In Situ Geochemical and Sr–Nd Isotope Analyses of Apatite from the Shaxiongdong Alkaline–Carbonatite Complex (South Qinling, China): Implications for Magma Evolution and Mantle Source
Abstract
:1. Introduction
2. Geological Setting and Petrography
3. Analytical Methods
3.1. Major and Trace Elements
3.2. In Situ Sr and Nd Isotopic Composition
4. Results
4.1. Major and Trace Elements
4.2. Sr and Nd Isotopic Composition
5. Discussion
5.1. Origin of the Apatite: Magmatic or Metasomatic?
5.2. Constraining Magma Evolution by Apatite Composition
5.2.1. Carbonatite
5.2.2. Syenite
5.2.3. Hornblendite
5.3. Implication for the Mantle Source
6. Conclusions
- Apatites from the SXD complex are of magmatic origin and have not experienced subsequent metasomatism or other alteration. Their Sr–Nd isotopic compositions that overlap with host rocks indicate magma evolution in a relatively closed system with no significant crustal contamination.
- The major elemental substitution mechanism in apatite from SXD carbonatite is REE3+ + Na+ + Sr2+ ↔ 3Ca2+, whereas those for apatites in syenite and hornblendite are REE3+ + Na+ + Sr2+ ↔ 3Ca2+ and Si4+ + 2Na+ + 2S6+ + 4REE3+ ↔ 4P5+ + 5Ca2+, respectively.
- Pyrochlore crystallization plays an important role in controlling the REE signature of apatite from the carbonatite, while the fractionation of zircon, allanite, and amphibole from the magma significantly affects the geochemistry of apatites from syenite and hornblendite.
- The early Paleozoic hornblendite and syenite are derived from a metasomatic lithospheric mantle. In contrast, their Triassic carbonatitic counterpart is derived from a mixed mantle source consisting of HIMU components and recycled sedimentary carbonates.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Reilly, S.Y.; Griffin, W.L. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 2000, 53, 217–232. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Harlov, D.E. Apatite: A fingerprint for Metasomatic Processes. Elements 2015, 11, 171–176. [Google Scholar] [CrossRef]
- Bain, W.M.; Steele-MacInnis, M.; Li, K.; Li, L.; Mazdab, F.K.; Marsh, E.E. A fundamental role of carbonate-sulfate melts in the formation of iron oxide-apatite deposits. Nat. Geosci. 2020, 13, 751–757. [Google Scholar] [CrossRef]
- Huang, X.W.; Boutroy, E.; Makvandi, S.; Beaudoin, G.; Corriveau, L.; De Toni, A.F. Trace element composition of iron oxides from IOCG and IOA deposits: Relationship to hydrothermal alteration and deposit subtypes. Miner. Depos. 2019, 54, 525–552. [Google Scholar] [CrossRef] [Green Version]
- Filippelli, G.M. The global phosphorus cycle. Rev. Mineral. Geochem. 2002, 48, 391–425. [Google Scholar] [CrossRef] [Green Version]
- Filippelli, G.M. The global phosphorus cycle: Past, present, and future. Elements 2008, 4, 89–95. [Google Scholar] [CrossRef]
- Boyce, J.W.; Tomlinson, S.M.; McCubbin, F.M.; Greenwood, J.P.; Treiman, A.H. The lunar apatite paradox. Science 2014, 344, 400–402. [Google Scholar] [CrossRef]
- Konecke, B.A.; Fiege, A.; Simon, A.C.; Holtz, F. Cryptic metasomatism during late-stage lunar magmatism implicated by sulfur in apatite. Geology 2017, 45, 739–742. [Google Scholar] [CrossRef]
- Greenwood, J.P.; Itoh, S.; Sakamoto, N.; Warren, P.; Taylor, L.; Yurimoto, H. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 2011, 4, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.M.; Cameron, M.; Mariano, A.N. Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. Am. Mineral. 1991, 76, 1165–1173. [Google Scholar]
- Broom-Fendley, S.; Styles, M.T.; Appleton, J.D.; Gunn, G.; Wall, F. Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am. Mineral. 2016, 101, 596–611. [Google Scholar] [CrossRef] [Green Version]
- Buhn, B.; Wall, F.; Le Bas, M.J. Rare-earth element systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution. Contrib. Mineral. Petr. 2001, 141, 572–591. [Google Scholar] [CrossRef]
- Hornig-Kjarsgaard, I. Rare earth elements in sovitic carbonatites and their mineral phases. J. Petrol. 1998, 39, 2105–2121. [Google Scholar] [CrossRef]
- Sha, L.K.; Chappell, B.W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim. Cosmochim. Acta 1999, 63, 3861–3881. [Google Scholar] [CrossRef]
- Hughes, J.M.; Rakovan, J.F. Structurally robust, chemically diverse: Apatite and apatite supergroup minerals. Elements 2015, 11, 165–170. [Google Scholar] [CrossRef]
- Pan, Y.M.; Fleet, M.E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. Rev. Mineral. Geochem. 2002, 48, 13–49. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Zaitsev, A.N.; Coueslan, C.; Xu, C.; Kynicky, J.; Mumin, A.H.; Yang, P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 2017, 274, 188–213. [Google Scholar] [CrossRef] [Green Version]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petr. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Boyce, J.W.; Hervig, R.L. Magmatic degassing histories from apatite volatile stratigraphy. Geology 2008, 36, 63–66. [Google Scholar] [CrossRef]
- Ladenburger, S.; Marks, M.A.W.; Upton, B.; Hill, P.; Wenzel, T.; Markl, G. Compositional variation of apatite from rift-related alkaline igneous rocks of the Gardar Province, South Greenland. Am. Mineral. 2016, 101, 612–626. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Kinny, P.D.; Wyborn, D.; Chappell, B.W. Identifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach. J. Petrol. 2000, 41, 1365–1396. [Google Scholar] [CrossRef]
- Miles, A.J.; Graham, C.M.; Hawkesworth, C.J.; Gillespie, M.R.; Hinton, R.W.; Bromiley, G.D.; EMMAC. Apatite: A new redox proxy for silicic magmas? Geochim. Cosmochim. Acta 2014, 132, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.F.; Wang, K.L.; Griffin, W.L.; Chung, S.L.; O′Reilly, S.Y.; Pearson, N.J.; Iizuka, Y. Apatite composition: Tracing petrogenetic processes in Transhimalayan granitoids. J. Petrol. 2009, 50, 1829–1855. [Google Scholar] [CrossRef]
- Chen, W.; Simonetti, A.; Burns, P.C. A Combined geochemical and geochronological investigation of niocalite from the Oka carbonatite complex, Canada. Can. Mineral. 2013, 51, 785–800. [Google Scholar] [CrossRef]
- Bruand, E.; Storey, C.; Fowler, M. Accessory mineral chemistry of high Ba-Sr granites from Northern Scotland: Constraints on petrogenesis and records of whole-rock signature. J. Petrol. 2014, 55, 1619–1651. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Mitchell, R.H. Peralkaline Nephelinite-natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contrib. Mineral. Petr. 2009, 158, 589–598. [Google Scholar] [CrossRef]
- Guzmics, T.; Mitchell, R.H.; Szabo, C.; Berkesi, M.; Milke, R.; Ratter, K. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): Evolution of carbonated nephelinitic magma. Contrib. Mineral. Petr. 2012, 164, 101–122. [Google Scholar] [CrossRef]
- Beccaluva, L.; Barbieri, M.; Born, H.; Brotzu, P.; Coltorti, M.; Conte, A.; Garbarino, C.; Gomes, C.B.; Macciotta, G.; Morbidelli, L.; et al. Fractional crystallization and liquid immiscibility processes in the alkaline-carbonatite complex of Juquia (Sao-Paulo, Brazil). J. Petrol. 1992, 33, 1371–1404. [Google Scholar] [CrossRef]
- Lee, W.J.; Wyllie, P.J. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J. Petrol. 1998, 39, 2005–2013. [Google Scholar] [CrossRef]
- Dasgupta, R.; Hirschmann, M.M.; Stalker, K. Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite plus CO2 and genesis of silica-undersaturated ocean island lavas. J. Petrol. 2006, 47, 647–671. [Google Scholar] [CrossRef] [Green Version]
- Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 2003, 214, 357–368. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Schmidt, M.W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 2008, 267, 17–31. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mumin, A.H.; Demeny, A.; Elliott, B. Postorogenic carbonatites at Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): Geological setting, mineralogy and geochemistry. Lithos 2008, 103, 503–526. [Google Scholar] [CrossRef]
- Conceicao, F.T.; Vasconcelos, P.M.; Godoy, L.H.; Navarro, G.R.B. 49Ar/39Ar geochronological evidence for multiple magmatic events during the emplacement of Tapira alkaline-carbonatite complex, Minas Gerais, Brazil. J. S. Am. Earth Sci. 2020, 97, 102416. [Google Scholar] [CrossRef]
- Xu, C.; Campbell, I.H.; Allen, C.M.; Chen, Y.J.; Huang, Z.L.; Qi, L.; Zhang, G.S.; Yan, Z.F. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos 2008, 105, 118–128. [Google Scholar] [CrossRef]
- Chen, W.; Lu, J.; Jiang, S.Y.; Ying, Y.C.; Liu, Y.S. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chem. Geol. 2018, 494, 80–95. [Google Scholar] [CrossRef]
- Su, J.H.; Zhao, X.F.; Li, X.C.; Hu, W.; Chen, W.; Sleak, P. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China. Lithos 2022, 416, 106651. [Google Scholar] [CrossRef]
- Gervasoni, F.; Klemme, S.; Rohrbach, A.; Grutzner, T.; Berndt, J. Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts. Am. Mineral. 2017, 102, 860–866. [Google Scholar] [CrossRef]
- Mitchell, R.; Chudy, T.; McFarlane, C.R.M.; Wu, F.Y. Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks. Lithos 2017, 286, 75–91. [Google Scholar] [CrossRef]
- Brassinnes, S.; Balaganskaya, E.; Demaiffe, D. Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of vuoriyarvi (Kola Peninsula, Russia). A LA-ICP-MS study of apatite. Lithos 2005, 85, 76–92. [Google Scholar] [CrossRef]
- Dong, Y.P.; Santosh, M. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res. 2016, 29, 1–40. [Google Scholar] [CrossRef]
- Dong, Y.P.; Zhang, G.W.; Neubauer, F.; Liu, X.M.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Meng, Q.R.; Zhang, G.W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 2000, 323, 183–196. [Google Scholar] [CrossRef]
- Nie, H.; Wan, X.; Zhang, H.; He, J.F.; Hou, Z.H.; Siebel, W.; Chen, F.K. Ordovician and Triassic mafic dykes in the Wudang terrane: Evidence for opening and closure of the South Qinling ocean basin, central China. Lithos 2016, 266, 1–15. [Google Scholar] [CrossRef]
- Ling, W.L.; Ren, B.F.; Duan, R.C.; Liu, X.M.; Mao, X.W.; Peng, L.H.; Liu, Z.X.; Cheng, J.P.; Yang, H.M. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chin. Sci. Bull. 2008, 53, 2192–2199. [Google Scholar] [CrossRef] [Green Version]
- Su, J.H.; Zhao, X.F.; Li, X.C.; Su, Z.K.; Liu, R.; Qin, Z.J.; Chen, M. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals. Am. Mineral. 2021, 106, 1545–1558. [Google Scholar] [CrossRef]
- Wu, S.T.; Karius, V.; Schmidt, B.C.; Simon, K.; Worner, G. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 2018, 42, 575–591. [Google Scholar] [CrossRef]
- Yang, Y.H.; Sun, J.F.; Xie, L.W.; Fan, H.R.; Wu, F.Y. In situ Nd isotopic measurement of natural geological materials by LA-MC-ICPMS. Chin. Sci. Bull. 2008, 53, 1062–1070. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M.; Zhang, Y.B.; Xie, L.W.; Yang, J.H. In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem. Geol. 2009, 264, 24–42. [Google Scholar] [CrossRef]
- Yang, Y.H.; Wu, F.Y.; Yang, J.H.; Chew, D.M.; Xie, L.W.; Chu, Z.Y.; Zhang, Y.B.; Huang, C. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem. Geol. 2014, 385, 35–55. [Google Scholar] [CrossRef]
- McFarlane, C.R.M.; McCulloch, M.T. Coupling of in-situ Sm-Nd systematics and U-Pb dating of monazite and allanite with applications to crustal evolution studies. Chem. Geol. 2007, 245, 45–60. [Google Scholar] [CrossRef]
- Wu, Y.C.; Yang, Y.H.; Wu, F.Y.; Yang, J.H. Error calculation of radiogenic geochemical parameters in isotopic geology: A case study of Hf-Nd-Sr isotopes. Geochimica 2015, 44, 600–607. [Google Scholar]
- Anders, E.; Grevesse, N. Abundances of the Elements - Meteoritic and Solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Sun, W.; McDonough, W. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Bell, K.; Blenkinsop, J. Nd and Sr Isotopic Compositions of East-African carbonatites - Implications for mantle heterogeneity. Geology 1987, 15, 99–102. [Google Scholar] [CrossRef]
- Bell, K.; Tilton, G.R. Nd, Pb and Sr isotopic compositions of east African carbonatites: Evidence for mantle mixing and plume inhomogeneity. J. Petrol. 2001, 42, 1927–1945. [Google Scholar] [CrossRef]
- Bell, K. Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks—A brief review. J. Petrol. 1998, 39, 1987–1996. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zhou, D.W.; Jin, H.L.; Han, S.; Liu, Y.Y. Study on the Sr, Nd, Pb and O isotopes of basic dyke swarms in the Wudang block and basic valcanics of the Yaolinghe Group. Acta Petrol. Sin. 1999, 15, 430–437. [Google Scholar]
- Zhao, G.C.; Hu, J.M.; Meng, Q.R. Geochemistry of the basic sills in the western Wudang block: The evidences of the Paleozoic underplating in South Qinling. Acta Petrol. Sin. 2003, 19, 612–622. [Google Scholar]
- Chen, J.F.; Jahn, B.M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Gao, S.; Ling, W.L.; Qiu, Y.M.; Lian, Z.; Hartmann, G.; Simon, K. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochim. Cosmochim. Acta 1999, 63, 2071–2088. [Google Scholar] [CrossRef]
- Ma, C.Q.; Ehlers, C.; Xu, C.H.; Li, Z.C.; Yang, K.G. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: Constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Res. 2000, 102, 279–301. [Google Scholar] [CrossRef]
- Wang, R.R.; Xu, Z.Q.; Santosh, M.; Liang, F.H.; Fu, X.H. Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Tectonophysics 2017, 712, 270–288. [Google Scholar] [CrossRef]
- Eby, G.N. Abundance and distribution of rare-earth elements and yttrium in rocks and minerals of Oka carbonatite complex, Quebec. Geochim. Cosmochim. Acta 1975, 39, 597–620. [Google Scholar] [CrossRef]
- Webster, J.D.; Piccoli, P.M. Magmatic apatite: A powerful, yet deceptive, mineral. Elements 2015, 11, 177–182. [Google Scholar] [CrossRef]
- Sun, J.F.; Yang, J.H.; Zhang, J.H.; Yang, Y.H.; Zhu, Y.S. Apatite geochemical and Sr–Nd isotopic insights into granitoid petrogenesis. Chem. Geol. 2021, 566, 12. [Google Scholar] [CrossRef]
- Sun, C.Y.; Cawood, P.A.; Xu, W.L.; Zhang, X.M.; Tang, J.; Li, Y.; Sun, Z.X.; Xu, T. In situ geochemical composition of apatite in granitoids from the eastern Central Asian Orogenic Belt: A window into petrogenesis. Geochim. Cosmochim. Acta 2022, 317, 552–573. [Google Scholar] [CrossRef]
- Lu, J.; Chen, W.; Ying, Y.C.; Jiang, S.Y.; Zhao, K.D. Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: Implications for petrogenesis. Lithos 2021, 398, 106276. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Brady, A.E.; Wall, F.; Gunn, G.; Dawes, W. REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 2017, 81, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Sheard, E.R.; Williams-Jones, A.E.; Heiligmann, M.; Pederson, C.; Trueman, D.L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 2012, 107, 81–104. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Kressall, R.D.; Crozier, J.; Pisiak, L.K.; Sidhu, R.; Yang, P. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 2015, 64, 642–666. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Chakhmouradian, A.R. Calcite-amphibole-clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia: Mineralogy and a possible link to carbonatites. II. Oxysalt minerals. Can. Mineral. 2002, 40, 103–120. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.E.; Wagner, T. An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 degrees C. Geochim. Cosmochim. Acta 2009, 73, 7087–7109. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Palmer, D.A.S. The evolution of aqueous-carbonic fluids in the Amba Dongar carbonatite, India: Implications for fenitisation. Chem. Geol. 2002, 185, 283–301. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Migdisov, A.A.; Samson, I.M. Hydrothermal mobilisation of the rare earth elements—A tale of “Ceria” and “Yttria”. Elements 2012, 8, 355–360. [Google Scholar] [CrossRef]
- Xie, Y.L.; Hou, Z.Q.; Yin, S.P.; Dominy, S.C.; Xu, J.H.; Tian, S.H.; Xu, W.Y. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China. Ore Geol. Rev. 2009, 36, 90–105. [Google Scholar] [CrossRef]
- Xie, Y.L.; Li, Y.X.; Hou, Z.Q.; Cooke, D.R.; Danyushevsky, L.; Dominy, S.C.; Yin, S.P. A model for carbonatite hosted REE mineralisation—The Mianning-Dechang REF belt, Western Sichuan Province, China. Ore Geol. Rev. 2015, 70, 595–612. [Google Scholar] [CrossRef]
- Chen, W.; Simonetti, A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history. Chem. Geol. 2013, 353, 151–172. [Google Scholar] [CrossRef]
- Xu, C.; Kynicky, J.; Chakhmouradian, A.R.; Campbell, I.H.; Allen, C.M. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos 2010, 118, 145–155. [Google Scholar] [CrossRef]
- Zhang, D.X.; Liu, Y.; Pan, J.Q.; Dai, T.G.; Bayless, R.C. Mineralogical and geochemical characteristics of the Miaoya REE prospect, Qinling orogenic Belt, China: Insights from Sr–Nd-C-O isotopes and LA-ICP-MS mineral chemistry. Ore Geol. Rev. 2019, 110, 102932. [Google Scholar] [CrossRef]
- Watson, E.B.; Green, T.H. Apatite Liquid partition-coefficients for the rare-Earth elements and strontium. Earth Planet. Sci. Lett. 1981, 56, 405–421. [Google Scholar] [CrossRef]
- Klemme, S.; Dalpe, C. Trace-element partitioning between apatite and carbonatite melt. Am. Mineral. 2003, 88, 639–646. [Google Scholar] [CrossRef]
- Hammouda, T.; Chantel, J.; Devidal, J.L. Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure. Geochim. Cosmochim. Acta 2010, 74, 7220–7235. [Google Scholar] [CrossRef]
- Guzmics, T.; Zajacz, Z.; Kodolanyi, J.; Halter, W.; Szabo, C. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth’s mantle. Geochim. Cosmochim. Acta 2008, 72, 1864–1886. [Google Scholar] [CrossRef]
- Prowatke, S.; Klemme, S. Trace element partitioning between apatite and silicate melts. Geochim. Cosmochim. Acta 2006, 70, 4513–4527. [Google Scholar] [CrossRef]
- Barth, S.; Oberli, F.; Meier, M. Th-Pb Versus U-Pb Isotope systematics in allanite—From co-genetic rhyolite and granodiorite - Implications for geochronology. Earth Planet. Sci. Lett. 1994, 124, 149–159. [Google Scholar] [CrossRef]
- Fujimaki, H. Partition-coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib. Mineral. Petr. 1986, 94, 42–45. [Google Scholar] [CrossRef]
- Tang, M.; Wang, X.L.; Xu, X.S.; Zhu, C.; Cheng, T.; Yu, Y. Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf-Nd isotopic decoupling. Gondwana Res. 2012, 21, 266–280. [Google Scholar] [CrossRef]
- Tollari, N.; Barnes, S.J.; Cox, R.A.; Nabil, H. Trace element concentrations in apatites from the Sept-Iles Intrusive Suite, Canada—Implications for the genesis of nelsonites. Chem. Geol. 2008, 252, 180–190. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Cao, M.J.; Li, G.M.; Qin, K.Z.; Seitmuratova, E.Y.; Liu, Y.S. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization. Resour. Geol. 2012, 62, 63–83. [Google Scholar] [CrossRef]
- He, H.L.; Wang, Y.Q.; Bao, Z.A.; George, P.M.; Veni, S.; Sajeev, K.; Guo, J.H.; Zhai, M.G.; Lai, C.K. Role of magma injection and mixing in the formation of chromitite in Archean anorthosites: Evidence from the Sittampundi Complex, southern India. Precambrian Res. 2020, 350, 105914. [Google Scholar] [CrossRef]
- Nandedkar, R.H.; Hurlimann, N.; Ulmer, P.; Muntener, O. Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust: An experimental study. Contrib. Mineral. Petr. 2016, 171, 71. [Google Scholar] [CrossRef]
- Tiepolo, M.; Vannucci, R.; Oberti, R.; Foley, S.; Bottazzi, P.; Zanetti, A. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal-chemical constraints and implications for natural systems. Earth Planet. Sci. Lett. 2000, 176, 185–201. [Google Scholar] [CrossRef]
- Tiepolo, M.; Vannucci, R.; Bottazzi, P.; Oberti, R.; Zanetti, A.; Foley, S. Partitioning of rare earth elements, Y, Th, U, and Pb between pargasite, kaersutite, and basanite to trachyte melts: Implications for percolated and veined mantle. Geochem. Geophy. Geosy. 2000, 1. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Lai, S.C.; Qin, J.F.; Zhu, R.Z.; Zhao, S.W.; Zhu, Y.; Yang, H. Vein-plus-wall rock melting model for the origin of Early Paleozoic alkali diabases in the South Qinling Belt, Central China. Lithos 2020, 370, 105619. [Google Scholar] [CrossRef]
- Zhang, C.L.; Gao, S.; Yuan, H.L.; Zhang, G.W.; Yan, Y.X.; Luo, J.L.; Luo, J.H. Sr–Nd–Pb isotopes of the early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition. Sci. China Ser. D 2007, 50, 1293–1301. [Google Scholar] [CrossRef]
- Xia, L.Q.; Xia, Z.C.; Zhang, C.; Xu, X.Y. Geochemistry of Alkali Basic, Ultrabasic Subvolcanic Complex from Northern Daba Mountains, China; Geological Publishing House: Beijing, China, 1994. [Google Scholar]
- Xu, X.Y.; Huang, Y.H.; Xia, L.Q.; Xia, Z.C. Phlogopite-amphibole-pyroxenite xenoliths in Langao, Shanxi Province: Evidence for mantle metasomatism. Acta Petrol. Sin. 1997, 13, 2–14. [Google Scholar]
- Huang, Y.H. Mineralogical characteristics of phlogopite-amphibole-pyroxenite mantle xenoliths included in the alkali mafic-ultramafic subvolcanic complex from Langao county China. Acta Petrol. Sin. 1993, 9, 367–378. [Google Scholar]
- Ernst, R.E.; Bell, K. Large igneous provinces (LIPs) and carbonatites. Mineral. Petrol. 2010, 98, 55–76. [Google Scholar] [CrossRef]
- Hofmann, A.W. Mantle geochemistry: The message from oceanic volcanism. Nature 1997, 385, 219–229. [Google Scholar] [CrossRef]
- Pilet, S.; Baker, M.B.; Stolper, E.M. Metasomatized lithosphere and the origin of alkaline lavas. Science 2008, 320, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Pilet, S.; Baker, M.B.; Muntener, O.; Stolper, E.M. Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J. Petrol. 2011, 52, 1415–1442. [Google Scholar] [CrossRef] [Green Version]
- Weiss, Y.; Class, C.; Goldstein, S.L.; Hanyu, T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 2016, 537, 666–670. [Google Scholar] [CrossRef]
- Castillo, P.R. A proposed new approach and unified solution to old Pb paradoxes. Lithos 2016, 252, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Castillo, P.R. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 2015, 216, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.X.; Ni, H.W.; Chen, Y. Diffusion data in silicate melts. Rev. Mineral. Geochem. 2010, 72, 311–408. [Google Scholar] [CrossRef]
- Li, W.Y.; Teng, F.Z.; Xiao, Y.L.; Huang, J.A. High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet. Sci. Lett. 2011, 304, 224–230. [Google Scholar] [CrossRef]
Sample | SXD15-02 | SXD15-04B | SXS15-09 | SXD15-26 | SXD15-08 | SXD15-10 | SXD15-21 |
---|---|---|---|---|---|---|---|
Lithology | Carbonatite | Syenite | Hornblendite | ||||
Composition | (n = 10) | (n = 10) | (n = 7) | (n = 10) | (n = 8) | (n = 10) | (n = 10) |
CaO | 53.13 | 52.93 | 52.97 | 53.44 | 51.57 | 52.45 | 55.78 |
Ce2O3 | 0.45 | 0.36 | 0.23 | 0.32 | 0.60 | 0.30 | 0.09 |
La2O3 | 0.25 | 0.16 | 0.10 | 0.13 | 0.26 | 0.12 | 0.06 |
SrO | 0.58 | 1.12 | 1.88 | 1.03 | 1.89 | 1.62 | b.d.l. |
BaO | b.d.l. | 0.02 | b.d.l. | 0.02 | b.d.l. | b.d.l. | b.d.l. |
Na2O | 0.33 | 0.25 | 0.15 | 0.21 | 0.37 | 0.21 | 0.11 |
Pr2O3 | b.d.l. | 0.03 | 0.03 | 0.03 | 0.05 | 0.02 | 0.04 |
Nd2O3 | 0.06 | 0.12 | 0.07 | 0.19 | 0.30 | 0.08 | b.d.l. |
P2O5 | 40.97 | 41.17 | 41.42 | 41.52 | 41.14 | 41.70 | 41.64 |
SiO2 | 0.11 | 0.05 | 0.01 | 0.04 | 0.01 | 0.01 | 0.20 |
SO3 | 0.11 | 0.07 | 0.06 | 0.04 | 0.08 | 0.08 | 0.27 |
MnO | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
F | 3.55 | 3.97 | 4.24 | 3.70 | 4.06 | 3.70 | 3.42 |
Cl | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
–O= (F, Cl)2 | 1.50 | 1.65 | 1.81 | 1.54 | 1.65 | 1.56 | 1.43 |
total | 98.09 | 98.61 | 99.36 | 99.14 | 98.67 | 98.74 | 100.21 |
in apfu | Structural formula calculated for 8 cations | ||||||
Ca | 4.89 | 4.88 | 4.86 | 4.89 | 4.78 | 4.83 | 5.00 |
Na | 0.06 | 0.04 | 0.03 | 0.04 | 0.06 | 0.04 | 0.02 |
Sr | 0.03 | 0.06 | 0.09 | 0.05 | 0.09 | 0.08 | ― |
Ba | ― | 0.00 | ― | 0.00 | ― | ― | ― |
La | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Ce | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.00 |
Pr | ― | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nd | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | ― |
P | 2.98 | 3.00 | 3.00 | 3.00 | 3.02 | 3.04 | 2.95 |
Si | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
S | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
Mn | ― | ― | ― | ― | ― | ― | ― |
F | 0.97 | 1.08 | 1.15 | 1.00 | 1.11 | 1.01 | 0.90 |
Cl | ― | ― | ― | ― | ― | ― | ― |
Sample | SXD15-02 | SXD15-04B | SXS15-09 | SXD15-26 | SXD15-08 | SXD15-10 | SXD15-21 |
---|---|---|---|---|---|---|---|
Lithology | Carbonatite | Syenite | Hornblendite | ||||
(n = 10) | (n = 10) | (n = 8) | (n = 10) | (n = 10) | (n = 10) | (n = 10) | |
Sc | 3.38 | 8.64 | 6.75 | 6.75 | 7.10 | 3.58 | 7.84 |
Ti | 28.6 | 63.6 | 59.4 | 59.4 | 61.7 | 28.9 | 55.5 |
V | 25.7 | 6.80 | 4.42 | 4.42 | 5.40 | 2.40 | 68.4 |
Cr | 47.4 | 109 | 88.0 | 88.0 | 88.3 | 52.0 | 100.0 |
Mn | 344 | 338 | 412 | 412 | 644 | 563 | 321 |
Fe | 297 | 715 | 500 | 500 | 531 | 425 | 795 |
Co | 7.91 | 18.5 | 14.0 | 14.0 | 14.3 | 8.23 | 16.5 |
Ni | 16.4 | 39.6 | 29.2 | 29.2 | 28.1 | 16.9 | 34.1 |
Rb | 0.72 | 1.37 | 1.33 | 1.33 | 1.21 | 0.76 | 1.46 |
Sr | 12,671 | 15,997 | 24,873 | 24,873 | 22,815 | 21,857 | 1629 |
Y | 354 | 480 | 488 | 488 | 937 | 846 | 199 |
Zr | 1.11 | 2.24 | 1.85 | 1.85 | 1.96 | 1.04 | 13.7 |
Nb | 0.97 | 0.59 | 0.37 | 0.37 | 0.36 | 0.27 | 0.44 |
Cs | 0.15 | 0.33 | 0.24 | 0.24 | 0.22 | 0.13 | 0.34 |
Ba | 27.3 | 20.7 | 65.6 | 65.6 | 9.09 | 18.4 | 5.81 |
La | 1373 | 1078 | 950 | 950 | 1551 | 796 | 498 |
Ce | 3204 | 3011 | 2584 | 2584 | 4634 | 2396 | 963 |
Pr | 410 | 417 | 352 | 352 | 633 | 348 | 116 |
Nd | 1789 | 1924 | 1618 | 1618 | 2986 | 1695 | 518 |
Sm | 349 | 398 | 383 | 383 | 689 | 467 | 98.3 |
Eu | 105 | 118 | 126 | 126 | 223 | 161 | 24.1 |
Gd | 251 | 291 | 324 | 324 | 548 | 420 | 78.8 |
Tb | 28.3 | 34.9 | 40.7 | 40.7 | 69.4 | 57.5 | 9.58 |
Dy | 117 | 151 | 176 | 176 | 305 | 267 | 47.4 |
Ho | 15.9 | 20.9 | 24.0 | 24.0 | 43.0 | 38.6 | 7.72 |
Er | 27.2 | 36.9 | 40.2 | 40.2 | 76.2 | 69.3 | 16.3 |
Tm | 2.45 | 3.38 | 3.42 | 3.42 | 6.96 | 6.56 | 1.78 |
Yb | 10.9 | 14.4 | 14.1 | 14.1 | 29.4 | 28.0 | 9.87 |
Lu | 1.05 | 1.36 | 1.20 | 1.20 | 2.68 | 2.59 | 1.21 |
Hf | 0.25 | 0.64 | 0.44 | 0.44 | 0.43 | 0.29 | 0.51 |
Ta | 0.05 | 0.08 | 0.07 | 0.07 | 0.08 | 0.06 | 0.09 |
Th | 13.6 | 15.0 | 10.1 | 10.1 | 23.8 | 14.1 | 16.5 |
U | 0.31 | 0.11 | 0.08 | 0.08 | 0.16 | 0.16 | 2.74 |
Pb | 9.61 | 19.0 | 18.4 | 18.4 | 22.7 | 20.9 | 27.4 |
Sample | Lithology | 87Rb/86Sr | 2σ | 87Sr/86Sr | 2σ | (87Sr/86Sr)i | 2σ | 147Sm/144Nd | 2σ | 143Nd/144Nd | 2σ | εNd(T) | 2σ | TDM(Ma) | 2σ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
εNd(220 Ma) | ||||||||||||||||
SXD15-02 | Carbonatite | (n = 20) | 0.00002 | 0.00001 | 0.70308 | 0.00006 | 0.70308 | 0.00006 | 0.10983 | 0.00044 | 0.51262 | 0.00003 | 2.1 | 0.6 | 784 | 45 |
SXD15-04B | (n = 19) | 0.00001 | 0.00001 | 0.70300 | 0.00005 | 0.703 | 0.00005 | 0.13221 | 0.00009 | 0.51264 | 0.00004 | 1.9 | 0.8 | 959 | 73 | |
SXS15-09 | (n = 18) | 0.00001 | 0.00001 | 0.70302 | 0.00004 | 0.70302 | 0.00004 | 0.13986 | 0.00019 | 0.51264 | 0.00004 | 1.6 | 0.7 | 1080 | 76 | |
SXD15-26 | (n = 20) | 0.00003 | 0.00001 | 0.70299 | 0.00006 | 0.70299 | 0.00006 | 0.12417 | 0.00052 | 0.51264 | 0.00003 | 2 | 0.6 | 912 | 61 | |
εNd(435 Ma) | ||||||||||||||||
SXD15-08 | Syenite | (n = 15) | 0.00003 | 0.00001 | 0.70313 | 0.00005 | 0.70313 | 0.00005 | 0.15269 | 0.00035 | 0.51264 | 0.00003 | 2.6 | 0.5 | 1296 | 73 |
SXD15-10 | (n = 20) | 0.00002 | 0.00001 | 0.70326 | 0.00004 | 0.70326 | 0.00004 | 0.16826 | 0.00016 | 0.51269 | 0.00003 | 2.6 | 0.7 | 1586 | 118 | |
SXD15-21 | Hornblendite | (n = 20) | 0.00149 | 0.00012 | 0.70351 | 0.00003 | 0.70351 | 0.00003 | 0.12192 | 0.00021 | 0.51266 | 0.00009 | 4.6 | 1.8 | 817 | 153 |
AP1 | (n = 64) | 0.00007 | 0.000006 | 0.711300 | 0.000092 | |||||||||||
Slyudyanka | Standard | (n = 44) | 0.000006 | 0.000004 | 0.707752 | 0.000010 | ||||||||||
MAD | (n = 95) | 0.082703 | 0.000091 | 0.511348 | 0.0000054 | |||||||||||
Otter Lake | (n = 44) | 0.08472 | 0.00039 | 0.511955 | 0.0000064 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ye, C.; Ying, J. In Situ Geochemical and Sr–Nd Isotope Analyses of Apatite from the Shaxiongdong Alkaline–Carbonatite Complex (South Qinling, China): Implications for Magma Evolution and Mantle Source. Minerals 2022, 12, 587. https://doi.org/10.3390/min12050587
Li J, Ye C, Ying J. In Situ Geochemical and Sr–Nd Isotope Analyses of Apatite from the Shaxiongdong Alkaline–Carbonatite Complex (South Qinling, China): Implications for Magma Evolution and Mantle Source. Minerals. 2022; 12(5):587. https://doi.org/10.3390/min12050587
Chicago/Turabian StyleLi, Jian, Chenyang Ye, and Jifeng Ying. 2022. "In Situ Geochemical and Sr–Nd Isotope Analyses of Apatite from the Shaxiongdong Alkaline–Carbonatite Complex (South Qinling, China): Implications for Magma Evolution and Mantle Source" Minerals 12, no. 5: 587. https://doi.org/10.3390/min12050587
APA StyleLi, J., Ye, C., & Ying, J. (2022). In Situ Geochemical and Sr–Nd Isotope Analyses of Apatite from the Shaxiongdong Alkaline–Carbonatite Complex (South Qinling, China): Implications for Magma Evolution and Mantle Source. Minerals, 12(5), 587. https://doi.org/10.3390/min12050587