Glycine/Glutamate: “Green” Alternatives to Recover Metals from Minerals/Residues—Review of Current Research
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Bibliometric Analyses
3.2. Content Analyses
3.3. Perspectives of Applications of Use of Glycine/Glutamate
4. Conclusions
- (1)
- Australia is the country with the highest number of published documents on green solvents;
- (2)
- The largest number of documents published on this subject is mainly in journals associated with Editorial Elsevier and from Australia, among which stand out the 6 in scientific journals Hydrometallurgy and Minerals Engineering with the highest number of published documents located in quartile 1 (Q1);
- (3)
- The citations of the most cited documents correspond mainly to scientific articles. The article with the highest number of citations is called “Chalcopyrite leaching in novel lixiviants” and was published in Hydrometallurgy;
- (4)
- The institution with the highest number of published documents is Curtin University;
- (5)
- The relationships analyzed through the keywords show how it is still a challenge to account for interdisciplinary in a concentrated field of knowledge;
- (6)
- It is important to hypothesize that the release of a significant number of publications in open access will be possible once the use of green solvents is recognized, recognizing potentialities and achieving competitive prices;
- (7)
- Promissory results of metals dissolutions were achieved by several authors, showing that the amino acids systems can be an alternative to traditional leaching processes;
- (8)
- Kinetic studies on different solid samples are necessary to consider including determination of the dissolution mechanism in this type of system, control of the redox potential, consideration of thermodynamic and speciation aspects;
- (9)
- Larger scale tests should be carried out to provide more information on the dissolution system using amino acids considering the economic aspects and operating conditions of mining plants. This information will be useful in a possible future scale-up at an industrial level;
- (10)
- It will be interesting in future studies to perform this analysis in other databases such as SCOPUS and in databases associated with project and intellectual property registries.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, H.; Zhu, X. Research on green innovation performance of manufacturing industry and its improvement path in China. Sustainability 2022, 14, 8000. [Google Scholar] [CrossRef]
- Allan, B.; Lewis, J.I.; Oatley, T. Green Industrial Policy and the Global Transformation of Climate Politics. Glob. Environ. Politics 2021, 21, 1–19. [Google Scholar] [CrossRef]
- Shahzad, M.; Qu, Y.; Rehman, S.U.; Zafar, A.U. Adoption of green innovation technology to accelerate sustainable development among manufacturing industry. J. Innov. Knowl. 2022, 7, 100231. [Google Scholar] [CrossRef]
- Corporación-Alta-Ley. Minería Verde. Oportunidades y Desafíos; Corporación-Alta-Ley: Santiago, Chile, 2021. [Google Scholar]
- Andes-Pacific-Technology-Access (APTA). Minería del Futuro para una Operación Inteligente y Sustentable; Andes-Pacific-Technology-Access (APTA): Santiago, Chile, 2021. [Google Scholar]
- Corporación-Alta-Ley. Hoja de Ruta 2.0 de la Minería Chilena. Actualización y Consensos para una Mirada Renovada; Corporación-Alta-Ley: Santiago, Chile, 2019. [Google Scholar]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- United Nation. Sustainable Development Knowledge Platform. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nation: New York, NY, USA, 2015. [Google Scholar]
- Monteiro, N.B.R.; da Silva, E.A.; Neto, J.M.M. Sustainable development goals in mining. J. Clean. Prod. 2019, 228, 509–520. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Redovniković, I.R.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Gu, Y.; Jerome, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Principles of green chemistry. In Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998; 135p. [Google Scholar]
- Jessop, P.G. Fundamental properties and practical applications of ionic liquids: Concluding remarks. Faraday Discuss. 2018, 206, 587–601. [Google Scholar] [CrossRef]
- Häckl, K.; Kunz, W. Some aspects of green solvents. Comptes Rendus Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Eksteen, J.; Oraby, E.; Tanda, B.; Tauetsile, P.; Bezuidenhout, G.; Newton, T.; Trask, F.; Bryan, I. Towards industrial implementation of glycine-based leach and adsorption technologies for gold-copper ores. Can. Metall. Q. 2018, 57, 390–398. [Google Scholar] [CrossRef]
- Barton, I.F.; Hiskey, J.B. Chalcopyrite leaching in novel lixiviants. Hydrometallurgy 2022, 207, 105775. [Google Scholar] [CrossRef]
- Chen, M.; Wang, R.; Qi, Y.; Han, Y.; Wang, R.; Fu, J.; Meng, F.; Yi, X.; Huang, J.; Shu, J. Cobalt and lithium leaching from waste lithium ion batteries by glycine. J. Power Sources 2021, 482, 228942. [Google Scholar] [CrossRef]
- Han, Y.; Yi, X.; Wang, R.; Huang, J.; Chen, M.; Sun, Z.; Sun, S.; Shu, J. Copper extraction from waste printed circuit boards by glycine. Sep. Purif. Technol. 2020, 253, 117463. [Google Scholar] [CrossRef]
- Perea, C.; Restrepo, O. Use of amino acids for gold dissolution. Hydrometallurgy 2018, 177, 79–85. [Google Scholar] [CrossRef]
- Prasetyo, E.; Anderson, C.; Nurjaman, F.; al Muttaqii, M.; Handoko, A.S.; Bahfie, F.; Mufakhir, F.R. Monosodium glutamate as selective lixiviant for alkaline leaching of zinc and copper from electric arc furnace dust. Metals 2020, 10, 644. [Google Scholar] [CrossRef]
- Perea, C.; Baena, O.R.; Ihle, C.; Estay, H. Copper leaching from wastes electrical and electronic equipment (WEEE) using alkaline monosodium glutamate: Thermodynamics and dissolution tests. Clean. Eng. Technol. 2021, 5, 100312. [Google Scholar] [CrossRef]
- Moed, H.F. New developments in the use of citation analysis in research evaluation. Arch. Immunol. Ther. Exp. 2009, 57, 13–18. [Google Scholar] [CrossRef]
- Lawani, S.M. Bibliometrics: Its theoretical foundations, methods and applications. Libri 1981, 31, 294–315. [Google Scholar] [CrossRef]
- Subramanyam, K. Bibliometric studies of research collaboration: A review. J. Inf. Sci. 1983, 6, 33–38. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, T.; McDonald, R.; Beinlich, A.; Kuhar, L.; Putnis, A. Comparative analysis of copper dissolution and mineral transformations in coarse chalcopyrite for different oxidant/lixiviant systems at elevated temperature (110 °C and 170 °C). Hydrometallurgy 2022, 207, 105700. [Google Scholar] [CrossRef]
- O’Connor, G.; Lepkova, K.; Eksteen, J.; Oraby, E. Electrochemical behaviour and surface analysis of chalcopyrite in alkaline glycine solutions. Hydrometallurgy 2018, 182, 32–43. [Google Scholar] [CrossRef]
- Azadi, M.; Karrech, A.; Elchalakani, M.; Attar, M. Microfluidic study of sustainable gold leaching using glycine solution. Hydrometallurgy 2019, 185, 186–193. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Extraction of copper and the co-leaching behaviour of other metals from waste printed circuit boards using alkaline glycine solutions. Resour. Conserv. Recycl. 2020, 154, 104624. [Google Scholar] [CrossRef]
- Tanda, B.; Eksteen, J.; Oraby, E.; O’Connor, G. The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions. Miner. Eng. 2019, 135, 118–128. [Google Scholar] [CrossRef]
- Khodaei, H.; Haghshenas, D.F.; Firoozi, S. Selective leaching of zinc from carbonate source using glycine as an ecofriendly lixiviant. Miner. Eng. 2022, 185, 107680. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Extraction of precious metals from waste printed circuit boards using cyanide-free alkaline glycine solution in the presence of an oxidant. Miner. Eng. 2022, 181, 107501. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J.; Mali, T. Extraction of Gold and Copper from Flotation Tailings Using Glycine-Ammonia Solutions in the Presence of Permanganate. Minerals 2022, 12, 612. [Google Scholar] [CrossRef]
- Barani, K.; Kogani, Y.; Nazarian, F. Leaching of complex gold ore using a cyanide-glycine solution. Miner. Eng. 2022, 180, 107475. [Google Scholar] [CrossRef]
- Attia, R.M.; Awny, E.G. Leaching characterisations and recovery of copper and uranium with glycine solution of sandy dolomite, Allouga area, South Western Sinai, Egypt. Int. J. Environ. Anal. Chem. 2021, 1–14. [Google Scholar] [CrossRef]
- Khezri, M.; Rezai, B.; Abdollahzadeh, A.A.; Wilson, B.P.; Molaeinasab, M.; Lundström, M. Investigation into the effect of mechanical activation on the leaching of chalcopyrite in a glycine medium. Hydrometallurgy 2021, 203, 105492. [Google Scholar] [CrossRef]
- Mokhlis, H.; Daoudi, R.D.; Azzi, M. Selective leaching of copper from waste printed circuit boards (PCBs) using glycine as a complexing agent. Glob. Nest J. 2021, 23, 90–96. [Google Scholar]
- Huang, Y.; Guo, H.; Zhang, C.; Liu, B.; Wang, L.; Peng, W.; Cao, Y.; Song, X.; Zhu, X. A novel method for the separation of zinc and cobalt from hazardous zinc–cobalt slag via an alkaline glycine solution. Sep. Purif. Technol. 2021, 273, 119009. [Google Scholar] [CrossRef]
- Wu, J.; Ahn, J.; Lee, J. Gold deportment and leaching study from a pressure oxidation residue of chalcopyrite concentrate. Hydrometallurgy 2021, 201, 105583. [Google Scholar] [CrossRef]
- Li, H.; Oraby, E.; Eksteen, J. Cyanide consumption minimisation and concomitant toxic effluent minimisation during precious metals extraction from waste printed circuit boards. Waste Manag. 2021, 125, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Shibazaki, K.; Hirama, S.; Iwatate, Y.; Kishita, A.; Hiraga, Y.; Nakayasu, Y.; Watanabe, M. Glycine-Assisted Hydrothermal Leaching of LiCoO2/LiNiO2 Cathode Materials with High Efficiency and Negligible Acid Corrosion Employing Batch and Continuous Flow System. ACS Sustain. Chem. Eng. 2021, 9, 3246–3257. [Google Scholar] [CrossRef]
- Khezri, M.; Rezai, B.; Abdollahzadeh, A.A.; Wilson, B.P.; Molaeinasab, M.; Lundström, M. Cyclic voltammetry and potentiodynamic polarization studies of chalcopyrite concentrate in glycine medium. Trans. Nonferrous Met. Soc. China 2021, 31, 545–554. [Google Scholar] [CrossRef]
- Barani, K.; Dehghani, M.; Azadi, M.; Karrech, A. Leaching of a polymetal gold ore and reducing cyanide consumption using cyanide-glycine solutions. Miner. Eng. 2021, 163, 106802. [Google Scholar] [CrossRef]
- Picazo, N.G.; Pedroza, F.R.C.; Luévanos, A.M.; Aguilar, M.d.J.S.; Guzmán, I.A. Sº and jarosite behavior during recovery of values from the direct leaching residue of sphalerite using cyanide and glycine. J. Min. Metall. Sect. B Metall. 2021, 57, 349–358. [Google Scholar] [CrossRef]
- Oraby, E.; Eksteen, J.; O’Connor, G. Gold leaching from oxide ores in alkaline glycine solutions in the presence of permanganate. Hydrometallurgy 2020, 198, 105527. [Google Scholar] [CrossRef]
- Altinkaya, P.; Wang, Z.; Korolev, I.; Hamuyuni, J.; Haapalainen, M.; Kolehmainen, E.; Yliniemi, K.; Lundström, M. Leaching and recovery of gold from ore in cyanide-free glycine media. Miner. Eng. 2020, 158, 106610. [Google Scholar] [CrossRef]
- Khezri, M.; Rezai, B.; Abdollahzadeh, A.A.; Molaeinasab, M.; Wilson, B.P.; Lundström, M. Glycine leaching of Sarcheshmeh chalcopyrite concentrate at high pulp densities in a stirred tank reactor. Miner. Eng. 2020, 157, 106555. [Google Scholar] [CrossRef]
- Oraby, E.A.; Li, H.; Eksteen, J.J. An alkaline glycine-based leach process of base and precious metals from powdered waste printed circuit boards. Waste Biomass Valorization 2020, 11, 3897–3909. [Google Scholar] [CrossRef]
- Oghabi, H.; Haghshenas, D.F.; Firoozi, S. Selective separation of Cd from spent Ni-Cd battery using glycine as an eco-friendly leachant and its recovery as CdS nanoparticles. Sep. Purif. Technol. 2020, 242, 116832. [Google Scholar] [CrossRef]
- Munive, G.T.; Encinas, M.A.; Campoy, M.M.S.; Álvarez, V.E.; Vazquez, V.M.; Choque, D.C. Leaching Gold and silver with an alternative system: Glycine and thiosulfate from mineral tailings. Jom 2020, 72, 918–924. [Google Scholar] [CrossRef]
- Eksteen, J.; Oraby, E.; Nguyen, V. Leaching and ion exchange based recovery of nickel and cobalt from a low grade, serpentine-rich sulfide ore using an alkaline glycine lixiviant system. Miner. Eng. 2020, 145, 106073. [Google Scholar] [CrossRef]
- Oraby, E.; Eksteen, J.; Karrech, A.; Attar, M. Gold extraction from paleochannel ores using an aerated alkaline glycine lixiviant for consideration in heap and in-situ leaching applications. Miner. Eng. 2019, 138, 112–118. [Google Scholar] [CrossRef]
- Wu, H.; Feng, Y.; Huang, W.; Li, H.; Liao, S. The role of glycine in the ammonium thiocyanate leaching of gold. Hydrometallurgy 2019, 185, 111–116. [Google Scholar] [CrossRef]
- Shin, D.; Ahn, J.; Lee, J. Kinetic study of copper leaching from chalcopyrite concentrate in alkaline glycine solution. Hydrometallurgy 2019, 183, 71–78. [Google Scholar] [CrossRef]
- O’Connor, G.; Lepkova, K.; Eksteen, J.; Oraby, E. Electrochemical behaviour of copper in alkaline glycine solutions. Hydrometallurgy 2018, 181, 221–229. [Google Scholar] [CrossRef]
- Tanda, B.; Eksteen, J.; Oraby, E. Kinetics of chalcocite leaching in oxygenated alkaline glycine solutions. Hydrometallurgy 2018, 178, 264–273. [Google Scholar] [CrossRef]
- Nicol, M.J. A comparative assessment of the application of ammonium chloride and glycine as lixiviants in the heap leaching of chalcopyritic ores. Hydrometallurgy 2018, 175, 285–291. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Pan, Y.; Liu, F.; Xu, Z. Thermodynamic analysis of gold leaching by copper-glycine-thiosulfate solutions using Eh-pH and species distribution diagrams. Miner. Eng. 2022, 179, 107438. [Google Scholar] [CrossRef]
Countries/Regions | Number of Records | % (Considering Total of 38) |
---|---|---|
Australia | 17 | 41.73 |
Egypt | 11 | 28.94 |
Iran | 7 | 18.42 |
Peoples R China | 5 | 13.15 |
Finland | 4 | 10.52 |
EEUU | 3 | 7.89 |
Source Title | Number of Publications | % (Considering Total of 38) |
---|---|---|
Hydrometallurgy | 13 | 34.21 |
Minerals Engineering | 10 | 26.31 |
Separation and Purification Technology | 3 | 7.89 |
Affiliations | Country | Number of Records | % (Considering Total of 38) |
---|---|---|---|
Curtin University | Australia | 14 | 36.84 |
Egyptian Knowledge Bank Ekb | Egypt | 11 | 28.94 |
Assiut University | Egypt | 10 | 26.31 |
Amirkabir University of Technology | Iran | 5 | 13.15 |
Aalto University | Finland | 4 | 10.52 |
Authors | Article Title | Cited Reference Count | Reference |
---|---|---|---|
Barton, I.; Hiskey, J. | Chalcopyrite leaching in novel lixiviants | 137 | [16] |
Hidalgo, T.; McDonald, R.; Beinlich, A.; Kuhar, L.; Putnis, A. | Comparative analysis of copper dissolution and mineral transformations in coarse chalcopyrite for different oxidant/lixiviant systems at elevated temperature (110 degrees C and 170 degrees C) | 89 | [26] |
O’Connor, G.; Lepkova, K.; Eksteen, J.; Oraby, E. | Electrochemical behavior and surface analysis of chalcopyrite in alkaline glycine solutions | 78 | [27] |
Azadi, M.; Karrech, A.; Elchalakani, M.; Attar, M. | Microfluidic study of sustainable gold leaching using glycine solution | 67 | [28] |
Li, H.; Oraby, E.; Eksteen, J. | Extraction of copper and the co-leaching behavior of other metals from waste printed circuit boards using alkaline glycine solutions | 64 | [29] |
Tanda, B.; Eksteen, J.; Oraby, E.; O’Connor, G. | The kinetics of chalcopyrite leaching in alkaline glycine/glycinate solutions | 62 | [30] |
Year | 2018 | 2019 | 2020 | 2021 | 2022 | Average per Year |
---|---|---|---|---|---|---|
Cited count | 10 | 18 | 72 | 139 | 100 | 67.80 |
(Glycine or Glutamate) (M) | Solid | Metal | Extraction (%) | Particle Size (µm) | Stirring Speed (rpm) | Temperature (°C) | Time (h) | Solid–Liquid Ratio | pH | Other Reagent | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5; 1.0; 1.5 | Ore | Zn | 89.1 | <75 | 210 | 30; 50; 70 | 3 | 10 g/100 mL | 8.0; 9.5; 11.0 | [31] | |
0.5; 1.0 | PCB (e-waste) | Au; Ag; Pd; Cu | 86.8 Au; 70.2 Ag; 89.3 Pd; 87.9 Cu | <2000 | 100 | Room; 35; 55 | 96 | 2% (9 g/450 g) | 11.0 | KMnO4 (0.04–0.16 M) or K3[Fe(CN)6] (0.08–0.16 M)) | [32] |
0.13; 0.26; 0.53 | Concentrate | Au; Cu | 76.0 Au; 68.2 Cu | <75 | 100 | 30 | 48 | 20; 30; 40% (150 g) | 9.5; 10.5 | KMnO4 (0, 25 o 50%), NH3, NaOH, CaO | [33] |
0; 0.5; 0.75; 1.0 | Ore | Au | 91.7 Au; 40.0 Cu | <74 | 150 | Room; 35; 55 | 48 | 200 g (20; 25; 30; 35; 40% solid) | 10.5 | NaOH or H2SO4 for pH adjustment, cyanide (250 to 4500 g/t), H2O2 (0; 1; 1.5; 2; 2.5%) | [34] |
0.05 to 0.4 | Ore | Cu; U | 98.2 Cu; 85.0 U | <75 | 450 | Room | 1 to 5 | 1/1 to 1/9 | 7.5 to 10.5 | NaOH (modify pH); H2O2 (0 to 3% v/v) | [35] |
0.2 | Chalcopyrite | Cu | <10.0 | Cube 4000 size | 150 | 60; 110; 170 | 96; 576 | 150 mL | 10.5 | Oxygen (0.2 M), H2O2 (0.5 M). Ferric chloride, ferric sulfate, cupric chloride and cupric sulfate | [26] |
0.4; 1 | Chalcopyrite | Cu | 95.0 Cu | <20 | 500 | 60 | 24 | 2; 5% (500 mL pulp) | 10.5 | O2 (1 L/min); NaOH (for pH adjustment) | [36] |
0.25; 0.5; 1; 2 | PCB (e-waste) | Cu | <1000 | 0; 200; 450; 700; 950 | 20; 30; 40 | 96 | 1.5 to 15 g/150 mL (1:100; 1:80; 1:60; 1:40; 1:30; 1:20; 1:10) | NaCO3 | [37] | ||
0.66; 1.0; 1.33; 1.66; 2 | Zinc-cobalt slag | Zn; Cd | 93.9 Zn; 87.6 Cd | <74 | 30 to 90 | 0.5 to 4 | 10 to 80 mL/g (L/S: 0:1 to 80:1) | 8.0 to 12.0 | NaOH (modify pH) | [38] | |
0.1 to 0.5 | Residue of copper concentrate | Au; Cu | 86.0 Au; 20.8 Cu | <50 | Room | 24 | 100 g/300 g solution (25% solid) | 11.0 | Cyanide, Ca(OH)2 as a pH modifier, H2O2 (1%) | [39] | |
2, 4 and 8 times the stoichiometric | PCB (e-waste) | Au; Ag; Cu; Pd | 90.1 Au; 89.4 Ag; 70.1 Pd; 81.0 Cu | <2000, <1000, pulverized | 100 | Room | 96 | 9 g residue (2% solid) | 10.5; 11.0; 12.0; 12.5 | NaOH (modify pH), stoichiometric cyanide (100; 150; 200; 250; 350 ppm) | [40] |
0.5; 1.5 | LiCoO2 and LiNiO2 | Li; Co; Ni | 93.8 Li; 91.0 Ni | 300 | 90 to 180 | 3 | 5 g/L | N2 (inert gas in autoclave) | [41] | ||
0 to 2 | Chalcopyrite concentrate | Electrochemical study | 30 to 90 | 9.0; 10.5; 12.0 | NaOH (modify pH) | [42] | |||||
0 to 1.0 | Ore | Au; Cu; Pb; Zn; Fe; Ag | 89.0 Au | <74 | 150 | Room | 212 g/495 mL water (30% solid) | 10.5; 11.0 | Cyanide, H2O2 (2%) | [43] | |
0.67; 1.33; 2.0; 2.66; 3.33; 4.0 | Battery | Co; Li | 97.0 Co; 91.0 Li | 400 | 30; 40; 50; 60; 70; 80 | 0,5; 1; 2; 3; 4; 5; 6; 7 | 1:100; 2:100; 3:100; 4:100; 5:100; 6:100 (g/mL) | H2O2 (0; 5; 10; 15; 20; 25%) | [17] | ||
0.06; 1 | Leaching residue of sphalerite | Au; Ag | 94.3 Ag; 88.0 Au | P80 100 | 25; 50 | 24 | S/L = 10% | 11.0 | H2O2 (1%), cyanide (0.06 M), pre-treatment before leaching | [44] | |
0.25; 0.5; 0.75; 1; 1.25% | PCB (e-waste) | Cu | 94.0 Cu | <1000 | 400 | Room; 30; 40; 50; 60 | 0.5:100; 1:100; 1.5:100; 2:100; 2.5:100 | H2O2 (0; 2.5; 5; 7.5; 10) | [18] | ||
0.007; 0.013; 0.027; 0.1 | Gold ore | Au | 85.0 Au | <75 | 100 | Room | 48 | 30% solid | 10.5 | NaOH and Ca(OH)2 (modify pH), 0; 1; 2 g/L potassium permanganate | [45] |
0.5–2.0 | Concentrate | Au | 90.0 Au | P50 86 | 900 | 23–60 | 24 | 100 g/L | 10.0–12.0 | [46] | |
4.0–2.0 | Copper concentrate | Cu | 11 | 250–750 | 30–90 | 24 | 1%–20% | 9.0–12.0 | [47] | ||
0.4 | E-waste | Au; Ag; Zn; Pb; Cu | 92.1 Au; 85.3 Ag; 98.5 Zn; 89.8 Pb; 99.1 Cu | <850 | 100 | 23 ± 2 | 24 | 0.4% | 11.0 | Small amounts of cyanide | [48] |
0.5–1.5 | Batteries of Ni-Cd | Cd | 10 to 82.3 | 20 nm | 210 | 25–75 | 0.5–2.5 | 10% (10 g solid in 100 mL solution) | 8.0–11.0 | [49] | |
1.0 | Smelter powder | Zn; Cu | 99.0 Zn; 86.0 Cu | 53 | 200 | Room | 2 (Zn) 4 (Cu) | 50 g/L | 9.0 | [20] | |
0.2; 0.3; 0.5; 0.7; 1.0 | PCB (e-waste) | Cu | 96.5 Cu | 425–600 | 100 | Room to 55 | 48 | 1; 1.4; 2; 3; 10% solid | 8.0 to 13.0 | [29] | |
0.07; 0.13; 0.2; 0.27 | Tailings | Au; Ag | <80.0 Au | <25 | 48 | 1000 g ore in 1000; 2000; 3000 mL solution (1:1; 2:1; 3:1) | 9.4 | Sodium thiosulfate and sodium-glycine thiosulfate | [50] | ||
Low grade nickel ore | Ni; Co | 83.5 Ni; 76.3 Co | 100 | Room | 672 | 17.3 g/L; 28.9 g/L; 46.3 g/L | 11.5 | [51] | |||
0.2 | Gold ore | Au | 85.0 | 100 | Room | 336 | 30% solid | 12.5 | [52] | ||
0.1; 0.5; 1.0; 1.2; 1.5 | Gold ore | Au | 50–90 | 12 | 9.0 to 12.0 | H2O2 (0.56%; 0.40%) | [28] | ||||
0.8; 1.0 | Chalcopyrite | Cu | 28.5 Cu | 20–38 | 400 | 40 | 96 | 11.5 | [30] | ||
0.07 | Gold concentrate | Au | 93.2 | 600 | 25 | 3 | 4:01 | 2.0 | Concentration of thiocyanate and oxidant Fe3+ 0.6; 0.05 mol/dm3 | [53] | |
0.5 to 3.0 | Copper concentrate | Cu | 42.0 | 40 | 60 | 22 | 168 | 11.0 | [54] | ||
0.3 | Chalcopyrite | Cu | Electrode | 1000 | 25 | 0.6 by step | 10.5 | [27] | |||
0.1; 0.3 | Metallic copper | Cu | 600 | 22; 60 | 10.0 to 10.5 | Sodium hydroxide | [55] | ||||
0.5 | Chalcocite | Cu | 78.0 to 88.0 | P100 20 | 400 | 55 | 48 | 0.25% p/v (g/L) solid | 11.0 | [56] | |
0.5 | E-waste | Au | 1.8 | 25 | 24 | 9.4; 11.0 | Hydrogen peroxide (30% p/v) and potassium permanganate, [Cu+2/Cu+] = 100 ppm | [19] | |||
0.5 | Chalcopyritic ore | Cu | < 8 | 25 | 10.0 | Ammonium chloride 0.5 M | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamett, I.; Carrasco, P.; Olmos, M.; Hernández, P. Glycine/Glutamate: “Green” Alternatives to Recover Metals from Minerals/Residues—Review of Current Research. Minerals 2023, 13, 22. https://doi.org/10.3390/min13010022
Jamett I, Carrasco P, Olmos M, Hernández P. Glycine/Glutamate: “Green” Alternatives to Recover Metals from Minerals/Residues—Review of Current Research. Minerals. 2023; 13(1):22. https://doi.org/10.3390/min13010022
Chicago/Turabian StyleJamett, Ingrid, Paulina Carrasco, Monique Olmos, and Pía Hernández. 2023. "Glycine/Glutamate: “Green” Alternatives to Recover Metals from Minerals/Residues—Review of Current Research" Minerals 13, no. 1: 22. https://doi.org/10.3390/min13010022
APA StyleJamett, I., Carrasco, P., Olmos, M., & Hernández, P. (2023). Glycine/Glutamate: “Green” Alternatives to Recover Metals from Minerals/Residues—Review of Current Research. Minerals, 13(1), 22. https://doi.org/10.3390/min13010022