Fluid Inclusion and Chemical Composition Characteristics of Emeralds from Rajasthan Area, India
Abstract
:1. Introduction
2. Geology
3. Materials and Methods
4. Results
4.1. Gemological Properties
4.2. Magnification
4.3. Composition of the Multiphase Inclusions
4.4. Spectroscopy
4.4.1. UV-Vis-NIR
4.4.2. Infrared
4.5. Major and Trace Elements Analysis
5. Discussion
5.1. Optical Properties of Indian Emeralds
5.2. Micro-Inclusions and Geological Environment
5.3. Spectroscopy
5.4. Trace-Element Chemistry
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlo, A.; Conte, A.M.; Medeghini, L.; Ottolini, L.; De Vito, C. Major and trace element geochemistry of emerald from several deposits: Implications for genetic models and classification schemes. Ore Geol. Rev. 2018, 94, 351–366. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A. Geology of corundum and emerald gem deposits: A Review. Gems Gemol. 2019, 55, 464–489. [Google Scholar] [CrossRef] [Green Version]
- Saeseaw, S.; Renfro, N.D.; Palke, A.C.; Sun, Z.; McClure, S.F. Geographic origin determination of emerald. Gems Gemol. 2019, 55, 614–646. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Yu, X.; Zheng, Y.; Sun, Z.; Ng, M.F.-Y. Inclusion and trace element characteristics of emeralds from Swat Valley, Pakistan. Gems Gemol. 2020, 56, 336–355. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A.; Marshall, D.; Fallick, A.E.; Branquet, Y. Emerald deposits: A review and enhanced classification. Minerals 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Grew, E.S.; Hazen, R.M. Beryllium mineral evolution. Am. Mineral. 2014, 99, 999–1021. [Google Scholar] [CrossRef]
- Wu, M.Q.; Samson, I.M.; Qiu, K.F.; Zhang, D.H. Concentration mechanisms of REE-Nb-Zr-Be mineralization in the Baerzhe deposit, NE China: Insights from textural and chemical features of amphibole and rare-metal minerals. Econ. Geol. 2021, 116, 651–679. [Google Scholar] [CrossRef]
- Wu, M.Q.; Samson, I.M.; Qiu, K.F.; Zhang, D.H. Multi-stage metasomatic Zr mineralization in the world-class Baerzhe Rare-earth element-Nb-Zr-Be deposit, China. Am. Mineral. 2022, 5, 2–49. [Google Scholar] [CrossRef]
- Qiu, K.F.; Yu, H.C.; Wu, M.Q.; Geng, J.Z.; Ge, X.K.; Gou, Z.Y.; Taylor, R.D. Discrete Zr and REE mineralization of the Baerzhe rare-metal deposit, China. Am. Mineral. 2019, 104, 1487–1502. [Google Scholar] [CrossRef]
- Long, Z.Y.; Yu, X.Y.; Zheng, Y.Y. Ore formation of the Dayakou emerald deposit (Southwest China) constrained by chemical and boron isotopic composition of tourmaline. Ore Geol. Rev. 2021, 135, 104208. [Google Scholar] [CrossRef]
- Ball, S.H. Historical notes on gem mining. Econ. Geol. 1931, 26, 681–738. [Google Scholar] [CrossRef]
- Brown, J.C. Emeralds in India. Gemmologist 1953, 22, 133–136. [Google Scholar]
- Crookshank, H. Emeralds in Mewar. Geological Survey of India. Indian Miner. 1947, 1, 28–30. [Google Scholar]
- Roy, B.C. The economic geology and mineral resources of Rajasthan and Ajmer. Mem. Geol. Soc. India 1959, 86, 356. [Google Scholar]
- Paul, A. Mineral chemistry and geochronology of the Rajasthan emerald deposits, NW India. Can. Mineral. 2020, 58, 335–346. [Google Scholar] [CrossRef]
- Brown, J.C.; Dey, A.K. India’s Mineral Wealth; Oxford University Press: Oxford, UK, 1955; p. 761. [Google Scholar]
- Krishnan, M.S. The mineral production of the Indian Union during 1952. Rec. Geol. Surv. India 1955, 86, 309–376. [Google Scholar]
- Iyer, L.A.N.; Thiagarjan, R. Indian precious stones. Geol. Surv. India Bull. 1961, 18, 105. [Google Scholar]
- Panjikar, J.; Ramchandran, K.T.; Balu, K. New emerald deposits from southern India. Aust. Gemmol. 1997, 19, 427–432. [Google Scholar]
- Roy, B.C. Emerald deposits in Mewar and Ajmer Merwara. Rec. Geol. Surv. India 1955, 86, 377–401. [Google Scholar]
- Sinkankas, J. Emeralds and other beryls. Geosci. Press Prescot 1989, 1, 665. [Google Scholar]
- Groat, L.A.; Giuliani, G.; Marshall, D.D.; Turner, D. Emerald deposits and occurrences: A review. Ore Geol. Rev. 2008, 34, 87–112. [Google Scholar] [CrossRef]
- Alexander, A.E. Emeralds from the Ajmer District, India. J. Gemmol. 1951, 3, 14. [Google Scholar] [CrossRef]
- Gubelin, E.J. Some additional data on Indian emeralds. Gems Gemol. 1951, 7, 13–22. [Google Scholar]
- Kazmi, A.H.; Snee, L.W. (Eds.) Origin and classification of Pakistani and world emerald deposits. In Emeralds of Pakistan: Geology, Gemology, and Genesis; Van Nostrand Reinhold Karachi Pak: New York, NY, USA, 1989; pp. 229–236. [Google Scholar]
- Cheilletz, A. Les gisements d’émeraude d’Inde. In L’emeraude, Connaissances Actuelles et Prospectives; Giard, A., Ed.; Association Française de Gemmologie: Paris, France, 1998; pp. 119–124. (In French) [Google Scholar]
- Goldfarb, R.J.; Mao, J.W.; Qiu, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Yu, X.Y.; Guo, H.S. Major and trace element geochemistry of dayakou vanadium-dominant emerald from malipo (Yunnan, China): Genetic model and geographic origin determination. Minerals 2019, 9, 777. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.; Trivedi, A. Emerald deposits of Rajasthan. In Proceedings of the XXVIII International Gemmological Conference, Extended Abstracts, Madrid, Spain, 8–12 October 2001; pp. 110–116. [Google Scholar]
- Yu, H.L. Types of emerald deposits and characteristics of their inclusions. Jewel. Sci. Technol. 2001, 4, 41–46. (In Chinese) [Google Scholar]
- Hu, R.R.; Zhang, S.T. Research status of emerald deposit. Geol. Chem. Miner. 2006, 28, 234–240. (In Chinese) [Google Scholar]
- Mumme, I. The Emerald; Mumme Publications: Port Hacking, NSW, Australia, 1982; p. 135. [Google Scholar]
- Reed, S.J.B. Recent Advances in Electron-Microprobe Analysis. Inst. Phys. Conf. Ser. 1993, 130, 67–74. [Google Scholar]
- Li, C.; Zhou, L.; Zhao, Z.; Zhang, Z.; Zhao, H.; Li, X.; Qu, W. In-situ Sr isotopic measurement of scheelite using fs-LA-MC- ICPMS. J. Asian Earth Sci. 2018, 160, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. The characterization of beryl and emerald by visible and infrared absorption spectroscopy. Am. Mineral. 1968, 53, 777–800. [Google Scholar]
- Schmetzer, K.; Berdesinski, W.; Bank, H. Über die Mineralart Beryll, ihre Farben und Absorptionsspektren. Z. Dtsch. Gemmol. Ges. 1974, 23, 5–39. (In German) [Google Scholar]
- Zwaan, J.H.; Seifert, A.V.; Vrána, S.; Laurs, B.M.; Anckar, B.; Simmons, W.B.S.; Falster, A.U.; Lustenhouwer, W.J.; Muhlmeister, S.; Koivula, J.I.; et al. Emeralds from the Kafubu Area, Zambia. Gems Gemol. 2005, 41, 117–148. [Google Scholar] [CrossRef] [Green Version]
- Łodziński, M.; Sitarz, M.; Stec, K.; Kozaneckid, M.; Fojude, Z.; Jurga, S. ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts. J. Mol. Struct. 2005, 1, 744–747, 1005–1015. [Google Scholar] [CrossRef]
- Johnson, M.L.; Elen, S.; Muhlmeister, S. On the identification of various emerald filling substances. Gems Gemol. 1999, 35, 82–107. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.; Henn, U. Emeralds from Madagascar. J. Gemmol. 1992, 23, 140–149. [Google Scholar] [CrossRef]
- Fukuda, J.; Shinoda, K. Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR spectroscopy. Phys. Chem. Miner. 2008, 35, 347–357. [Google Scholar] [CrossRef]
- Yu, X.Y.; Hu, D.Y.; Niu, X.W.; Kang, W.R. Infrared Spectroscopic Characteristics and Ionic Occupations in Crystalline Tunneling System of Yellow Beryl. JOM 2017, 69, 704–712. [Google Scholar] [CrossRef]
- Marshall, D.; Downes, P.; Ellis, S.; Greene, R.; Loughrey, L.; Jones, P. Pressure–Temperature–Fluid Constraints for the Poona Emerald Deposits, Western Australia: Fluid Inclusion and Stable Isotope Studies. Minerals 2016, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Gübelin, E.J.; Koivula, J.I. Photoatlas of Inclusions in Gemstones; Opinio Publishers: Basel, Switzerland, 2008; Volume 3, p. 672. [Google Scholar]
- Long, Z.Y.; Yu, X.Y.; Jiang, X.; Guo, B.J.; Ma, C.Y.; You, Y.; Zheng, Y.Y. Fluid boiling and fluid-rock interaction as primary triggers for emerald deposition: Insights from the Dayakou emerald deposit (China). Ore Geol. Rev. 2021, 139, 104454. [Google Scholar] [CrossRef]
- Yu, X.Y.; Long, Z.Y.; Zhang, Y.; Qin, L.J.; Zhang, C.; Xie, Z.R.; Wu, Y.R.; Yan, Y.; Wu, M.K.; Wan, J.X. Overview of Gemstone Resources in China. Crystals 2021, 11, 1189. [Google Scholar] [CrossRef]
- Yu, H.C.; Qiu, K.F.; Hetherington, C.J.; Chew, D.; Huang, Y.Q.; He, D.Y.; Geng, J.Z.; Xian, H.Y. Apatite as an alternative petrochronometer to trace the evolution of magmatic systems containing metamict zircon. Contrib. Mineral. Petrol. 2021, 176, 68. Available online: https://link.springer.com/article/10.1007/s00410-021-01827-z (accessed on 19 August 2021). [CrossRef]
- Qiu, K.F.; Yu, H.C.; Deng, J.; McIntire, D.; Gou, Z.Y.; Geng, J.Z.; Chang, Z.S.; Zhu, R.; Li, K.N.; Goldfarb, R. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic-or metamorphic-hydrothermal origin? Miner. Depos. 2020, 55, 345–362. Available online: https://link.springer.com/article/10.1007/s00126-019-00937-w (accessed on 10 January 2020). [CrossRef]
- Giuliani, G.; Cheilletz, A.; Dubessy, J.; Rodriguez, C.T. Chemical composition of fluid inclusions in Colombian emerald deposits. Proc. Eighth Quadrenn. IAGOD Symp. 1993, 1, 159–168. [Google Scholar]
- Vapnik, Y.; Moroz, I.; Roth, M.; Eliezri, I. Formation of emeralds at pegmatite-ultramafic contacts based on fluid inclusions in Kianjavato emerald, Mananjary deposits, Madagascar. Miner. Mag. 2006, 70, 141–158. [Google Scholar] [CrossRef]
- Marshall, D.; Pardieu, V.; Loughrey, L.; Jones, P.; Xue, G. Conditions for emerald formation at Davdar, China: Fluid inclusion, trace element and stable isotope studies. Miner. Mag. 2012, 76, 213–226. [Google Scholar] [CrossRef]
- Zwaan, J.C.; Jacob, D.E.; Häger, T.; Cavalcanti Neto, M.T.O.; Kanis, J. Emeralds from the Fazenda Bonfim region, Rio Grande do Norte, Brazil. Gems Gemol. 2012, 48, 2–17. [Google Scholar] [CrossRef]
- Saeseaw, S.; Pardieu, V.; Sangsawong, S. Three-phase inclusions in emerald and their impact on origin determination. Gems Gemol. 2014, 50, 114–133. [Google Scholar] [CrossRef] [Green Version]
- Vertriest, W.; Wongrawang, P. A gemological description of Ethiopian emeralds. InColor 2018, 40, 72–73. [Google Scholar]
- Schwarz, D.; Giuliani, G.; Grundmann, G.; Glas, M. Die Entstehung der Smaragde ein vieldisskutiertes Thema. In Smaragde der Kostbarste Beryll, der Teuerste Edelstein (ExtraLapis); Schwarz, D., Hochlitner, R., Eds.; Weis: Sunbury, PA, USA, 2001; pp. 68–73. [Google Scholar]
Properties | Results |
---|---|
Color | Green or green with yellow tone, and bluish green |
Clarity | Heavily included |
Refractive indices | ne: 1.578–1.585; no: 1.585–1.590 n: 1.581–1.591 b n: 1.575–1.583 c |
Birefringence | 0.005–0.012 (0.008 c) |
Specific gravity | 2.68–2.72 2.75–2.76 b 2.73–2.75 c |
Pleochroism | Strong to medium yellowish green or green (o-ray) and bluish green (e-ray) |
Fluorescence | Typically inert to long- and short-wave UV radiation |
Chelsea filter | Dark green |
Visible spectrum | Distinct lines at ~680 nm; partial absorption between 560 and 620 nm; and complete absorption <460 nm |
Internal features |
|
Sample | 94-5 | 94-6 | 94-8 | 127-2 | 127-4 | 127-9 | |
---|---|---|---|---|---|---|---|
Oxides (wt.%) | |||||||
SiO2 | Range | 62.24–64.83 | 63.61–64.76 | 63.79–64.00 | 64.47–65.01 | 63.90–64.53 | 64.03–64.16 |
Average | 64.48 | 64.33 | 63.87 | 64.81 | 64.22 | 64.10 | |
TiO2 | Range | bdl-0.01 | bdl-0.03 | bdl-0.04 | bdl-0.05 | bdl-0.04 | bdl-0.03 |
Average | bdl | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | |
Al2O3 | Range | 16.56–17.68 | 16.00–17.51 | 15.32–15.74 | 16.28–17.50 | 15.46–15.50 | 16.52–16.58 |
Average | 16.97 | 16.76 | 15.56 | 16.97 | 15.48 | 16.55 | |
V2O3 | Range | bdl-0.01 | bdl-0.05 | 0.02–0.05 | bdl-0.04 | 0.01–0.09 | bdl-0.01 |
Average | bdl | 0.02 | 0.04 | 0.02 | 0.05 | 0.01 | |
Cr2O3 | Range | 0.01–0.22 | 0.04–0.16 | 0.13–0.22 | 0.03–0.25 | 0.92–0.93 | 0.08–0.11 |
Average | 0.08 | 0.09 | 0.17 | 0.11 | 0.93 | 0.10 | |
BeO | Range | 12.81–13.26 | 12.73–13.58 | 13.21–13.50 | 12.51–12.92 | 13.16–13.21 | 13.34–13.36 |
Average | 12.99 | 13.13 | 13.31 | 12.72 | 13.19 | 13.35 | |
MgO | Range | 1.64–2.12 | 1.67–2.39 | 2.23–2.27 | 1.61–2.17 | 2.29–2.41 | 2.01–2.11 |
Average | 1.94 | 2.04 | 2.26 | 1.87 | 2.35 | 2.06 | |
CaO | Range | 0.03–0.05 | 0.01–0.07 | 0.03–0.05 | 0.02–0.06 | 0.04–0.04 | 0.01–0.03 |
Average | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.02 | |
FeO | Range | 0.38–0.53 | 0.42–0.65 | 0.51–0.61 | 0.41–0.70 | 0.69–0.73 | 0.44–0.50 |
Average | 0.46 | 0.53 | 0.57 | 0.51 | 0.71 | 0.47 | |
Na2O | Range | 1.37–1.73 | 1.22–1.70 | 1.83–1.91 | 1.29–1.62 | 1.70–1.74 | 1.68–1.68 |
Average | 1.58 | 1.45 | 1.88 | 1.44 | 1.72 | 1.69 | |
K2O | Range | 0.04–0.05 | 0.02–0.07 | 0.06–0.09 | 0.05–0.18 | 0.06–0.06 | 0.04–0.04 |
Average | 0.04 | 0.04 | 0.07 | 0.08 | 0.06 | 0.04 | |
Li2O a | Range | 0.05–0.05 | 0.05–0.08 | 0.05–0.07 | 0.04–0.07 | 0.04–0.05 | 0.05–0.13 |
Average | 0.05 | 0.07 | 0.06 | 0.05 | 0.05 | 0.09 | |
Cs2O | Range | bdl-0.04 | 0.02–0.05 | 0.03–0.03 | 0.02–0.04 | 0.05–0.06 | 0.05–0.07 |
Average | 0.02 | 0.03 | 0.03 | 0.03 | 0.06 | 0.06 | |
H2O b | Range | 2.36–2.48 | 2.29–2.47 | 2.51–2.54 | 2.32–2.45 | 2.47–2.48 | 2.47–2.47 |
Average | 2.43 | 2.38 | 2.53 | 2.38 | 2.48 | 2.47 | |
Total | Range | 98.61–99.43 | 97.72–99.65 | 97.67–98.11 | 98.92–99.40 | 99.30–99.58 | 98.49–98.58 |
Average | 98.91 | 98.65 | 97.89 | 99.09 | 99.44 | 98.53 | |
Atomic Proportions Based on the Si = 6 apfu | |||||||
Si4+ | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | 6.000 | |
Ti4+ | Range | bdl | bdl-0.002 | bdl-0.003 | bdl-0.003 | bdl-0.002 | bdl-0.002 |
Average | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | ||
Al3+ | Range | 1.823–1.929 | 1.755–1.923 | 1.693–1.744 | 1.772–1.908 | 1.694–1.716 | 1.824–1.827 |
Average | 1.861 | 1.842 | 1.732 | 1.851 | 1.705 | 1.831 | |
V3+ | Range | bdl-0.001 | bdl-0.004 | 0.002–0.004 | bdl-0.003 | bdl-0.006 | bdl-0.001 |
Average | bdl | 0.001 | 0.003 | 0.001 | 0.003 | 0.001 | |
Cr3+ | Range | 0.001–0.016 | 0.003–0.012 | 0.010–0.016 | 0.002–0.018 | 0.068–0.069 | 0.006–0.008 |
Average | 0.006 | 0.007 | 0.013 | 0.008 | 0.069 | 0.007 | |
Be2+ | Range | 2.873–2.948 | 2.844–3.022 | 2.979–3.050 | 2.780–2.888 | 2.938–2.979 | 2.996–3.007 |
Average | 2.903 | 2.940 | 3.004 | 2.828 | 2.959 | 3.002 | |
Mg2+ | Range | 0.226–0.295 | 0.231–0.336 | 0.312–0.318 | 0.222–0.300 | 0.317–0.337 | 0.280–0.294 |
Average | 0.269 | 0.283 | 0.316 | 0.258 | 0.327 | 0.287 | |
Ca2+ | Range | 0.003–0.005 | 0.001–0.006 | 0.003–0.005 | 0.002–0.006 | 0.003–0.004 | 0.001–0.003 |
Average | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.002 | |
Fe2+ | Range | 0.029–0.041 | 0.033–0.051 | 0.040–0.048 | 0.031–0.054 | 0.054–0.057 | 0.034–0.039 |
Average | 0.036 | 0.041 | 0.045 | 0.039 | 0.056 | 0.037 | |
Na+ | Range | 0.246–0.314 | 0.219–0.311 | 0.334–0.347 | 0.232–0.292 | 0.309–0.313 | 0.304–0.306 |
Average | 0.286 | 0.262 | 0.343 | 0.259 | 0.311 | 0.305 | |
K+ | Range | 0.004–0.006 | 0.003–0.008 | 0.007–0.011 | 0.005–0.022 | 0.007–0.008 | 0.005–0.005 |
Average | 0.005 | 0.005 | 0.008 | 0.010 | 0.008 | 0.005 | |
Li+ | Range | 0.019–0.019 | 0.019–0.030 | 0.019–0.026 | 0.015–0.026 | 0.015–0.019 | 0.019–0.049 |
Average | 0.019 | 0.026 | 0.022 | 0.019 | 0.017 | 0.034 | |
Cs+ | Range | bdl-0.002 | 0.001–0.002 | 0.001–0.001 | 0.001–0.001 | 0.002–0.002 | 0.002–0.003 |
Average | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.003 | |
cA+ | Range | 0.270–0.338 | 0.251–0.343 | 0.369–0.382 | 0.260–0.327 | 0.337–0.338 | 0.333–0.360 |
Average | 0.311 | 0.294 | 0.375 | 0.289 | 0.338 | 0.347 |
Sample | 127-9 | 94-8 | 127-4 | 94-5 | 94-6 | 127-2 | Detection Limit | |
---|---|---|---|---|---|---|---|---|
Color | Yellowish Green | Green | Bluish Green | Core-Rim | Core-Rim | Core-Rim | ||
Element | ||||||||
Li | Range | 279 | 274–311 | 229–277 | 289–416 | 239–401 | 335–507 | 6.2 |
Average | 295 | 253 | 353 | 316 | 434 | |||
Be | Range | 55,948 | 58,955–61,465 | 55,442–60,513 | 56,572–60,218 | 56,865–62,767 | 56,852–58,905 | 22 |
Average | 60,293 | 57,978 | 58,981 | 59,657 | 57,751 | |||
B | Range | 4.39 | 7.65–19.21 | 9.66–29.58 | 1.69–10.75 | bdl-13.38 | 2.49–7.15 | 8.5 |
Average | 11.5 | 19.62 | 5.99 | 6.21 | 4.58 | |||
Na | Range | 14,007 | 12,746–14,797 | 14,696–15,875 | 11,573–13,213 | 10,474–14,908 | 9690–13,707 | 355 |
Average | 13,504 | 15,286 | 12,282 | 13,067 | 11,732 | |||
Mg | Range | 12,900 | 13,738–14,453 | 13,406–14,389 | 9570–14,466 | 9832–14,937 | 9675–13,277 | 52 |
Average | 14,189 | 13,898 | 12,311 | 12,476 | 11,327 | |||
Al | Range | 58,432 | 53,693–58,603 | 58,129–59,099 | 60,300–70,313 | 59,400–63,833 | 54,455–62,002 | 52 |
Average | 55,692 | 58,614 | 64,597 | 61,741 | 59,398 | |||
P | Range | 18 | bdl-69 | bdl-100 | 39–85 | bdl-81 | bdl-137 | 84 |
Average | 39 | 50 | 60 | 45 | 47 | |||
K | Range | 260 | 169–305 250 | 269–315 | 173–241 | 108–325 | bdl-402 151 | 173 |
Average | 292 | 198 | 243 | |||||
Ca | Range | 1149 | 750–1012 | 197–1082 | 315–1272 | bdl-1479 | bdl-3087 | 1020 |
Average | 860 | 640 | 653 | 921 | 1403 | |||
Sc | Range | 59 | 85–106 | 102–104 | 17–67 | 20–99 | 24–59 | 7.7 |
Average | 95 | 103 | 49 | 59 | 39 | |||
Ti | Range | 15.2 | 0.1–13.8 | 1.1–29.8 | 0.2–13.9 | 5–32.2 | 5.6–24.4 | 18.3 |
Average | 5.1 | 15.5 | 8.9 | 18.1 | 15 | |||
V | Range | 106 | 106–122 | 111–111 | 37–105 | 48–120 | 41–102 | 2.1 |
Average | 114 | 111 | 82 | 87 | 74 | |||
Cr | Range | 362 | 1242–1273 | 5937–6310 | 106–1332 | 162–1192 | 362–1364 | 7.3 |
Average | 1259 | 6124 | 813 | 484 | 719 | |||
Mn | Range | 15 | 10–16 | 14–22 | 8–15 | 7–16 | 2–74 | 4.4 |
Average | 13 | 18 | 12 | 11 | 27 | |||
Fe | Range | 3419 | 3848–4073 | 3874–3946 | 2759–3765 | 2451–4153 | 2627–3859 | 311 |
Average | 3938 | 3910 | 3304 | 3394 | 3208 | |||
Co | Range | 1.52 | 1.39–1.75 | 1.14–3.13 | 0.89–2.34 | bdl-3.48 | 0.64–2.82 | 1.9 |
Average | 1.5 | 2.14 | 1.78 | 1.64 | 1.70 | |||
Zn | Range | 48 | 53–62 | 44–57 | 37–81 | 38–108 | 61–97 | 2.7 |
Average | 56 | 51 | 57 | 68 | 78 | |||
Ga | Range | 25 | 21–23 | 17–20 | 14–20 | 15–20 | 17–24 | 1.6 |
Average | 22 | 19 | 16 | 19 | 20 | |||
Rb | Range | 41 | 55–73 | 61–63 | 41–83 | 30–79 | 37–80 | 3 |
Average | 63 | 62 | 55 | 54 | 56 | |||
Cs | Range | 423 | 365–408 | 403–479 | 222–459 | 249–602 | 281–572 | 1.9 |
Average | 383 | 441 | 314 | 388 | 362 | |||
Th | Range | 0.058 | bdl | bdl | bdl | bdl | bdl | 0.04 |
Average | ||||||||
U | Range | bdl | bdl | bdl | bdl | bdl-0.066 | bdl-0.024 | 0.01 |
Average | bdl | bdl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.-J.; Yu, X.-Y.; Guo, H.-S. Fluid Inclusion and Chemical Composition Characteristics of Emeralds from Rajasthan Area, India. Minerals 2022, 12, 641. https://doi.org/10.3390/min12050641
Qin L-J, Yu X-Y, Guo H-S. Fluid Inclusion and Chemical Composition Characteristics of Emeralds from Rajasthan Area, India. Minerals. 2022; 12(5):641. https://doi.org/10.3390/min12050641
Chicago/Turabian StyleQin, Li-Jie, Xiao-Yan Yu, and Hong-Shu Guo. 2022. "Fluid Inclusion and Chemical Composition Characteristics of Emeralds from Rajasthan Area, India" Minerals 12, no. 5: 641. https://doi.org/10.3390/min12050641
APA StyleQin, L.-J., Yu, X.-Y., & Guo, H.-S. (2022). Fluid Inclusion and Chemical Composition Characteristics of Emeralds from Rajasthan Area, India. Minerals, 12(5), 641. https://doi.org/10.3390/min12050641