Stable Carbon and Oxygen Isotopic Features of Banded Travertines from the Xiagei Fissure Ridge System (Shangri-La, China)
Abstract
:1. Introduction
2. Geological Background
3. Methods
4. Results
4.1. Fissure Ridge Travertines at Xiagei
4.2. Spring Water
4.3. Lithofacies of Banded Travertines
4.4. Stable Isotopes
5. Interpretation and Discussion
5.1. Paleo-Temperatures for Banded Calcite Precipitation
5.2. Parent CO2 Origin of Travertines
5.3. Lithofacies of Banded Travertines Controlled by Water Temperature
5.4. Comparison with Banded Travertines from Other Areas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altunel, E.; Karabacak, V. Determination of horizontal extension from fissure-ridge travertines: A case study from the Denizli Basin, southwestern Turkey. Geodin. Acta 2005, 18, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Brogi, A.; Capezzuoli, E. Travertine deposition and faulting: The fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int. J. Earth Sci. 2008, 98, 931–947. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E.; Alçiçek, M.C.; Gandin, A. Evolution of a fault-controlled fissure-ridge type travertine deposit in the western Anatolia extensional province: The Çukurbağ fissure-ridge (Pamukkale, Turkey). J. Geol. Soc. 2014, 171, 425–441. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E.; Karabacak, V.; Alcicek, M.C.; Luo, L. Fissure ridges: A reappraisal of faulting and travertine deposition (travitonics). Geosciences 2021, 11, 278. [Google Scholar] [CrossRef]
- De Filippis, L.; Anzalone, E.; Billi, A.; Faccenna, C.; Poncia, P.P.; Sella, P. The origin and growth of a recently-active fissure ridge travertine over a seismic fault, Tivoli, Italy. Geomorphology 2013, 195, 13–26. [Google Scholar] [CrossRef]
- De Filippis, L.; Faccenna, C.; Billi, A.; Anzalone, E.; Brilli, M.; Soligo, M.; Tuccimei, P. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth-Sci. Rev. 2013, 123, 35–52. [Google Scholar] [CrossRef]
- Guo, L.; Riding, R. Rapid facies changes in Holocene fissure ridge hot spring travertines, Rapolano Terme, Italy. Sedimentology 1999, 46, 1145–1158. [Google Scholar] [CrossRef]
- Karabacak, V.; Uysal, I.T.; Ünal-İmer, E.; Mutlu, H.; Zhao, J. U-Th age evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province. Quat. Sci. Rev. 2017, 177, 158–172. [Google Scholar] [CrossRef]
- Mancini, A.; Capezzuoli, E.; Erthal, M.; Swennen, R. Hierarchical approach to define travertine depositional systems: 3D conceptual morphological model and possible applications. Mar. Pet. Geol. 2019, 103, 549–563. [Google Scholar] [CrossRef]
- Della Porta, G. Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: Comparing depositional geometry, fabric types and geochemical signature. In: Bosence, D.W.J., Gibbons, K.A., Le Heron, D.P., Morgan, W.A., Pritchard, T., Vining, B.A. Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. Geol. Soc. Lond. Spec. Publ. 2015, 418, 17–68. [Google Scholar]
- Altunel, E.; Hancock, P.L. Structural attributes of travertine-filled extensional fissures in the Pamukkale Plateau, Western Turkey. Int. Geol. Rev. 1996, 38, 768–777. [Google Scholar] [CrossRef]
- Brogi, A.; Alçiçek, M.C.; Liotta, D.; Capezzuoli, E.; Zucchi, M.; Matera, P.F. Step-over fault zones controlling geothermal fluid-flow and travertine formation (Denizli Basin, Turkey). Geothermics 2021, 89, 101941. [Google Scholar] [CrossRef]
- Brogi, A.; Alçiçek, M.C.; Yalçıner, C.Ç.; Capezzuoli, E.; Liotta, D.; Meccheri, M.; Rimondi, V.; Ruggieri, G.; Gandin, A.; Boschi, C.; et al. Hydrothermal fluids circulation and travertine deposition in an active tectonic setting: Insights from the Kamara geothermal area (western Anatolia, Turkey). Tectonophysics 2016, 680, 211–232. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E. Earthquake impact on fissure-ridge type travertine deposition. Geol. Mag. 2014, 151, 1135–1143. [Google Scholar] [CrossRef]
- De Filippis, L.; Billi, A. Morphotectonics of fissure ridge travertines from geothermal areas of Mammoth Hot Springs (Wyoming) and Bridgeport (California). Tectonophysics 2012, 548–549, 34–48. [Google Scholar] [CrossRef]
- De Filippis, L.; Faccenna, C.; Billi, A.; Anzalone, E.; Brilli, M.; Ozkul, M.; Soligo, M.; Tuccimei, P.; Villa, I.M. Growth of fissure ridge travertines from geothermal springs of Denizli Basin, western Turkey. Geol. Soc. Am. Bull. 2012, 124, 1629–1645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-J.; Li, Q.-H.; Yan, L.-L.; Zeng, L.; Lu, L.; Zhang, Y.-X.; Hui, J.; Jin, X.; Tang, X.-C. Geochemistry of limestones deposited in various plate tectonic settings. Earth-Sci. Rev. 2017, 167, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Capezzuoli, E.; Ruggieri, G.; Rimondi, V.; Brogi, A.; Liotta, D.; Alçiçek, M.C.; Alçiçek, H.; Bülbül, A.; Gandin, A.; Meccheri, M.; et al. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey). Sediment. Geol. 2018, 364, 180–203. [Google Scholar] [CrossRef]
- Hancock, P.L.; Chalmers, R.M.L.; Altunel, E.; Çakir, Z. Travitonics: Using travertines in active fault studies. J. Struct. Geol. 1999, 21, 903–916. [Google Scholar] [CrossRef]
- Sağlam Selçuk, A.; Erturaç, M.K.; Üner, S.; Özsayın, E.; Pons-Branchu, E. Evolution of Çamlık fissure-ridge travertines in the Başkale basin (Van, Eastern Anatolia). Geodin. Acta 2016, 29, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Haluk Selim, H.; Yanik, G. Development of the Cambazlı (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quat. Int. 2009, 199, 157–163. [Google Scholar] [CrossRef]
- Curewitz, D.; Karson, J.A. Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. J. Volcanol. Geotherm. Res. 1997, 79, 149–168. [Google Scholar] [CrossRef]
- Matera, P.F.; Ventruti, G.; Zucchi, M.; Brogi, A.; Capezzuoli, E.; Liotta, D.; Yu, T.-L.; Shen, C.-C.; Huntington, K.W.; Rinyu, L.; et al. Geothermal fluid variation recorded by banded Ca-carbonate veins in a fault-related, fissure ridge-type travertine depositional system (Iano, southern Tuscany, Italy). Geofluids 2021, 2021, 1–28. [Google Scholar] [CrossRef]
- Rizzo, A.L.; Uysal, I.T.; Mutlu, H.; Ünal-İmer, E.; Dirik, K.; Yüce, G.; Caracausi, A.; Italiano, F.; Misseri, M.; Temel, A.; et al. Geochemistry of Fluid Inclusions in Travertines From Western and Northern Turkey: Inferences on the Role of Active Faults in Fluids Circulation. Geochem. Geophys. Geosyst. 2019, 20, 5473–5498. [Google Scholar] [CrossRef]
- Uysal, I.; Feng, Y.; Zhao, J.; Altunel, E.; Weatherley, D.; Karabacak, V.; Cengiz, O.; Golding, S.; Lawrence, M.; Collerson, K. U-series dating and geochemical tracing of late Quaternary travertine in co-seismic fissures. Earth Planet. Sci. Lett. 2007, 257, 450–462. [Google Scholar] [CrossRef]
- Uysal, I.T.; Feng, Y.-x.; Zhao, J.-x.; Isik, V.; Nuriel, P.; Golding, S.D. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chem. Geol. 2009, 265, 442–454. [Google Scholar] [CrossRef]
- Chen, Q. Studies on Geochemistry of the Permian Basalts in Shangri-La County YunNan Province China. Master’s Thesis, University of Geosciences, Beijing, China, 2017. [Google Scholar]
- Jones, B.; Peng, X. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China. Sediment. Geol. 2012, 249–250, 45–62. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y. Application of geophysical method to geothermal resource prospecting in Xianggelila Basin, Yunnan. Carsologica Sin. 2004, 23, 187–195. [Google Scholar]
- Wang, Y. Research Report on Geothermal Resources Exploration in Shangri La Basin, Diqing Tibetan Autonomous Prefecture, Yunnan Province; Yunnan Exploration Development Bureauof Geology Mineral Resources: Yunnan, China, 2003. [Google Scholar]
- Wang, Y.; Yang, S.Y. The geothermal feature and exploring prospect of the Xianggelila Basin in Narthwestern Yunnnan, China. Bull. Mineral. Petrol. Geochem. 2003, 33, 265–269, 272. [Google Scholar]
- Zheng, Y.H. Characteristics of the Tianshengqiao and Xiagei Hots Prings in Shangrila County of Yunnan and Analysis of the Formation of the Travertine; China University of Geosciences: Beijing, China, 2015. [Google Scholar]
- Zhang, K.-J.; Zhang, Y.-X.; Tang, X.-C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Zhang, K.-J.; Zhang, Y.-X.; Li, B.; Zhong, L.-F. Nd isotopes of siliciclastic rocks from Tibet, western China: Constraints on provenance and pre-Cenozoic tectonic evolution. Earth Planet. Sci. Lett. 2007, 256, 604–616. [Google Scholar] [CrossRef]
- Zhang, K.-J.; Xia, B.; Liang, X. Mesozoic–Paleogene sedimentary facies and paleogeography of Tibet, western China: Tectonic implications. Geol. J. 2002, 37, 217–246. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1958. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Gandin, A.; Capezzuoli, E. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 2014, 61, 264–290. [Google Scholar] [CrossRef]
- Kele, S.; Breitenbach, S.F.M.; Capezzuoli, E.; Meckler, A.N.; Ziegler, M.; Millan, I.M.; Kluge, T.; Deák, J.; Hanselmann, K.; John, C.M.; et al. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6–95 °C temperature range. Geochim. Et Cosmochim. Acta 2015, 168, 172–192. [Google Scholar] [CrossRef]
- Chacko, T.; Cole, D.R.; Horita, J. Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems. Rev. Mineral. Geochem. 2001, 43, 1–81. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Guidry, S.A. Deposition and diagenesis of Mammoth Hot Springs travertine, Yellowstone National Park, Wyoming, U.S.A. Can. J. Earth Sci. 2003, 40, 1515–1529. [Google Scholar] [CrossRef]
- Karabacak, V.; Uysal, I.T.; Mutlu, H.; Ünal-İmer, E.; Dirik, R.K.; Feng, Y.x.; Akıska, S.; Aydoğdu, İ.; Zhao, J.x. Are U-Th dates correlated with historical records of earthquakes? Constraints from coseismic carbonate veins within the North Anatolian Fault Zone. Tectonics 2019, 38, 2431–2448. [Google Scholar] [CrossRef]
- Kele, S.; Özkul, M.; Fórizs, I.; Gökgöz, A.; Baykara, M.O.; Alçiçek, M.C.; Németh, T. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation. Sediment. Geol. 2011, 238, 191–212. [Google Scholar] [CrossRef]
- Peng, X.; Jones, B. Patterns of biomediated CaCO3 crystal bushes in hot spring deposits. Sediment. Geol. 2013, 294, 105–117. [Google Scholar] [CrossRef]
- Pentecost, A. Travertine; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Pentecost, A.; Viles, H. A Review and Reassessment of Travertine Classification. Géographie Phys. Et Quat. 1994, 48, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Teboul, P.A.; Durlet, C.; Gaucher, E.C.; Virgone, A.; Girard, J.P.; Curie, J.; Lopez, B.; Camoin, G.F. Origins of elements building travertine and tufa: New perspectives provided by isotopic and geochemical tracers. Sediment. Geol. 2016, 334, 97–114. [Google Scholar] [CrossRef]
- Claes, H.; Soete, J.; Van Noten, K.; El Desouky, H.; Marques Erthal, M.; Vanhaecke, F.; Özkul, M.; Swennen, R.; Reijmer, J. Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area (south-west Turkey). Sedimentology 2015, 62, 1408–1445. [Google Scholar] [CrossRef]
- Vogel, J.C. Variability of Carbon Isotope Fractionation during Photosynthesis. In Stable Isotopes and Plant Carbon-Water Relations; Ehleringer, J.R., Hall, A.E., Farquhar, G.D., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 29–46. [Google Scholar]
- Hoefs, J. Stable Isotope Geochemistry; Springer: Berlin/Heidelberg, Germany, 2009; Volume 201. [Google Scholar]
- Rollinson, H. Using Geochemical Data; Cambridge University Press: Cambridge, UK, 1993; Volume 1. [Google Scholar]
- Liu, Z.; Yuan, D. Features of geochemical variations in typical epikarst systems of China and thier environment significance. Geol. Rev. 2000, 46, 324–327. [Google Scholar]
- Sheng, L.C. The Study of Deep Source CO2 Degasification and Carbon Cycle in the Southwest of China. Ph.D. Thesis, Southwest University (China), Chongqing, China, 2007. [Google Scholar]
- Xu, Y.; Zhu, J.; Hu, R.; Bi, X.; Yu, H.; Xu, L.; Liu, B.; Huang, M.; Sheng, X. Heterogeneous lithospheric mantle beneath the southeastern Tibetan Plateau: Evidence from Cenozoic high-Mg potassic volcanic rocks in the Jinshajiang–Ailaoshan Cenozoic magmatic belt. J. Asian Earth Sci. 2019, 180, 103849. [Google Scholar] [CrossRef]
- Tapponnier, P.; Lacassin, R.; Leloup, P.H.; Schärer, U.; Dalai, Z.; Haiwei, W.; Xiaohan, L.; Shaocheng, J.; Lianshang, Z.; Jiayou, Z. The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature 1990, 343, 431–437. [Google Scholar] [CrossRef]
- Mancini, A.; Frondini, F.; Capezzuoli, E.; Galvez Mejia, E.; Lezzi, G.; Matarazzi, D.; Brogi, A.; Swennen, R. Porosity, bulk density and CaCO3 content of travertines. A new dataset from Rapolano, Canino and Tivoli travertines (Italy). Data Brief 2019, 25, 104158. [Google Scholar] [CrossRef]
- Mancini, A.; Frondini, F.; Capezzuoli, E.; Mejia, E.G.; Lezzi, G.; Matarazzi, D.; Brogi, A.; Swennen, R. Evaluating the geogenic CO2 flux from geothermal areas by analysing quaternary travertine masses. New data from western central Italy and review of previous CO2 flux data. Quat. Sci. Rev. 2019, 215, 132–143. [Google Scholar] [CrossRef]
- Mancini, A.; Capezzuoli, E.; Brogi, A.; Swennen, R.; Ricci, L.; Frondini, F. Geogenie CO2 flux calculations from the Late Pleistocene Tivoli travertines (Acque Albule Basin, Tivoli, Central Italy). Ital. J. Geosci. 2020, 139, 374–382. [Google Scholar] [CrossRef]
- Uysal, I.T.; Ünal-İmer, E.; Shulmeister, J.; Zhao, J.-X.; Karabacak, V.; Feng, Y.-X.; Bolhar, R. Linking CO2 degassing in active fault zones to long-term changes in water balance and surface water circulation, an example from SW Turkey. Quat. Sci. Rev. 2019, 214, 164–177. [Google Scholar] [CrossRef]
- Jones, B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sediment. Geol. 2017, 354, 9–23. [Google Scholar] [CrossRef]
- Mors, R.A.; Gomez, F.J.; Astini, R.A.; Mlewski, E.C.; Gérard, E. Physico-chemical and biological controls in a travertine system in the high Andes of northwestern Argentina. Sediment. Geol. 2022, 439, 106214. [Google Scholar] [CrossRef]
- Jones, B.; Renaut, R.W. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift valley. J. Sediment. Res. 1995, 68, 913–927. [Google Scholar] [CrossRef]
- Minissale, A.; Kerrick, D.M.; Magro, G.; Murrell, M.T.; Paladini, M.; Rihs, S.; Sturchio, N.C.; Tassi, F.; Vaselli, O. Geochemistry of Quaternary travertines in the region north of Rome (Italy): Structural, hydrologic and paleoclimatic implications. Earth Planet. Sci. Lett. 2002, 203, 709–728. [Google Scholar] [CrossRef]
- Minissale, A. Origin, transport and discharge of CO2 in central Italy. Earth-Sci. Rev. 2004, 66, 89–141. [Google Scholar] [CrossRef]
- Della Porta, G.; Croci, A.; Marini, M.; Kele, S. Depositional architecture, facies character and geochemical signature of the Tivoli travertines (Pleistocene, Acque Albule Basin, Central Italy). Riv. Ital. Di Paleontol. E Stratigr. 2017, 123, 487–540. [Google Scholar]
- Duan, Z.; Sun, R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 2003, 193, 257–271. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K. A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems. Transp. Porous Media 2010, 82, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Capezzuoli, E.; Rogerson, M.; Vaselli, O.; Wen, H.; Lu, Z. Precipitation of carbonate minerals in travertine-depositing hot springs: Driving forces, microenvironments, and mechanisms. Sediment. Geol. 2022, 438, 106207. [Google Scholar] [CrossRef]
- Luo, L.; Wen, H.; Li, Y.; You, Y.; Luo, X. Mineralogical, crystal morphological, and isotopic characteristics of smooth slope travertine deposits at Reshuitang, Tengchong, China. Sediment. Geol. 2019, 381, 29–45. [Google Scholar] [CrossRef]
- Guo, L.I.; Riding, R. Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy. Sedimentology 1992, 39, 1067–1079. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; You, C.; Wan, N.; Sun, H. Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: Implications for paleoclimate reconstruction. Environ. Geol. 2006, 51, 257–265. [Google Scholar] [CrossRef]
- Okumura, T.; Takashima, C.; Shiraishi, F.; Kano, A. Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia. Sediment. Geol. 2012, 265–266, 195–209. [Google Scholar] [CrossRef]
- Simmons, S.F.; Arehart, G.; Simpson, M.P.; Mauk, J.L. Origin of massive calcite veins in the Golden Cross low-sulfidation, epithermal Au-Ag deposit, New Zealand. Econ. Geol. 2000, 95, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Simmons, S.F.; Browne, P.R.L. Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments. Econ. Geol. 2000, 95, 971–999. [Google Scholar] [CrossRef] [Green Version]
- Berardi, G.; Vignaroli, G.; Billi, A.; Rossetti, F.; Soligo, M.; Kele, S.; Baykara, M.O.; Bernasconi, S.M.; Castorina, F.; Tecce, F.; et al. Growth of a Pleistocene giant carbonate vein and nearby thermogene travertine deposits at Semproniano, southern Tuscany, Italy: Estimate of CO2 leakage. Tectonophysics 2016, 690, 219–239. [Google Scholar] [CrossRef]
- Frery, E.; Gratier, J.-P.; Ellouz-Zimmerman, N.; Loiselet, C.; Braun, J.; Deschamps, P.; Blamart, D.; Hamelin, B.; Swennen, R. Evolution of fault permeability during episodic fluid circulation: Evidence for the effects of fluid–rock interactions from travertine studies (Utah–USA). Tectonophysics 2015, 651–652, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Süer, S.; Güleç, N.; Mutlu, H.; Hilton, D.R.; Çifter, C.; Sayin, M. Geochemical Monitoring of Geothermal Waters (2002–2004) along the North Anatolian Fault Zone, Turkey: Spatial and Temporal Variations and Relationship to Seismic Activity. Pure Appl. Geophys. 2008, 165, 17–43. [Google Scholar] [CrossRef]
- Desouky, H.E.; Soete, J.; Claes, H.; Özkul, M.; Vanhaecke, F.; Swennen, R.; Ariztegui, D. Novel applications of fluid inclusions and isotope geochemistry in unravelling the genesis of fossil travertine systems. Sedimentology 2015, 62, 27–56. [Google Scholar] [CrossRef]
Location | T (°C) | pHfield | Alkalinity (mg/L) | HCO3− (mg/L) | F− (mg/L) | Cl− (mg/L) | SO42− (mg/L) | Na+ (mg/L) | K+ (mg/L) | Mg2+ (mg/L) | Ca2+ (mg/L) | SiO2 (mg/L) | δ2Hwater (‰, V−SMOW) | δ18Owater (‰, V−SMOW) | SIC | log pCO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 32 | 6.98 | 842 | 998 | 3.0 | 27.5 | 65.1 | 231 | 16.4 | 8.8 | 148 | 20.4 | −133.9 | −14.9 | 0.64 | −0.96 |
S2 | 58 | 6.81 | 825 | 993 | 3.2 | 31.3 | 36.9 | 249 | 20.5 | 9.9 | 120 | 25.4 | −137.3 | −15.3 | 0.69 | −0.61 |
S3 | 31.7 | 6.52 | 953 | 9.8 | 26.5 | 133 | 234 | 17.3 | 9.6 | 151 | 83.2 | −128.7 | −14.5 | 0.14 | −0.54 | |
YX2-1 a | 63 | 6.70 | 762 | 928.7 | 5.9 | 24.5 | 33 | 250 | 14.9 | 29.2 | 65.9 | 85.4 | −130 | −16.2 | 0.36 | −0.49 |
YX2-3 a | 50.5 | 5.57 | 649 | 790.8 | 5.3 | 21.3 | 29.8 | 219 | 27.6 | 25.5 | 60.1 | 68.2 | −130.2 | −15.1 | −1 | 0.48 |
YX2-5 a | 41.4 | 7.66 | 622 | 759.1 | 5.8 | 26.1 | 35.1 | 255 | 29.9 | 16.9 | 35.9 | 80.8 | −128.3 | −15 | 0.72 | −1.7 |
YX2-6 a | 47.3 | 7.67 | 745 | 908 | 4.3 | 26.6 | 35.7 | 234 | 19.7 | 15.6 | 89.8 | 85.4 | −131.5 | −15.2 | 1.25 | −1.6 |
YX2-7 a | 63.1 | 7.56 | 781 | 951.9 | 5.9 | 26.1 | 35.1 | 251 | 15 | 34.0 | 63.9 | 83.1 | −133.4 | −15.6 | 1.18 | −1.35 |
Sample ID | Travertine Classification | δ13C (‰, V-PDB) | δ18O (‰, V-PDB) | δ18O (‰, V-SMOW) | Tcal (°C) | δ13Cparent-CO2 (‰, V-PDB) |
---|---|---|---|---|---|---|
1 | TP | 3.63 | −22.98 | 7.23 | 68.6 | −2.68 |
2 | 3.74 | −22.97 | 7.24 | 68.6 | −2.57 | |
3 | 3.56 | −22.64 | 7.58 | 66.6 | −2.93 | |
4 | 3.03 | −23.82 | 6.37 | 73.7 | −2.85 | |
5 | 3.14 | −24.15 | 6.02 | 75.8 | −2.55 | |
6 | 3.15 | −23.93 | 6.25 | 74.4 | −2.67 | |
7 | 3.05 | −25.52 | 4.61 | 84.5 | −1.96 | |
8 | 2.94 | −25.68 | 4.45 | 85.5 | −1.98 | |
9 | 2.93 | −25.72 | 4.4 | 85.9 | −1.98 | |
10 | 3.10 | −25.21 | 4.93 | 82.5 | −2.07 | |
11 | 3.09 | −25.68 | 4.45 | 85.5 | −1.83 | |
12 | 3.29 | −25.41 | 4.73 | 83.7 | −1.77 | |
13 | 3.01 | −24.98 | 5.17 | 81 | −2.27 | |
14 | 2.97 | −25.37 | 4.77 | 83.5 | −2.11 | |
15 | 3.08 | −25.58 | 4.55 | 84.9 | −1.89 | |
16 | 2.90 | −25.40 | 4.73 | 83.7 | −2.16 | |
17 | 3.01 | −25.55 | 4.58 | 84.7 | −1.98 | |
18 | 3.00 | −25.86 | 4.26 | 86.8 | −1.83 | |
19 | 3.21 | −25.47 | 4.66 | 84.2 | −1.82 | |
20 | 3.09 | −25.61 | 4.52 | 85.1 | −1.86 | |
21 | 3.22 | −25.39 | 4.74 | 83.7 | −1.84 | |
22 | 2.83 | −25.46 | 4.67 | 84.1 | −2.21 | |
23 | 2.82 | −25.51 | 4.62 | 84.4 | −2.19 | |
24 | 3.10 | −25.21 | 4.93 | 82.5 | −2.07 | |
25 | 2.91 | −25.63 | 4.5 | 85.2 | −2.04 | |
26 | TC | 3.54 | −22.95 | 7.26 | 68.4 | −2.78 |
27 | 3.54 | −23.01 | 7.2 | 68.8 | −2.76 | |
28 | 3.37 | −23.98 | 6.2 | 74.7 | −2.42 | |
29 | 3.80 | −23.21 | 6.99 | 70 | −2.38 | |
30 | 3.63 | −23.48 | 6.71 | 71.7 | −2.42 | |
31 | 3.62 | −23.27 | 6.93 | 70.4 | −2.53 | |
32 | 3.60 | −23.16 | 7.04 | 69.7 | −2.62 | |
33 | 3.88 | −22.86 | 7.35 | 67.9 | −2.50 | |
34 | 3.54 | −23.26 | 6.94 | 70.3 | −2.63 | |
35 | 3.66 | −23.76 | 6.43 | 73.3 | −2.25 | |
36 | 3.74 | −23.82 | 6.37 | 73.7 | −2.13 | |
37 | 3.49 | −23.39 | 6.81 | 71.1 | −2.61 | |
38 | 3.58 | −23.59 | 6.6 | 72.3 | −2.42 | |
39 | 3.81 | −23.13 | 7.08 | 69.5 | −2.43 | |
40 | 3.93 | −22.78 | 7.44 | 67.4 | −2.48 | |
41 | 3.43 | −24.02 | 6.16 | 74.9 | −2.34 | |
42 | 3.48 | −23.93 | 6.25 | 74.4 | −2.34 | |
43 | 3.70 | −23.41 | 6.78 | 71.3 | −2.38 | |
44 | 3.70 | −23.81 | 6.37 | 73.7 | −2.17 | |
45 | 3.57 | −23.48 | 6.71 | 71.7 | −2.48 | |
46 | 3.40 | −23.62 | 6.57 | 72.5 | −2.57 | |
47 | 4.19 | −21.50 | 8.75 | 60 | −2.90 | |
48 | 3.73 | −22.29 | 7.94 | 64.5 | −2.95 | |
49 | 3.49 | −22.78 | 7.44 | 67.4 | −2.92 | |
50 | 3.60 | −23.00 | 7.21 | 68.7 | −2.71 | |
51 | 3.54 | −23.39 | 6.81 | 71.1 | −2.56 | |
52 | 3.85 | −22.80 | 7.41 | 67.6 | −2.55 | |
53 | 4.11 | −22.03 | 8.21 | 63 | −2.70 | |
54 | 3.45 | −23.27 | 6.93 | 70.4 | −2.70 | |
55 | 3.41 | −23.48 | 6.72 | 71.6 | −2.64 | |
56 | 3.69 | −23.65 | 6.54 | 72.6 | −2.29 | |
57 | 3.66 | −23.45 | 6.74 | 71.5 | −2.41 | |
58 | 3.67 | −23.34 | 6.86 | 70.8 | −2.44 | |
59 | 3.67 | −23.53 | 6.67 | 71.9 | −2.36 | |
60 | 3.80 | −23.13 | 7.08 | 69.5 | −2.44 | |
61 | 4.04 | −22.74 | 7.47 | 67.2 | −2.39 | |
62 | 3.51 | −23.19 | 7.01 | 69.9 | −2.70 | |
63 | 3.80 | −22.98 | 7.23 | 68.6 | −2.51 | |
64 | 3.84 | −22.98 | 7.23 | 68.6 | −2.47 | |
65 | 3.69 | −23.21 | 6.99 | 70 | −2.50 | |
66 | 3.56 | −23.39 | 6.8 | 71.1 | −2.54 | |
67 | 3.48 | −23.16 | 7.04 | 69.7 | −2.74 | |
68 | 3.69 | −23.18 | 7.02 | 69.8 | −2.51 | |
69 | 3.85 | −22.12 | 8.12 | 63.6 | −2.91 | |
70 | 3.64 | −22.62 | 7.6 | 66.5 | −2.86 | |
71 | 3.76 | −23.00 | 7.21 | 68.7 | −2.55 | |
72 | 3.53 | −23.04 | 7.16 | 69 | −2.74 | |
73 | 3.75 | −22.61 | 7.62 | 66.4 | −2.75 | |
74 | 3.88 | −21.95 | 8.29 | 62.6 | −2.97 | |
75 | 4.24 | −21.46 | 8.8 | 59.7 | −2.88 | |
76 | 3.80 | −22.68 | 7.54 | 66.8 | −2.67 | |
77 | 3.73 | −22.72 | 7.5 | 67 | −2.72 | |
78 | 3.75 | −20.90 | 9.38 | 56.6 | −3.65 | |
79 | 4.50 | −22.39 | 7.84 | 65.1 | −2.13 | |
80 | 3.66 | −24.45 | 5.71 | 77.7 | −1.88 | |
81 | BT | 4.49 | −21.79 | 8.45 | 61.7 | −2.45 |
82 | 4.49 | −21.96 | 8.29 | 62.6 | −2.36 | |
83 | 4.71 | −20.90 | 9.37 | 56.7 | −2.69 | |
84 | 4.84 | −20.97 | 9.3 | 57 | −2.52 | |
85 | 5.16 | −20.23 | 10.06 | 53 | −2.59 | |
86 | 4.88 | −20.93 | 9.34 | 56.8 | −2.52 | |
87 | 4.68 | −21.29 | 8.98 | 58.7 | −2.53 | |
88 | 4.98 | −20.91 | 9.36 | 56.7 | −2.42 | |
89 | 5.31 | −20.68 | 9.6 | 55.4 | −2.20 | |
90 | 4.40 | −22.00 | 8.24 | 62.9 | −2.43 | |
91 | 4.38 | −21.91 | 8.33 | 62.4 | −2.49 | |
92 | 5.51 | −20.41 | 9.88 | 53.9 | −2.16 | |
93 | RFT | 5.98 | −21.28 | 8.98 | 58.7 | −1.24 |
94 | 5.66 | −21.86 | 8.39 | 62 | −1.25 | |
95 | 6.81 | −18.58 | 11.76 | 44.3 | −1.80 |
Location | Classification | Characteristics | Lithofacies | Components | T (°C) | Fluid Origins |
---|---|---|---|---|---|---|
Semproniano Village, Italy [75] | Banded travertine | A giant structure characterized by a minimum thickness of 50 m | Crystalline crust | Complex, such as elongate V-like-shapes crystals, can reach to 2 cm. | 34 ± 2 to 71 ± 7 | Water is meteoric origin. CO2 originated from limestone decarbonation with CO2 of igneous origin |
Semproniano Village, Italy [75] | Calcite vein | Veins cutting through carbonate rocks, reach to 5 cm thick | 49 ± 4 to 56 ± 5 | |||
I Vignacci, Italy [75] | Banded travertine | Composed of subvertical NW–SE-striking bands, located at an altitude of about 430 m a.s.l. | 43 ± 3 | Water is meteoric origin. CO2 originated from limestone decarbonation with CO2 of igneous origin | ||
Kamara, Turkey [13] | Banded travertine | Bands up to 1 m thick | (a) The palisade/columnar structure made of bladed, rhombohedral/prismatic elongated crystals; (b) The botryoidal structure composed of fan-like splays of acicular/needle-like crystals, mm-to cm thick. | 55 to 80 | Water is meteoric origin. Parent CO2 from magmatic, decarbonation of marine carbonate rocks and organic-sedimentary | |
Kamara, Turkey [13] | Calcite vein | These calcite veins isolate cm- to dm-thick volumes of hosting sediments. | Mm-thick, fibrous onyx-like calcite/aragonite crystals. | 44 to 57 | ||
Gölemezli, Turkey [18] | Banded travertine | Onyx-like, up to 12 m in width. | (a)Type A band, palisade/columnar, acicular/needle-like crystals, up to cm-long; (b) Type B band, micro-crystalline calcite, up to mm-thick. | 53 to 76 | Water is meteoric origin; Parent CO2 from crustal- and mantle-derived CO2. | |
Gölemezli, Turkey [18] | Calcite vein | Localized brecciation, formed in late deformational process, thickness ranges from 15 to 50 cm. | Few millimeter calcite crystals | 60 to 65 | ||
Pamukkale, Turkey [24,43] | Banded travertine | The band thickness varies from a few centimeters to 10 cm, mineral type: calcite and aragonite. | Radial, needle-shaped elongated crystals with length of about 0.5 to 1 mm | <60 | Water is meteoric origin; Parent CO2 from crustal- and mantle-derived CO2. | |
Reşadiye, Turkey [24,77] | Banded travertine | Except typical bands, the travertines are detritus-free, porous, moderately crystalline, mineral type: calcite | Radial, needle-shaped elongated crystals with length of about 1 to 2 mm | <60 | Water is meteoric origin; Parent CO2 from crustal- and mantle-derived CO2. | |
Ballık, Turkey [78] | Calcite vein | Cross-cutting the micritic travertine host rock, millimeter-thick to centimeter-thick | Micrite and fine-crystalline (<50 μm) calcite crystals, elongated coarse-crystalline sparite | |||
Utah, USA [76] | Carbonate vein | (a)Thin veins with characterized by isolated millimeter-thick calcium carbonate veins and 3D dense network veins; (b) Thick carbonate veins, up to 1 m thick; mineral type: calcite and aragonite. | Elongate V-like-shapes crystals, can reach to 1 mm. | |||
Xiagei, China this study | Banded travertine | Exposed in the center of fissure ridge, approximately 1.5 m. | Thick-laminated palisade crystalline crust: palisade crystals (from 1 to 3 cm long), thin-laminated composite crystalline crust: short-columnar crystals, dendritic crystals, platy crystals, fan crystals, granular crystals, and calcite micrite (less than 1 cm). | 68 to 85 | Water is meteoric origin; Parent CO2 from (marine) carbonate decarbonation-related CO2 and magmatic CO2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Wen, H.; Luo, L.; Lu, Z.; Li, L. Stable Carbon and Oxygen Isotopic Features of Banded Travertines from the Xiagei Fissure Ridge System (Shangri-La, China). Minerals 2023, 13, 76. https://doi.org/10.3390/min13010076
You Y, Wen H, Luo L, Lu Z, Li L. Stable Carbon and Oxygen Isotopic Features of Banded Travertines from the Xiagei Fissure Ridge System (Shangri-La, China). Minerals. 2023; 13(1):76. https://doi.org/10.3390/min13010076
Chicago/Turabian StyleYou, Yaxian, Huaguo Wen, Lianchao Luo, Zhipeng Lu, and Liang Li. 2023. "Stable Carbon and Oxygen Isotopic Features of Banded Travertines from the Xiagei Fissure Ridge System (Shangri-La, China)" Minerals 13, no. 1: 76. https://doi.org/10.3390/min13010076