Logging Identification and Distribution of Bauxite in the Southwest Ordos Basin
Abstract
:1. Introduction
2. Geologic Background
3. Data and Methods
4. Results
4.1. Identification of Bauxite and Its Porosity by Logging
4.2. The Distribution of Bauxite
5. Discussion
5.1. The Relationship between Bauxite and Ancient Geomorphology
5.2. Relationship between Bauxite and Sedimentary Facies
5.3. Distribution of the Bauxite Reservoir in the Taiyuan Formation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harder, E. Stratigraphy and origin of bauxite deposits. Geol. Soc. Am. Bull. 1949, 60, 887–908. [Google Scholar] [CrossRef]
- Tardy, Y.; Nahon, D. Geochemistry of laterites, stability of Al-goethite, Al-hematite, and Fe (super 3+)-kaolinite in bauxites and ferricretes; an approach to the mechanism of concretion formation. Am. J. Sci. 1985, 285, 865–903. [Google Scholar] [CrossRef]
- Bogatyrev, B.A.; Zhukov, V.V.; Tsekhovsky, Y.G. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithol. Miner. Resour. 2009, 44, 135–151. [Google Scholar] [CrossRef]
- Bogatyrev, B.A.; Zhukov, V.V. Bauxite provinces of the world. Geol. Ore Depos. 2009, 51, 339–355. [Google Scholar] [CrossRef]
- Bogatyrev, B.A.; Zhukov, V.V.; Tsekhovsky, Y.G. Phanerozic bauxite epochs. Geol. Ore Depos. 2009, 51, 456–466. [Google Scholar] [CrossRef]
- Gu, J.; Huang, Z.; Fan, H.; Jin, Z.; Yan, Z.; Zhang, J. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng’an–Daozhen area, Northern Guizhou Province, China. J. Geochem. Explor. 2013, 130, 44–59. [Google Scholar] [CrossRef]
- Ling, K.; Zhu, X.; Tang, H.; Wang, Z.; Yan, H.; Han, T.; Chen, W. Mineralogical characteristics of the karstic bauxite deposits in the Xiuwen ore belt, Central Guizhou Province, Southwest China. Ore Geol. Rev. 2015, 65, 84–96. [Google Scholar] [CrossRef]
- Bárdossy, G.; Aleva, G.J.J. Lateritic Bauxites (No. 27); Akadémiai Kiadó: Budapest, Hungary, 1990. [Google Scholar]
- Bárdossy, G. Karst Bauxites; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Schellmann, W. Geochemical differentiation in laterite and bauxite formation. Catena 1994, 21, 131–143. [Google Scholar] [CrossRef]
- Meng, X.; Ge, M.; Xiao, Z. A sedimentological study of Carboniferous bauxitic formations in North China. Acta Geol. Sin. Engl. Ed. 1978, 61, 95–117. [Google Scholar]
- Gao, L.; Li, J.; Wang, D.; Xiong, X.; Yi, C.; Han, M. Outline of metallogenic regularity of bauxite deposits in China. Acta Geol. Sin. Engl. Ed. 2015, 89, 2072–2084. [Google Scholar]
- Wang, Q.; Deng, J.; Liu, X.; Zhao, R.; Cai, S. Provenance of Late Carboniferous bauxite deposits in the North China Craton: New constraints on marginal arc construction and accretion processes. Gondwana Res. 2016, 38, 86–98. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Wang, Q.; Ma, X.; Liu, L.; Sun, X.; Deng, J. Genetic mechanism of super-large karst bauxite in the northern North China Craton: Constrained by diaspore in-situ compositional analysis and pyrite sulfur isotopic compositions. Chem. Geol. 2023, 622, 121388. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Z.; Wang, A.; Yu, H.; Wang, D.; Feng, Q.; Lan, Y.; Wang, Y. The detailed palaeogeomorphologic restoration of the Ordovician weathering crust in the Northern Jingbian Gas Field: Methods and applications into reservoir properties and gas accumulation. Energy Explor. Exploit. 2015, 33, 471–490. [Google Scholar] [CrossRef]
- Wei, X.; Ren, J.; Zhao, J.; Zhang, D.; Luo, S.; Wei, L.; Chen, J. Paleogeomorphy evolution of the Ordovician weathering crust and its implication for reservoir development, eastern Ordos Basin. Pet. Res. 2018, 3, 77–89. [Google Scholar] [CrossRef]
- Liu, W.; Pan, H.; Li, J.; Zhao, J. Well logging evaluation on bauxitic mudstone reservoirs in the Daniudi Gasfield, Ordos Basin. Nat. Gas Ind. 2015, 35, 24–30. [Google Scholar]
- Fu, J.; Li, M.; Zhang, L.; Cao, Q.; Wei, X. Breakthrough in the exploration of bauxite gas reservoir in Longdong area of the Ordos Basin and its petroleum geological implications. Nat. Gas Ind. 2021, 41, 1–11. [Google Scholar]
- Li, W.; Zhang, Q.; Li, K.; Chen, Q.; Yuan, Z.; Ma, Y.; Li, Z.; Bai, J.; Yang, B. Sedimentary evolution of Early Paleozoic in Ordos Basin and its adjacent areas. J. Northwest Univ. (Nat. Sci. Ed.) 2020, 50, 456–479. [Google Scholar]
- Liu, C.; Zhao, H.; Gui, X.; Yue, L.; Zhao, J.; Wang, J. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin. Acta Geol. Sin. 2006, 80, 637–646. [Google Scholar]
- Xia, X.; Sun, M.; Zhao, G.; Wu, F.; Xu, P.; Zhang, J.; Luo, Y. U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth Planet. Sci. Lett. 2006, 241, 581–593. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, B.; Liao, C.; Shi, W. Neotectonic evolution of the peripheral zones of the Ordos Basin and geodynamic setting. Geol. J. China Univ. 2006, 12, 285. [Google Scholar]
- He, D.; Bao, H.; Sun, F.; Zhang, C.; Kai, B.; Xu, Y.; Cheng, X.; Zhai, Y. Geologic structure and genetic mechanism for the central uplift in the Ordos Basin. Chin. J. Geol. 2020, 55, 627–656. [Google Scholar]
- Li, W.; Zhang, Q.; Li, K.; Chen, Q.; Guo, Y.; Ma, Y.; Feng, J.; Zhang, F. Sedimentary evolution of the late Paleozoic in Ordos Basin and its adjacent areas. J. Palaeogeogr. (Chin. Ed.) 2021, 23, 39–52. [Google Scholar]
- Dai, J.; Li, J.; Luo, X.; Zhang, W.; Hu, G.; Ma, C.; Guo, J.; Ge, S. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China. Org. Geochem. 2005, 36, 1617–1635. [Google Scholar] [CrossRef]
- Yang, Y.; Li, W.; Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: A multicycle cratonic basin in central China. AAPG Bull. 2005, 89, 255–269. [Google Scholar] [CrossRef]
- Yang, H.; Xi, S.; Wei, X.; Li, Z. Evolution and natural gas enrichment of multicycle superimposed basin in Ordos Basin. China Pet. Explor. 2006, 11, 17. [Google Scholar]
- Fu, J.; Wei, X.; Ren, J.; Zhou, H. Gas exploration and developing prospect in Ordos Basin. Acta Pet. Sin. 2006, 27, 1. [Google Scholar]
- Yang, H.; Fu, J.; Liu, X.; Meng, P. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin. Pet. Explor. Dev. 2012, 39, 315–324. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Liu, X. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin. Acta Pet. Sin. 2013, 34, 1. [Google Scholar]
- Liu, C.; Zhao, H.; Sun, Y. Tectonic background of Ordos Basin and its controlling role for basin evolution and energy mineral deposits. Energy Explor. Exploit. 2009, 27, 15–27. [Google Scholar] [CrossRef]
- Wang, F.; Guo, S. Shale gas content evolution in the Ordos Basin. Int. J. Coal Geol. 2019, 211, 103231. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, Y.; Wang, Y.; Lin, D. Study Progress in Tectonic Evolution and Paleogeography of Ordos Basin. Spec. Oil Gas Reserv. 2012, 19, 15–20. [Google Scholar]
- Meng, W.; Li, X.; Wu, B.; Gong, Z.; Dong, D.; Liu, Y.; Xian, X. Research on gas accumulation characteristics of aluminiferous rock series of Taiyuan Formation in Well Ninggu 3 and its geological significance, Ordos Basin. China Pet. Explor. 2021, 26, 79. [Google Scholar]
- Tian, C.; Li, Y.; Li, D.; Zhang, W.; Zhong, K.; Zhou, S.; Luo, C.; Jiang, W.; Li, D.; He, L.; et al. Selection and recommendation of shale reservoir porosity measurement methods. Nat. Gas Ind. 2023, 43, 57–65. [Google Scholar]
- Zarasvandi, A.; Pourkaseb, H.; Saki, A.; Salamab Ellahi, S. Investigation on deposition condition, sedimentary environment and genesis of Mandan and Deh-Now bauxite deposits, Dehdasht area, Kohgiloye and Boyer-Ahmad province: Using mineralogical studies. J. Econ. Geol. 2011, 3, 1–13. [Google Scholar]
- Liu, X.; Wang, Q.; Feng, Y.; Li, Z.; Cai, S. Genesis of the Guangou karstic bauxite deposit in western Henan, China. Ore Geol. Rev. 2013, 55, 162–175. [Google Scholar] [CrossRef]
- Shamanian, G.; Monfared, Z.; Omrani, H. Stratigraphic, Petrographic and Facies Characteristics of Tash and Astaneh Bauxite Deposits in Easthern Alborz: Paleoenvironmental Implications. Sci. Semiannu. J. Sediment. Facies 2015, 8, 71–84. [Google Scholar]
- Khosravi, M.; Abedini, A.; Alipour, S.; Mongelli, G. The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: Critical metals distribution and parental affinities. J. Afr. Earth Sci. 2017, 129, 960–972. [Google Scholar] [CrossRef]
- Chanvry, E.; Marchand, E.; Lopez, M.; Séranne, M.; Le Saout, G.; Vinches, M. Tectonic and climate control on allochthonous bauxite deposition. Example from the mid-Cretaceous Villeveyrac basin, southern France. Sediment. Geol. 2020, 407, 105727. [Google Scholar] [CrossRef]
- Abedini, A.; Mongelli, G.; Khosravi, M. Geochemical constraints on the middle Triassic Kani Zarrineh karst bauxite deposit, Irano–Himalayan belt, NW Iran: Implications for elemental fractionation and parental affinity. Ore Geol. Rev. 2021, 133, 104099. [Google Scholar] [CrossRef]
- Abedini, A.; Mongelli, G.; Khosravi, M. Geochemistry of the early Jurassic Soleiman Kandi karst bauxite deposit, Irano–Himalayan belt, NW Iran: Constraints on bauxite genesis and the distribution of critical raw materials. J. Geochem. Explor. 2022, 241, 107056. [Google Scholar] [CrossRef]
- Abedini, A.; Khosravi, M.; Mongelli, G. The middle Permian pyrophyllite-rich ferruginous bauxite, northwestern Iran, Irano–Himalayan karst belt: Constraints on elemental fractionation and provenance. J. Geochem. Explor. 2022, 233, 106905. [Google Scholar] [CrossRef]
Number | Depth (m) | Content (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Potash Feldspar | Chlorite | Illite | Clay | Pyrite | Anatase | Heavy Mineral | Diaspore | Total | ||
Kaolinite | Smectite Mixed Layes | ||||||||||
1 | 4040.00 | 0.60 | 0.40 | 59.30 | 35.00 | 94.70 | 0.00 | 1.60 | 1.60 | 3.10 | 100.00 |
2 | 4040.62 | 0.40 | 0.79 | 47.20 | 27.60 | 75.59 | 7.30 | 2.30 | 9.60 | 14.30 | 99.89 |
3 | 4041.74 | 0.80 | 0.54 | 11.00 | 5.70 | 17.24 | 2.20 | 1.90 | 4.10 | 78.00 | 100.14 |
4 | 4042.54 | 0.20 | 0.54 | 0.90 | 2.10 | 3.54 | 0.00 | 2.20 | 2.20 | 94.00 | 99.94 |
5 | 4042.97 | 0.20 | 0.38 | 19.50 | 29.80 | 49.68 | 0.00 | 3.00 | 3.00 | 47.10 | 99.98 |
6 | 4044.99 | 0.00 | 0.53 | 0.70 | 3.40 | 4.63 | 0.00 | 1.80 | 1.80 | 93.60 | 100.03 |
7 | 4044.99 | 0.10 | 0.37 | 0.20 | 0.80 | 1.37 | 0.00 | 1.60 | 1.60 | 96.90 | 99.97 |
8 | 4045.24 | 0.10 | 0.60 | 0.10 | 1.10 | 1.80 | 0.00 | 2.10 | 2.10 | 96.10 | 100.10 |
9 | 4045.90 | 0.10 | 0.51 | 0.10 | 1.00 | 1.61 | 0.00 | 1.90 | 1.90 | 96.40 | 100.01 |
10 | 4047.40 | 0.10 | 0.69 | 0.10 | 0.80 | 1.59 | 0.00 | 1.80 | 1.80 | 96.50 | 99.99 |
11 | 4048.25 | 0.10 | 0.96 | 0.10 | 1.30 | 2.36 | 0.00 | 2.20 | 2.20 | 95.40 | 100.06 |
12 | 4049.58 | 0.10 | 0.94 | 0.10 | 0.70 | 1.74 | 0.00 | 2.50 | 2.50 | 95.60 | 99.94 |
13 | 4050.76 | 0.60 | 1.39 | 4.30 | 14.60 | 20.29 | 0.00 | 5.70 | 5.70 | 73.50 | 100.09 |
14 | 4051.10 | 0.30 | 0.67 | 1.90 | 8.90 | 11.47 | 0.00 | 2.70 | 2.70 | 85.70 | 100.17 |
15 | 4051.71 | 1.30 | 1.19 | 8.30 | 31.90 | 41.39 | 0.00 | 6.30 | 6.30 | 51.00 | 99.99 |
16 | 4052.39 | 7.90 | 1.10 | 6.00 | 48.80 | 55.90 | 0.00 | 5.50 | 5.50 | 30.80 | 100.10 |
17 | 4053.29 | 11.60 | 1.85 | 2.20 | 62.50 | 66.55 | 0.00 | 5.20 | 5.20 | 16.60 | 99.95 |
18 | 4053.99 | 11.60 | 1.80 | 2.20 | 62.60 | 66.60 | 0.00 | 5.20 | 5.20 | 16.50 | 99.90 |
19 | 4055.26 | 5.50 | 1.10 | 1.70 | 39.00 | 41.80 | 0.00 | 4.50 | 4.50 | 48.00 | 99.80 |
Logging Curve | Lithology | ||||||
---|---|---|---|---|---|---|---|
Bauxite | Argillaceous Bauxite | Bauxitic Mudstone | Coal | Sandstone | Limestone | Mudstone | |
GR (API) | GR > 450 | 300 < GR < 450 | 220 < GR < 300 | GR < 110 | GR < 120 | GR < 100 | 120 < GR < 220 |
RT (Ω·m) | 1 < RT < 102 | 1 < RT < 103 | 10 < RT < 103 | 10 < RT < 104 | 10 < RT < 103 | 103 < RT < 105 | 20 < RT < 120 |
AC (μs/m) | 100 < AC < 300 | 100 < AC < 300 | 100 < AC < 300 | 300 < AC < 500 | 150 < AC < 250 | 150 < AC < 200 | 150 < AC < 280 |
DEN (g/cm3) | 2.3 < DEN < 3 | 2.3 < DEN < 3 | 2.3 < DEN < 3 | 1 < DEN < 1.75 | 2.3 < DEN < 1.75 | 2.4 < DEN < 2.8 | 2.0 < DEN < 3.0 |
CNL (pu) | 40 < CNL < 100 | 20 < CNL < 80 | 20 < CNL < 60 | 40 < CNL < 80 | 0 < CNL < 20 pu | 0 < CNL < 5 pu | 5 < CNL < 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Jing, X.; Pu, R.; Wang, A.; Huang, X. Logging Identification and Distribution of Bauxite in the Southwest Ordos Basin. Minerals 2023, 13, 1253. https://doi.org/10.3390/min13101253
Zhang P, Jing X, Pu R, Wang A, Huang X. Logging Identification and Distribution of Bauxite in the Southwest Ordos Basin. Minerals. 2023; 13(10):1253. https://doi.org/10.3390/min13101253
Chicago/Turabian StyleZhang, Peng, Xianghui Jing, Renhai Pu, Aiguo Wang, and Xueping Huang. 2023. "Logging Identification and Distribution of Bauxite in the Southwest Ordos Basin" Minerals 13, no. 10: 1253. https://doi.org/10.3390/min13101253
APA StyleZhang, P., Jing, X., Pu, R., Wang, A., & Huang, X. (2023). Logging Identification and Distribution of Bauxite in the Southwest Ordos Basin. Minerals, 13(10), 1253. https://doi.org/10.3390/min13101253