Insights into the Weathering Crust Reservoirs of Granitoids: A Case Study from Qinghai Oilfield of Qaidam Basin, Northwest China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Quantification of the Weathering Crust
4.1.1. Soil Layer and Complete Weathering Layer
4.1.2. Partial Weathering Layer
4.1.3. Nonweathering Layer
4.2. Reservoir Property Characterization
4.3. Physical Characteristics of Reservoirs
5. Discussion
5.1. Contributions of the Weathering Crust to Reservoir Quality
5.1.1. Differentiation of Reservoir Quality
5.1.2. Reservoir Generation Processes
5.2. Controlling Factors of Weathering Crust Reservoirs
5.2.1. Lithology and Mineral Composition
5.2.2. Tectonic Uplift
5.2.3. Faulting
5.2.4. Paleogeomorphology
5.3. Reservoir Modeling and Natural Gas Implications
6. Conclusions
- (1)
- The structure of the weathering crust was classified as complete weathering layer, partial weathering layer (dissolution belt and disintegration belt), and nonweathering layer based on the occurrence of different minerals, elements, and textures in the rocks, as well as the interpretation of logging datasets. The top to middle section of the partial weathering crust, where the majority of the observed pores and fractures had developed, demonstrated the most advantageous reservoir physical properties.
- (2)
- The dissolution belt was characterized by matrix pores, dissolution pores, residual pores, and dissolution fractures. The matrix pores represented the most important contribution to the total porosity. The clay minerals such as illite/smectite generated abundant dissolved matrix pores. Another type of matrix pore included intergranular pores and intragranular pores, which were formed mainly due to the crystallization of mica. The sericites or chlorites, together with some dissolution pores, developed because of the chemical interactions that occurred within the plagioclase. The residual pores were preserved among the aluminosilicate grains, whereas dissolution fractures were formed within them. More cleavage fractures and crack fractures were formed in the disintegration belt, but some of those were filled with calcites or anhydrites.
- (3)
- The femic granitoids, including granitic gneiss and granitic diorite, were appropriate lithologies for the formation of reservoirs due to the possible intense dissolution in these rocks. The felsic granitoids had a greater fracture potential. The gneissose structure greatly enhanced the permeability of granitic gneiss. No clear relationships were observed between the quality of the reservoirs in the dissolution and the disintegration belts and the presence of femic and felsic granitoids. The thickness of the partial weathering layer in femic granitoids, however, was larger than that in felsic granitoids.
- (4)
- Faulting was the main factor for the formation of the disintegration belt, which was induced mainly by the tectonic deformation occurring from the late Oligocene to the early Miocene in Altyn Fault belt. The reservoir quality seemed to be greater when the granitoids had developed close to the main fractures. Therefore, the dissolution belt was controlled by faulting, and to some extent, the mode in which the fractures connected the pores together. The paleogeomorphology influenced the extent of the weathering, from which the thickness of the weathering crust in the slope areas was larger compared to that in depression areas. The exhumation that took place from the late Jurassic to the Cenozoic in Altyn terrane corresponded to the weathering and leaching period of the granitoids.
- (5)
- The reservoirs in granitoids could be classified into three types: fractured-porous, porous, and fractured. The fractured-porous type was associated with the best capacity of reservoirs found in granitoids, and this type developed mainly in the dissolution belt of the weathering crust. Therefore, the dissolution belt was the predominant zone of high-quality granitoid reservoirs, in which the total porosity of pores and dissolution fractures accounted for 59.7% of the entire reservoir porosity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walters, R.F. Oil Production from Fractured Pre-Cambrian Basement Rocks in Central Kansas. AAPG Bull. 1953, 37, 300–313. [Google Scholar] [CrossRef]
- P’an, C.H. Petroleum in Basement Rocks. Am. Assoc. Pet. Geol. Bull. 1982, 66, 1597–1643. [Google Scholar] [CrossRef]
- Smith, J.E. Basement Reservoir of La Paz-Mara Oil Fields, Western Venezuela. AAPG Bull. 1955, 40, 380–385. [Google Scholar]
- Landes, K.K.; Amoruso, J.J.; Charlesworth, L.J.; Heany, F.; Lesperancep, J. Petroleum Resources in Basement Rocks: Discussion. AAPG Bull. 1961, 45, 1682–1691. [Google Scholar] [CrossRef]
- Areshev, E.G.; Dong, T.L.; San, N.T.; Shnip, O.A. Reservoirs in Fractured Basement on the Continental Shelf of Southern Vietnam. J. Pet. Geol. 1992, 15, 451–464. [Google Scholar] [CrossRef]
- Ma, F.; Yang, W.; Zhang, Y.; Li, H.; Xie, M.; Sun, X.; Wang, P.; Bai, Y. Characterization of the Reservoir-Caprock of the Large Basement Reservoir in the Dongping Field, Qaidam Basin, China. Energy Explor. Exploit. 2018, 36, 1498–1518. [Google Scholar] [CrossRef] [Green Version]
- Seemann, U.; Scherer, M. Volcaniclastics as Potential Hydrocarbon Reservoirs. Clay Miner. 1984, 19, 457–470. [Google Scholar] [CrossRef]
- Schutter, S.R. Hydrocarbon Occurrence and Exploration in and around Igneous Rocks. Geol. Soc. Spec. Publ. 2003, 214, 7–33. [Google Scholar] [CrossRef]
- Cuong, T.X.; Warren, J.K. Bach Ho Field, a Fractured Granitic Basement Reservoir, Cuu Long Basin, Offshore SE Vietnam: A “Buried-Hill” Play. J. Pet. Geol. 2009, 32, 129–156. [Google Scholar] [CrossRef]
- Parnell, J.; Baba, M.; Bowden, S.; Muirhead, D. Subsurface Biodegradation of Crude Oil in a Fractured Basement Reservoir, Shropshire, UK. J. Geol. Soc. 2017, 174, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Adepelumi, A.A.; Yi, M.J.; Kim, J.H.; Ako, B.D.; Son, J.S. Integration of Surface Geophysical Methods for Fracture Detection in Crystalline Bedrocks of Southwestern Nigeria. Hydrogeol. J. 2006, 14, 1284–1306. [Google Scholar] [CrossRef]
- Stober, I.; Bucher, K. Hydraulic Properties of the Crystalline Basement. Hydrogeol. J. 2007, 15, 213–224. [Google Scholar] [CrossRef]
- Zou, C.N.; Hou, L.H.; Yang, F.; Yang, C.; Tao, S.Z.; Yuan, X.J.; Zhu, R.K. Structure of Weathered Clastic Crust and Its Petroleum Potential. Sci. China Earth Sci. 2014, 57, 3015–3026. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Q.X.; Zhang, J.L.; Wei, P.S.; Chen, Q.L.; Zhang, H.Q. A Discussion of Exploration Potentials of Basement Hrdrocarbon Reservoir. Nat. Gas Ind. 2006, 26, 8–11, (In Chinese with English abstract). [Google Scholar]
- Sunarjanto, D.; Widjaja, S. Potential Development of Hydrocarbon in Basement Reservoirs In Indonesia Pengembangan Potensi Reservoir Hidrokarbon Batuan Dasar Di Indonesia. Indones. J. Geosci. 2013, 8, 151–161. [Google Scholar]
- Frey, M.; Ebbing, J. The Deep Geothermal Potential of the Radiogenic Løvstakken Granite in Western Norway. Nor. J. Geol. 2020, 100, 1–27. [Google Scholar] [CrossRef]
- Achtziger-Zupančič, P.; Loew, S.; Hiller, A. Factors Controlling the Permeability Distribution in Fault Vein Zones Surrounding Granitic Intrusions (Ore Mountains/Germany). J. Geophys. Res. Solid Earth 2017, 122, 1876–1899. [Google Scholar] [CrossRef]
- Zeng, Y.; Tang, L.; Wu, N.; Cao, Y. Numerical Simulation of Electricity Generation Potential from Fractured Granite Reservoir Using the MINC Method at the Yangbajing Geothermal Field. Geothermics 2018, 75, 122–136. [Google Scholar] [CrossRef]
- Doetsch, J.; Krietsch, H.; Schmelzbach, C.; Jalali, M.; Gischig, V.S.; Villiger, L.; Amann, F.; Maurer, H. Characterizing a decametre-scale granitic reservoir using ground-penetrating radar and seismic methods. Solid Earth. 2020, 11, 1441–1455. [Google Scholar] [CrossRef]
- Ye, T.; Chen, A.; Niu, C.; Wang, Q.; Guo, L. Characteristics and Vertical Zonation of Large-Scale Granitic Reservoirs, a Case Study from Penglai Oil Field in the Bohai Bay Basin, North China. Geol. J. 2020, 55, 8109–8121. [Google Scholar] [CrossRef]
- Dou, L.R.; Wei, X.D.; Wang, J.C.; Li, J.L.; Wang, R.C.; Zhang, S.H. Characteristics of Granitic Basement Rock Buried-Hill Reservoir in Bongor Basin, Chad. Acta Pet. Sin. 2015, 36, 898–925, (In Chinese with English abstract). [Google Scholar]
- Guo, Z.Q.; Ma, Y.S.; Liu, W.H.; Wang, L.Q.; Tian, J.X.; Zeng, X.; Ma, F. Main Factors Controlling the Formation of Basement Hydrocarbon Reservoirs in the Qaidam Basin, Western China. J. Pet. Sci. Eng. 2017, 149, 244–255. [Google Scholar] [CrossRef]
- Ma, F.; Yan, C.; Ma, D.; Le, X.; Huang, C.; Shi, Y.; Zhang, Y.; Xie, M. Bedrock Gas Reservoirs in Dongping Area of Qaidam Basin, NW China. Pet. Explor. Dev. 2015, 42, 293–300. [Google Scholar] [CrossRef]
- Koning, T. Oil and Gas Production from Basement Reservoirs: Examples from Indonesia, USA and Venezuela. Geol. Soc. Spec. Publ. 2003, 214, 83–92. [Google Scholar] [CrossRef]
- Luo, J.; Morad, S.; Liang, Z.; Zhu, Y. Controls on the Quality of Archean Metamorphic and Jurassic Volcanic Reservoir Rocks from the Xinglongtai Buried Hill, Western Depression of Liaohe Basin, China. Am. Assoc. Pet. Geol. Bull. 2005, 89, 1319–1346. [Google Scholar] [CrossRef]
- Zou, C.N.; Hou, L.H.; Tao, S.Z.; Yuan, X.J.; Zhu, R.K.; Jia, J.H.; Zhang, X.X.; Li, F.H.; Pang, Z.L. Hydrocarbon Accumulation Mechanism and Structure of Large-Scale Volcanic Weathering Crust of the Carboniferous in Northern Xinjiang, China. Sci. China Earth Sci. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Wu, C.; Gu, L.; Zhang, Z.; Ren, Z.; Chen, Z.; Li, W. Formation Mechanisms of Hydrocarbon Reservoirs Associated with Volcanic and Subvolcanic Intrusive Rocks: Examples in Mesozoic-Cenozoic Basins of Eastern China. Am. Assoc. Pet. Geol. Bull. 2006, 90, 137–147. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.G.; Chen, W.X.; Wang, Z.J.; Tan, F.W.; Chen, M.; Zhuo, J.W. Chronology and Geochemistry of the Volcanic Rocks in Woruo Mountain Region, Northern Qiangtang Depression: Implications to the Late Triassic Volcanic-Sedimentary Events. Sci. China Ser. D Earth Sci. 2008, 51, 194–205. [Google Scholar] [CrossRef]
- Fu, S.T.; Ma, D.D.; Chen, Y.; Zhang, G.Q.; Wu, K.Y. New Advance of Petroleum and Gas Exploration in Qaidam Basin. Acta Pet. Sin. 2016, 37, 1–10, (In Chinese with English abstract). [Google Scholar]
- Jiao, X.; Niu, H.; Xie, Q.; Zhang, Y.; Li, J.; Wu, Z.; Wang, B.; Li, X. Characteristics of Basement Reservoirs and Setting for Natural Gas Accumulation in Jianbei Slope, Qaidam Basin. Oil Gas Geol. 2020, 41, 305–315, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Lee, S.G.; de Freitas, M.H. A Revision of the Description and Classification of Weathered Granite and Its Application to Granites in Korea. Q. J. Eng. Geol. 1989, 22, 249. [Google Scholar] [CrossRef]
- Gupta, A.S.; Rao, S.K. Weathering Indices and Their Applicability for Crystalline Rocks. Bull. Eng. Geol. Environ. 2001, 60, 201–221. [Google Scholar] [CrossRef]
- Duzgoren-Aydin, N.S.; Aydin, A.; Malpas, J. Re-Assessment of Chemical Weathering Indices: Case Study on Pyroclastic Rocks of Hong Kong. Eng. Geol. 2002, 63, 99–119. [Google Scholar] [CrossRef]
- Turner, B.F.; Stallard, R.F.; Brantley, S.L. Investigation of in Situ Weathering of Quartz Diorite Bedrock in the Rio Icacos Basin, Luquillo Experimental Forest, Puerto Rico. Chem. Geol. 2003, 202, 313–341. [Google Scholar] [CrossRef]
- Shaldybin, M.V.; Wilson, M.J.; Wilson, L.; Lopushnyak, Y.M.; Kondrashova, E.S.; Rychkova, I.V.; Rudmin, M.A.; Molokov, P.B.; Muslimova, A.V. A Kaolinitic Weathering Crust in Tomsk, West Siberia: Interpretation in the Context of Weathering Crusts in Russia and Elsewhere. Catena 2019, 181, 104056. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Sami, M. Geochemical evidence for photic zone euxinia during greenhouse climate in the Tethys Sea, Egypt. In Conference of the Arabian Journal of Geosciences; Springer: Cham, Switzerland, 2022; pp. 373–374. [Google Scholar] [CrossRef]
- Krauskopf, K.B. Introduction to Geochemistry, 2nd ed.; McGraw-Hill Book Co.: New York, NY, USA, 1967; p. 721. [Google Scholar]
- Arıkan, F.; Ulusay, R.; Aydın, N. Characterization of Weathered Acidic Volcanic Rocks and a Weathering Classification Based on a Rating System. Bull. Eng. Geol. Environ. 2007, 66, 415–430. [Google Scholar] [CrossRef]
- Ceryan, S.; Zorlu, K.; Gokceoglu, C.; Temel, A. The Use of Cation Packing Index for Characterizing the Weathering Degree of Granitic Rocks. Eng. Geol. 2008, 98, 60–74. [Google Scholar] [CrossRef]
- Fathy, D.; Wagreich, M.; Ntaflos, T.; Sami, M. Provenance characterization of Campanian lacustrine organic-rich mudstones on the Southern Tethyan margin, Egypt. ACS Earth Space Chem. 2021, 5, 197–209. [Google Scholar] [CrossRef]
- Von Eynatten, H.; Barceló-Vidal, C.; Pawlowsky-Glahn, V. Modelling Compositional Change: The Example of Chemical Weathering of Granitoid Rocks. Math. Geol. 2003, 35, 231–251. [Google Scholar] [CrossRef]
- Martin, R.P.; Henchert, S.R. Principles for Description and Classification of Weathered Rock for Engineering Purposes. Geol. Soc. Eng. Geol. Spec. Publ. 1986, 2, 299–308. [Google Scholar] [CrossRef]
- Ceryan, S.; Tudes, S.; Ceryan, N. Influence of Weathering on the Engineering Properties of Harsit Granitic Rocks (NE Turkey). Bull. Eng. Geol. Environ. 2008, 67, 97–104. [Google Scholar] [CrossRef]
- Parker, A. An Index of Weathering for Silicate Rocks. Geol. Mag. 1970, 107, 501–504. [Google Scholar] [CrossRef]
- Roaldset, E. Mineralogy and geochemistry of Quaternary clays in the Numedal area, southern Norway. Nor. J. Geol. 1972, 52, 335–369. [Google Scholar]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lulites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Harnois, L. The CIW Index: A New Chemical Index of Weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unravelling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Métivier, F.; Gaudemer, Y.; Tapponnier, P.; Meyer, B. Northeastward Growth of the Tibet Plateau Deduced from Balanced Reconstruction of Two Depositional Areas: The Qaidam and Hexi Corridor Basins, China. Tectonics 1998, 17, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Sobel, E.R.; Arnaud, N. A Possible Middle Paleozoic Suture in the Altyn Tagh, NW China. Tectonics 1999, 18, 64–74. [Google Scholar] [CrossRef]
- Bian, Q.; Zhang, D.; Yu, X.; Cheng, X.; Du, W.; Liu, R.; Wang, Z.; Guo, Z. Transpressional Salt Tectonic System in Western Qaidam Basin, Western China. AAPG Bull. 2019, 103, 547–568. [Google Scholar] [CrossRef]
- Tian, P.; Yuan, W.; Yang, X.; Feng, Z.; Chen, X.; Yuan, E. Multi-stage tectonic events of the Eastern Kunlun Mountains, Northern Tibetan Plateau constrained by fission track thermochronology. J. Asian Earth Sci. 2020, 198, 104428. [Google Scholar] [CrossRef]
- Wu, L.; Xiao, A.; Wang, L.; Shen, Z.; Zhou, S.; Chen, Y.; Wang, L.; Liu, D.; Guan, J. Late Jurassic-Early Cretaceous Northern Qaidam Basin, NW China: Implications for the Earliest Cretaceous Intracontinental Tectonism. Cretac. Res. 2011, 32, 552–564. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, L.; Sun, M.; Wang, Q.; Kusky, T.M. U-Pb and Hf Isotopic Compositions of Detrital Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. J. Asian Earth Sci. 2012, 54–55, 110–130. [Google Scholar] [CrossRef]
- Mattinson, C.G.; Menold, C.A.; Zhang, J.X.; Bird, D.K. High- and Ultrahigh-Pressure Metamorphism in the North Qaidam and South Altyn Terranes, Western China. Int. Geol. Rev. 2007, 49, 969–995. [Google Scholar] [CrossRef]
- Zhang, J.; Mattinson, C.G.; Meng, F.; Wan, Y.; Tung, K. Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. Bull. Geol. Soc. Am. 2008, 120, 732–749. [Google Scholar] [CrossRef]
- Wu, C.; Chen, H.; Wu, D.; Ernst, W.G. Paleozoic Granitic Magmatism and Tectonic Evolution of the South Altun Block, NW China: Constraints from Zircon U-Pb Dating and Lu-Hf Isotope Geochemistry. J. Asian Earth Sci. 2018, 160, 168–199. [Google Scholar] [CrossRef]
- Niu, H.; Jiao, X.; Xie, Q.; Zhang, Y.; Li, X.; Wu, Z.; Wang, B.; Yang, X.; Li, Y.; Gao, Z. Origin and Tectonic Implications of Granitoids from the Eastern Segment of the South Altyn Block, North-Western China: Constraints from Petrogeochemistry, Zircon U–Pb Dating, and Lu–Hf Isotope Geochemistry. Geol. J. 2020, 55, 7613–7637. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Guo, Z.; Wang, L.; Zhang, C.; Li, X. Cenozoic Evolution of the Qaidam Basin and Implications for the Growth of the Northern Tibetan Plateau: A Review. Earth-Sci. Rev. 2021, 220, 103730. [Google Scholar] [CrossRef]
- Li, W.Y. The Primary Discussion on the Relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean. Acta Petrol. Sin. 2018, 34, 2201–2210, (In Chinese with English abstract). [Google Scholar]
- Zhang, J.X.; Mattinson, C.G.; Meng, F.C.; Wan, Y.S. An Early Palaeozoic HP/HT Granulite-Garnet Peridotite Association in the South Altyn Tagh, NW China: P-T History and U-Pb Geochronology. J. Metamorph. Geol. 2005, 23, 491–510. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Chen, D.; Zhang, A.; Liou, J.G. Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China. J. Asian Earth Sci. 2009, 35, 232–244. [Google Scholar] [CrossRef]
- Wu, S.P.; Wu, C.L.; Wang, M.Y.; Chen, Q.L.; Wooden, J.L. SHRIMP U-Pb Zircon Dating of the Tula Granite Pluton on the South Side of the Altun Fault and Its Geological Implications. Acta Geol. Sin.-Engl. Ed. 2008, 82, 409–414. [Google Scholar]
- Liu, Y.; Santosh, M.; Yuan, T.; Li, H.; Li, T. Reduction of Buried Oxidized Oceanic Crust during Subduction. Gondwana Res. 2016, 32, 11–23. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Liu, X.; Santosh, M.; Somerville, I.D.; Cao, H.; Yu, S.; Zhang, Z.; Guo, L. The Northern Boundary of the Proto-Tethys Ocean: Constraints from Structural Analysis and U-Pb Zircon Geochronology of the North Qinling Terrane. J. Asian Earth Sci. 2015, 113, 560–574. [Google Scholar] [CrossRef]
- Li, D.; He, D.; Tang, Y. Reconstructing Multiple Arc-Basin Systems in the Altai-Junggar Area (NW China): Implications for the Architecture and Evolution of the Western Central Asian Orogenic Belt. J. Asian Earth Sci. 2016, 121, 84–107. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Y.; Liu, Z.; Sui, G.; Li, G.; Wang, C.; Cui, S.; Zhang, Y.; Wang, J.; Zhu, J. Geochemical Characteristics and Origin of Natural Gas in the Dongping–Niudong Areas, Qaidam Basin, China. J. Nat. Gas Geosci. 2016, 1, 489–499. [Google Scholar] [CrossRef]
- Du, W.; Chen, Y.; Wang, Z.; Bian, Q.; Guo, Z. Tectonic Analysis and Petroleum Significance of Cenozoic Faults in Dongping-Niuzhong Area in Altyn Slope. Pet. Explor. Dev. 2019, 46, 983–990. [Google Scholar] [CrossRef]
- Plas, L.V.D.; Tobi, A.C. A Chart for Judging the Reliability of Point Counting Results. Am. J. Sci. 1965, 263, 87–90. [Google Scholar] [CrossRef]
- Khoshbakht, F.; Memarian, H.; Mohammadnia, M. Comparison of Asmari, Pabdeh and Gurpi Formation’s Fractures, Derived from Image Log. J. Pet. Sci. Eng. 2009, 67, 65–74. [Google Scholar] [CrossRef]
- Tokhmchi, B.; Memarian, H.; Rezaee, M.R. Estimation of the Fracture Density in Fractured Zones Using Petrophysical Logs. J. Pet. Sci. Eng. 2010, 72, 206–213. [Google Scholar] [CrossRef]
- Brekke, H.; MacEachern, J.A.; Roenitz, T.; Dashtgard, S.E. The Use of Microresistivity Image Logs for Facies Interpretations: An Example in Point-Bar Deposits of the McMurray Formation, Alberta, Canada. AAPG Bull. 2017, 101, 655–682. [Google Scholar] [CrossRef]
- Niu, H.; Liu, S.; Lai, J.; Wang, G.; Liu, B.; Xie, Y.; Xie, W. In-Situ Stress Determination and Fracture Characterization Using Image Logs: The Paleogene Dongying Formation in Nanpu Sag, Bohai Bay Basin, China. Energy Sci. Eng. 2020, 8, 476–489. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.K.; Farley, K.A.; Zheng, D.; Wang, Z.; Duvall, A.R. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U—Th)/ He Ages. Earth Planet. Sci. Lett. 2010, 296, 78–88. [Google Scholar] [CrossRef]
- Koryakin, A.S. Results of a Study of Proterozoic Weathering Crusts in Karelia. Int. Geol. Rev. 1971, 13, 973–980. [Google Scholar] [CrossRef]
- Macaluso, T.; Sauro, U. Weathering Crust and Karren on Exposed Gypsum Surfaces. Int. J. Speleol. 1996, 25, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Huang, C.; Yuan, J.; Yan, C.; Ma, F.; Sun, X. Discovery of Matrix Pore of High Efficiency in Saline Basin and Its Significance. J. Earth Sci. Environ. 2015, 37, 55–62, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.; Liu, W.; Zhang, Y.; Yan, D.; Yang, D.; Zha, M.; Li, L. Characterization of the Paleocrusts of Weathered Carboniferous Volcanics from the Junggar Basin, Western China: Significance as Gas Reservoirs. Mar. Pet. Geol. 2016, 77, 216–234. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Guan, P.; Shang, Y.J. Weathering Mechanisms and Indices of the Igneous Rocks of Hong Kong. Q. J. Eng. Geol. Hydrogeol. 2001, 34, 133–151. [Google Scholar] [CrossRef]
- Worden, R.H.; Armitage, P.J.; Butcher, A.R.; Churchill, J.M.; Csoma, A.E.; Hollis, C.; Lander, R.H.; Omma, J.E. Petroleum Reservoir Quality Prediction: Overview and Contrasting Approaches from Sandstone and Carbonate Communities. Geol. Soc. Spec. Publ. 2018, 435, 1–31. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Ma, F.; Zhang, Y.; Bai, Y.; Sun, X.; Li, H.; Zhang, J.; Wang, P. Characterization of the Weathered Basement Rocks in the Dongping Field from the Qaidam Basin, Western China: Significance as Gas Reservoirs. Sci. Rep. 2020, 10, 16694. [Google Scholar] [CrossRef]
- George, A.D.; Marshallsea, S.J.; Wyrwoll, K.H.; Jie, C.; Yanchou, L. Miocene Cooling in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau, Revealed by Apatite Fission-Track and Vitrinite-Reflectance Analysis. Geology 2001, 29, 939–942. [Google Scholar] [CrossRef]
- Jolivet, M.; Brunel, M.; Seward, D.; Xu, Z.; Yang, J.; Roger, F.; Tapponnier, P.; Malavieille, J.; Arnaud, N.; Wu, C. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints. Tectonophysics 2001, 343, 111–134. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C.; Van Der Hilst, R.D. The Geological Evolution of the Tibetan Plateau. Science 2008, 321, 1054–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, P.; Song, C.; Wang, Y.; Meng, Q.; Wang, D.; Feng, Y.; Chen, L.; Feng, W. Early Cenozoic Exhumation in the Qilian Shan, Northeastern Margin of the Tibetan Plateau: Insights from Detrital Apatite Fission Track Thermochronology. Terra Nova 2020, 32, 415–424. [Google Scholar] [CrossRef]
- Sobel, E.R. Basin Analysis of the Jurassic-Lower Cretaceous Southwest Tarim Basin, Northwest China. Bull. Geol. Soc. Am. 1999, 111, 709–724. [Google Scholar] [CrossRef]
- Yin, A.; Rumelhart, P.E.; Butler, R.; Cowgill, E.; Harrison, T.M.; Foster, D.A.; Ingersoll, R.V.; Zhang, Q.; Zhou, X.Q.; Wang, X.F.; et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Bull. Geol. Soc. Am. 2002, 114, 1257–1295. [Google Scholar] [CrossRef]
- Sun, G.Q.; Liu, W.M.; Guo, J.J.; Wang, Y.T. Fission-Track Evidence of Tectonic Evolution in the Northwestern Qaidam Basin, China. J. Earth Syst. Sci. 2018, 127, 12. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Jin, Z.; Zhang, M.; Liu, C.; Wu, H.; You, F.; Zhang, B. An Analysis on Tectono-Paleogeography of the Qaidam Basin, NW China. Earth Sci. Front. 2000, 7, 421–429, (In Chinese with English abstract). [Google Scholar]
- Matte, P.; Tapponnier, P.; Arnaud, N.; Bourjot, L.; Avouac, J.P.; Vidal, P.; Qing, L.; Yusheng, P.; Yi, W. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet. Sci. Lett. 1996, 142, 311–330. [Google Scholar] [CrossRef]
- Metcalfe, I. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Res. 2021, 100, 87–130. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, H.; Ge, X.; Chen, W.; Liu, J.; Ren, S.; Pan, H. Laser Probe 40Ar/39Ar Dating of Mica on the Deformed Rocks from Altyn Fault and Its Tectonic Implications, Western China. Chin. Sci. Bull. 2001, 46, 322–325. [Google Scholar] [CrossRef]
- Zheng, D.; Clark, M.K.; Zhang, P.; Zheng, W.; Farley, K.A. Erosion, Fault Initiation and Topographic Growth of the North Qilian Shan (Northern Tibetan Plateau). Geosphere 2010, 6, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Hu, D.; Yang, X.; Zhang, Y.; Tan, C.; Zhang, P.; Feng, C. Apatite Fission Track Evidence for the Cretaceous-Cenozoic Cooling History of the Qilian Shan (NW China) and for Stepwise Northeastward Growth of the Northeastern Tibetan Plateau since Early Eocene. J. Asian Earth Sci. 2016, 124, 28–41. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, D.; Pang, J.; Wang, Y.; Fox, M.; Vermeesch, P.; Li, C.; Xiao, L.; Hao, Y.; Wang, Y. Miocene Range Growth Along the Altyn Tagh Fault: Insights From Apatite Fission Track and (U-Th)/He Thermochronometry in the Western Danghenan Shan, China. J. Geophys. Res. Solid Earth 2019, 124, 9433–9453. [Google Scholar] [CrossRef]
- Chen, Z.L.; Gong, H.L.; Li, L.; Wang, X.F.; Chen, B.L.; Chen, X. Cenozoic Uplifting and Exhumation Process of the Altyn Tagh Mountains. Earth Sci. Front. 2006, 13, 92–102, (In Chinese with English abstract). [Google Scholar]
- Sun, Y.; Chen, Z.L.; Chen, B.L.; Han, F.B.; Zhou, Y.G.; Hao, R.X.; Li, S.B. Cenozoic Uplift and Denudation of the EW-Trending Range of Northern Altun Mountains: Evidence from Apatite Fission Track Data. Acta Geosci. Sin. 2014, 35, 67–75, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wan, J.L.; Wang, Y.; Li, Q.; Wang, F.; Wang, E. FT Evidence of Northern Altyn Uplift in Late Cenozoic. Bull. Mineral. Petrol. Geochem. 2001, 20, 222–224, (In Chinese with English abstract). [Google Scholar]
- Wang, E.; Xu, F.Y.; Zhou, J.X.; Wan, J.; Burchfiel, B.C. Eastward Migration of the Qaidam Basin and Its Implications for Cenozoic Evolution of the Altyn Tagh Fault and Associated River Systems. Bull. Geol. Soc. Am. 2006, 118, 349–365. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Zheng, Y.; Liu, X.; Sun, G. Paleocene-Early Eocene Uplift of the Altyn Tagh Mountain: Evidence from Detrital Zircon Fission Track Analysis and Seismic Sections in the Northwestern Qaidam Basin. J. Geophys. Res. Solid Earth 2015, 120, 8534–8550. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.H. Apatite Fission Track Ages and Significance of Northern Qaidam Basin. Master’s Thesis, Lanzhou University, Lanzhou, China, 2009. (In Chinese with English abstract). [Google Scholar]
- Meng, Q.R.; Hu, J.M.; Yang, F.Z. Timing and Magnitude of Displacement on the Altyn Tagh Fault: Constraints from Stratigraphic Correlation of Adjoining Tarim and Qaidam Basins, NW China. Terra Nova 2001, 13, 86–91. [Google Scholar] [CrossRef]
- Wu, L.; Xiao, A.; Yang, S.; Wang, L.; Mao, L.; Wang, L.; Dong, Y.; Xu, B. Two-Stage Evolution of the Altyn Tagh Fault during the Cenozoic: New Insight from Provenance Analysis of a Geological Section in NW Qaidam Basin, NW China. Terra Nova 2012, 24, 387–395. [Google Scholar] [CrossRef]
Data | Thin Sections | SEM | Physical Property | Wireline Log | Major Eelements |
---|---|---|---|---|---|
Number | 235 | 9 | 123 | 19 | 26 |
Depth/m | 975.82–4945.87, outcrop | 998.20–4645.90, outcrop | 1879.80–3744.17 | 670–4750 | 1881.60–4645.90, outcrop |
Sample | CIA | CIW | PIA | BWI | Structure |
---|---|---|---|---|---|
Jb1-1 | 60.411 | 66.586 | 62.782 | 2.143 | Partial Weathering |
Jb1-2 | 53.800 | 59.476 | 54.696 | 1.814 | Partial Weathering |
Dp5-1 | 61.280 | 78.374 | 70.007 | 1.878 | Partial Weathering |
Dp7-1 | 66.076 | 83.789 | 77.852 | 2.173 | Partial Weathering |
Dp306-1 | 58.806 | 72.967 | 64.393 | 1.652 | Partial Weathering |
Dp306-2 | 60.761 | 74.903 | 67.290 | 1.789 | Partial Weathering |
Dp306-3 | 59.992 | 77.236 | 68.054 | 1.688 | Partial Weathering |
DpH301 | 60.430 | 77.041 | 68.337 | 1.760 | Partial Weathering |
N3 | 58.529 | 63.060 | 59.961 | 1.759 | Partial Weathering |
Nb1-1 | 61.271 | 76.967 | 69.035 | 1.843 | Partial Weathering |
Dp1H23-1 | 8.890 | 9.049 | 7.398 | 0.157 | Nonweathering |
Dp1H23-2 | 38.669 | 42.291 | 36.327 | 0.997 | Nonweathering |
Dp1H23-3 | 68.007 | 78.460 | 74.548 | 2.456 | Complete Weathering |
Dp1H23-4 | 46.865 | 52.019 | 46.091 | 1.017 | Partial Weathering |
Dp1H23-5 | 58.720 | 70.667 | 63.174 | 1.567 | Partial Weathering |
Dp1H23-6 | 63.198 | 82.911 | 75.164 | 1.910 | Partial Weathering |
Dp1H23-7 | 63.818 | 77.665 | 71.476 | 2.230 | Partial Weathering |
Dp1H23-8 | 64.351 | 79.075 | 72.867 | 2.237 | Partial Weathering |
DT-1 | 60.112 | 65.652 | 62.165 | 1.978 | Partial Weathering |
DT-2 | 58.972 | 77.289 | 67.056 | 1.635 | Partial Weathering |
DT-3 | 57.264 | 77.764 | 65.366 | 1.497 | Partial Weathering |
DT-4 | 59.368 | 64.662 | 61.202 | 2.097 | Partial Weathering |
DT-5 | 58.627 | 68.182 | 61.986 | 1.893 | Partial Weathering |
CSL-1 | 59.608 | 67.711 | 62.631 | 2.160 | Partial Weathering |
CSL-2 | 62.989 | 63.540 | 63.218 | 2.736 | Complete Weathering |
CSL-3 | 55.904 | 59.857 | 56.802 | 1.820 | Partial Weathering |
Thickness/m | Felsic Granitoids | Femic Granitoids | |||||
---|---|---|---|---|---|---|---|
Weathering Crust Structure | Min | Max | Avg | Min | Max | Avg | |
Complete weathering layer | 3.32 | 32.76 | 13.89 | 1.81 | 21.23 | 11.97 | |
Dissolution belt | 30.12 | 100.04 | 58.22 | 35.22 | 142.54 | 86.57 | |
Disintegration belt | 34.00 | 114.16 | 65.84 | 48.02 | 194.65 | 103.43 |
Reservoir Quality | Ⅰ | Ⅱ | Ⅲ |
---|---|---|---|
Reservoir Type | Fractured-porous reservoir | Porous reservoir | Fractured reservoir |
Porosity/% | 1.562–8.479 | 0.825–9.763 | 0.498–4.528 |
Permeability/mD | 0.0304–14.478 | 0.020–0.995 | 0.050–115.816 |
Lithology | Granitic gneiss (23.58%), granite (10.57%), granitic diorite (4.88%) | Granitic diorite (21.95%), granitic gneiss (17.89%), granite (3.25%) | Granitic gneiss (12.20%), granite (5.68%) |
Palaeogeomorphology (contour value/m) | Slope (2000–3400) | topographical highs (1000–2000) | depression (>3400) |
Representative wells | Dp106, DpH301, Dp123, Dp1H23, Dp306, Dp5, Dp1, Dp3, N3, Nb1, Jb1 | Dp106, DpH301, Dp123, Dp1H23, DpH101, Jb1 | Dp106, DpH301, Dp306, Dp5, Dp123, Dp1H23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, X.; Niu, H.; Xie, Q.; Zattin, M.; Zhang, Y.; Wu, Z.; Chen, Y.; Zhao, X.; Liu, S.; Wei, X. Insights into the Weathering Crust Reservoirs of Granitoids: A Case Study from Qinghai Oilfield of Qaidam Basin, Northwest China. Minerals 2023, 13, 23. https://doi.org/10.3390/min13010023
Jiao X, Niu H, Xie Q, Zattin M, Zhang Y, Wu Z, Chen Y, Zhao X, Liu S, Wei X. Insights into the Weathering Crust Reservoirs of Granitoids: A Case Study from Qinghai Oilfield of Qaidam Basin, Northwest China. Minerals. 2023; 13(1):23. https://doi.org/10.3390/min13010023
Chicago/Turabian StyleJiao, Xiaoqin, Huapeng Niu, Qingbin Xie, Massimiliano Zattin, Yongshu Zhang, Zhixiong Wu, Yuhe Chen, Xian Zhao, Shan Liu, and Xinhong Wei. 2023. "Insights into the Weathering Crust Reservoirs of Granitoids: A Case Study from Qinghai Oilfield of Qaidam Basin, Northwest China" Minerals 13, no. 1: 23. https://doi.org/10.3390/min13010023
APA StyleJiao, X., Niu, H., Xie, Q., Zattin, M., Zhang, Y., Wu, Z., Chen, Y., Zhao, X., Liu, S., & Wei, X. (2023). Insights into the Weathering Crust Reservoirs of Granitoids: A Case Study from Qinghai Oilfield of Qaidam Basin, Northwest China. Minerals, 13(1), 23. https://doi.org/10.3390/min13010023