.23 | 0.03 | 22.7 | 619.72 | 0.9 | 1.3 |
Legislation (1) | ≥1 | -- (2) | ≥9 | ≥1 | ≥0.05 | ≥0.1 | <15 | <10 | <0.1 | <200 | ≥1000 | ≥50 | ≥50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benevides Filho, P.R.R.; Blaskowski, A.E.; Ramos, M.N.; Lessa, L.G.F.; Filho, A.N.Z.; Abreu-Junior, C.H.; Jani, A.D.; Capra, G.F.; Nogueira, T.A.R. Potential Soil Remineralizers from Silicate Rock Powders (SRP) as Alternative Sources of Nutrients for Agricultural Production (Amazon Region). Minerals 2023, 13, 1255. https://doi.org/10.3390/min13101255
Benevides Filho PRR, Blaskowski AE, Ramos MN, Lessa LGF, Filho ANZ, Abreu-Junior CH, Jani AD, Capra GF, Nogueira TAR. Potential Soil Remineralizers from Silicate Rock Powders (SRP) as Alternative Sources of Nutrients for Agricultural Production (Amazon Region). Minerals. 2023; 13(10):1255. https://doi.org/10.3390/min13101255
Chicago/Turabian StyleBenevides Filho, Paulo Roberto Rodrigues, Alessandra Elisa Blaskowski, Marina Nascimento Ramos, Luís Gustavo Frediani Lessa, Antonio Nilson Zamunér Filho, Cassio Hamilton Abreu-Junior, Arun Dilipkumar Jani, Gian Franco Capra, and Thiago Assis Rodrigues Nogueira. 2023. "Potential Soil Remineralizers from Silicate Rock Powders (SRP) as Alternative Sources of Nutrients for Agricultural Production (Amazon Region)" Minerals 13, no. 10: 1255. https://doi.org/10.3390/min13101255
APA StyleBenevides Filho, P. R. R., Blaskowski, A. E., Ramos, M. N., Lessa, L. G. F., Filho, A. N. Z., Abreu-Junior, C. H., Jani, A. D., Capra, G. F., & Nogueira, T. A. R. (2023). Potential Soil Remineralizers from Silicate Rock Powders (SRP) as Alternative Sources of Nutrients for Agricultural Production (Amazon Region). Minerals, 13(10), 1255. https://doi.org/10.3390/min13101255