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Abstract: We present in situ major element, trace element, and Sr–Nd isotope data of apatite from
an alkaline–carbonatite intrusion in the South Qinling Belt (SQB) to investigate their magma evo-
lution and mantle sources. The Shaxiongdong (SXD) complex consists predominantly of the early
Paleozoic hornblendite, nepheline syenite, and subordinate Triassic carbonatite. Apatites from all
lithologies are euhedral to subhedral and belong to fluorapatite. Elemental substitution varies from
REE3+ + Na+ + Sr2+ ↔ 3Ca2+ in carbonatite and syenite apatite to Si4+ + 2Na+ + 2S6+ + 4REE3+ ↔
4P5+ + 5Ca2+ in hornblendite apatite. Apatites are characterized by enriched rare earth elements
(REEs) and depleted high field strength elements (HFSEs). They record the distinct evolution of their
parental magmas. The weak, negative Eu anomaly in hornblendite apatite, together with the lack of
Eu anomalies in the bulk rocks, indicates a relatively reduced magma. The Sr–Nd isotope data of the
apatite in SXD carbonatite, falling on the East African carbonatite line (EACL) and close to the field
of Oldoinyo Lengai carbonatite, indicate that the SXD carbonatite is derived from a mixed mantle
source consisting of the HIMU component and subducted sedimentary carbonates. The similarity in
Sr and Nd isotopic compositions between the SXD hornblendite and syenite apatites and the early
Paleozoic mafic-ultramafic dykes in the SQB suggests that they may share a common metasomatized
lithospheric mantle source.

Keywords: apatite; carbonatite; hornblendite; syenite; in situ Sr–Nd isotopes

1. Introduction

Apatite, with a general formula of Ca5(PO4)(OH, F, Cl), is widespread in various
environments ranging from the Earth’s surface to the lithospheric mantle [1]. It is a
ubiquitous accessory mineral in most igneous, metamorphic, and sedimentary rocks [2].
Apatite can also become a rock-forming mineral in phosphorites and iron oxide-apatite
deposits [3–5]. As the most abundant phosphate on Earth, apatite is a wonderful mineral
to use to explore the global phosphorus cycle [6,7]. Also, apatite has been found in some
lunar basalts, indicating that the volatile phase may play an essential role in the evolution
of lunar magmatism [8–10].

Apatite generally has variable trace element contents due to numerous substitutions. It
is classified as fluorapatite, chlorapatite and hydroxyapatite based on the different column
anions (F, Cl, OH). Fluorapatite and hydroxyapatite are the most commonly occurring
phosphorus-bearing minerals in igneous rocks. Numerous studies have shown that apatite
has a strong affinity for the REEs due to extensive substitution of REEs [11–14]. There are
two major substitution mechanisms at Ca and P sites: (1) REE3+ and Na+ substitute for Ca2+

and (2) REE3+ and Si4+ substitute for Ca2+ and P5+ [15–17]. As a major REE-bearing mineral
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in igneous rocks, apatite fractionation leads to REE depletion in the residual melts [18].
Other elements, such as Mn, Sr, and S, are often incorporated into the apatite crystal struc-
ture by substitution [19]. The trace element contents of magmatic apatite are controlled
by temperature, pressure, oxygen fugacity, coexisting minerals, and host magma compo-
sition [17,19–22]. Thus, apatite can be used to trace magmatic processes (e.g., AFC and
magmatic degassing) [23,24] and may reflect the composition of its parental magma [25,26].
In igneous rocks that underwent metamorphism or metasomatism, magmatic apatite is
modified with respect to shape and composition. The apatite of metasomatic/metamorphic
origin always shows fractured and porous crystals with overgrowth rims. Numerous
inclusions of monazite and xenotime usually occur in the metasomatic areas [3]. Low REEs,
especially light REEs (LREEs), characterize the metasomatic apatite due to dissolution
and transportation by liquid/melts [12,27]. Thus, apatite is also a reliable indicator for
metasomatism and hydrothermal evolution.

Carbonatites generally occur in the company of various alkaline rocks, such as syenite,
melilite, and phelinite. It has long been accepted that carbonatites and their spatially
associated alkaline rocks are genetically related, with the former formed from the latter
either by liquid immiscibility [28,29] or by fractional crystallization [30,31]. However,
experiments verify that carbonatitic melts can also be generated directly from carbonated
peridotite, eclogite, or even perlites [32–34]. Furthermore, there are some carbonatites,
such as those in Eden Lake [35] and Tapira [36], which are genetically unrelated with
their spatially accompanied alkaline rocks, further confirming that spatially accompanied
carbonatite and alkaline rocks are not necessarily coeval and genetically related.

Located in the South Qinling Belt (SQB), China, the SXD alkaline–carbonatite complex
comprises nepheline syenite, hornblendite, and minor carbonatite. Previous U–Pb dating
work on zircons yielded an age of 441 Ma for the syenite and 430 Ma for the carbonatite,
suggesting they are coeval and derived from a common parental magma [37–39]. However,
using zircon as a geochronometer to date carbonatite is problematic, as the experiment
confirmed that carbonatitic melts can only crystallize baddeleyite rather than zircon [40],
and zircon in carbonatitic melts is unstable and can easily be dissolved and replaced by
baddeleyite or diverse calcium zirconates [40,41]. Our recent Ar–Ar dating work on primary
biotite from the carbonatite yielded a well-defined plateau age of 226 Ma (unpublished),
implying that although closely spatially associated, the hornblende and syenite are not
genetically related to the carbonatite; thus, zircons in carbonatite are most likely inherited
from the surrounding alkaline rocks. The SXD complex is a potential Nb–REE deposit,
mainly hosted in the carbonatite. The Nb forms pyrochlore and the REEs are mainly
preserved in apatite and a variety of REE minerals, such as burbankite, bastnasite, etc.

Apatite is the common REE-rich mineral in carbonatite and accompanied alkaline
rocks. It occurs from early magmatic to late hydrothermal stages. Thus, apatite is an
effective tool for revealing magma evolution history, tracing REE mineralization, and
exploring the relationship between carbonatite and its accompanied alkaline rocks [42].
In addition, the extremely high Sr and Nd contents in apatites from carbonatite and its
silicate counterparts, effectively buffering potential crustal contamination, make them
highly reliable in deciphering the nature of the mantle sources of their parental magmas.

Hitherto, magma evolution and mantle sources of the SXD complex are not well
understood. In this contribution, we report in situ geochemical and Sr–Nd isotopic analyses
of apatite from both the alkaline silicate and carbonatitic rocks from the SXD complex with
an aim to constrain their magma evolution and mantle sources.

2. Geological Setting and Petrography

The Qinling orogenic belt (QOB), linking the Dabie-Sulu orogenic belt in the east
and the Kunlun-Qilian orogen to the west (Figure 1a), is a composite collisional orogenic
belt formed by the multi-stage collision of the South China (SCB) and North China (NCB)
Blocks during the Paleozoic and Mesozoic [43–45]. The boundary between the SCB and the
QOB lies along the Mianlue suture, whereas the Lingbao-Luanshan-Wuyang fault marks
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the final suture between the NCB and the QOB. The QOB comprises the South Qinling Belt
(SQB) and the North Qinling Belt (NQB), which were welded together along the Shangdan
suture. The NQB is thought to be a part of the southern margin of the NCB, whereas the
SQB is proposed to be the passive continental margin of the SCB before the opening of the
Mianlue Ocean during the late early Paleozoic [43]. Early Paleozoic bimodal volcanic rocks
indicate the initial spreading of the Mianlue Ocean. In the Triassic, northward subduction
of the Mianlue ocean ultimately resulted in an amalgamation of the SQB and SCB [44]. A
suite of mantle-derived mafic sills associated with the post-collision stage occurs in South
Qinling [46].
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Figure 1. (a) Major tectonic units in Eastern China and the location of the South Qinling Belt;
(b) simplified map showing the locality of the SXD complex within the South Qinling Belt (modified
from [47]); (c) geological map of the SXD complex with the distribution of different lithologies.

The SQB is characterized by thin-skinned south-vergent imbricated thrust-fold sys-
tems. Two different Precambrian basements, namely the crystalline and transitional base-
ments, have been distinguished in the SQB based on the lithology and metamorphic grade
(Figure 1b). The crystalline basement is represented by amphibolite and granulite-facies
assemblages of the Douling complex, whereas the transitional basement comprises the
Meso-Proterozoic Yaolinghe and Wudang Groups of low-grade metamorphic volcano-
sedimentary rock assemblages [45]. In addition, Neoproterozoic tillite and platform
carbonate, Cambrian-Ordovician limestone, and Silurian shale unconformably overlie
the basements.

The SXD alkaline–carbonatite complex, located around 12 km southeast of Zhushan
County, Western Hubei Province, is tectonically situated at the southern margin of the
Wudang terrane. It occurs as a spindle-like stock intruding on the Wudang Neoproterozoic
metamorphic schist (Figure 1c). The complex is predominantly composed of the horn-
blendite outcropping in the northwestern and eastern parts of the intrusion and syenite
in the central part. Subordinate carbonatite intruded on both syenite and hornblendite
as dykes that are tens to hundreds of meters long. The carbonatite is medium-coarse
grained and composed of medium- to fine-grained euhedral calcite (85%–95%), minor
biotite (0%–10%), and aegirine (0%–5%). Accessory minerals include apatite, pyrochlore,
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pyrite, barite, and REE minerals (e.g., bastnasite, burbankite, and allanite, Figure 2a–d).
The nepheline syenite is fine- to medium-grained, porphyritic, and consists mainly of alkali
feldspar (40%–75%), albite (5%–30%), nepheline (5%–15%), biotite (1%–5%), and aegirine
(1%–5%). Accessory minerals include apatite, epidote, barite, zircon, and pyrite (Figure 2e).
The hornblendite is medium-coarse grained, with modal amphibole approaching 80%–90%.
Kaersutite occurs as the dominant phenocryst, whereas magnesiohastingsite and some
Na–Ca amphibole (e.g., winchite) are present in the matrix. Subhedral phlogopite is another
primary constituent mineral (~5%). Accessory minerals include ilmenite, magnetite, albite,
titanite, apatite, wollastonite, rutile, and zircon (Figure 2f).
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Figure 2. BSE of the SXD carbonatite (a–d), syenite (e), and hornblendite (f); and photomicrographs
in transmitted light of representative apatite from the SXD complex (g). Symbols: Ap—apatite;
Cal—calcite; Py—pyrite; Pcl—pyrochlore; Kfs—alkali feldspar; Bi—biotite; Mag—magnetite; Hbl—
hornblende; Rt—rutile; Phl—phlogopite.

Apatites in the SXD complex mainly occur as euhedral–subhedral grains with typical
hexagonal shapes (Figure 2). They are clear and homogeneous, as indicated by backscat-
tered electron images (BSE), which contrast sharply with the porous apatite of metasomatic
origin. Apatites from the carbonatite and syenite are commonly elongated or rounded with
grain sizes of 80–300 µm. Those from hornblendite are relatively well-proportioned with
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aspect ratios of 1–1.5 (Figure 2g). Fine anhedral apatite grains of 10–40 µm in size and
enclosed in calcite and pyrite are commonly observed in the SXD carbonatite (Figure 2a,b).
Some altered apatite-hosting monazite inclusions have also been reported [48].

3. Analytical Methods

Apatites were extracted separately from carbonatite, syenite, and hornblendite, follow-
ing standard density and magnetic separation procedures. Apatite grains were then hand-
picked, mounted in epoxy resin, and polished to expose the crystals’ interiors. Polished
mounts were then documented with photomicrographs before analyses to characterize
apatite grains’ crystal morphology (Figure 2g) and select targets for in situ elemental and
Sr–Nd isotope analyses.

3.1. Major and Trace Elements

Major element compositions were measured using a JEOL-JAX8100 electron micro-
probe (EPMA) at the Institute of Geology and Geophysics, Chinese Academy of Sciences
(IGGCAS), Beijing, China. The operating conditions were 15 kV accelerating voltage, 20 nA
beam current, and 5 µm beam diameter. The standards for apatite analyses were apatite
for Ca and P, albite for Na, diopside for Si, barite for S and Ba, celestine for Sr, monazite
for La, Ce, Pr, and Nd, Mn oxide (MnO) for Mn, tugtupite for Cl, and synthetic fluorite for
F. Apatite formulas were normalized to eight cations, assuming stoichiometry. Detection
limits for analyzed elements ranged from ca. 100 ppm to 200 ppm.

Trace elements were determined on polished grain mounts of apatite by laser ablation
inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) equipped with a 193 nm
excimer ArF LA system at the IGGCAS, with a 1 mm Ni sample cone and 0.4 mm Ni
skimmer cone. The ablation cell was connected to an Agilent 77500a ICP-MS. Detailed
instrument operation conditions, analytical procedures, and data reduction are described
by Wu et al. [49]. To analyze these apatite grains, we used 40–60 µm laser craters pulsed
at 6 Hz and an energy fluence of 6 J/cm2. Dwell times were 10 ms for U and Th and
6 ms for isotopes of other elements; analyses involved ~30 s background acquisition and
50 s sample data acquisition, and helium was used as the carrier gas at 750 mL/ min.
NIST 610 was used as the primary external calibration standard, and 43Ca was used for
internal calibration. Data were processed using the GLITTER program (GEMOC, Macquarie
University). Relative analytical uncertainties were within 20% for Rb, Zr, Hf, and Ta, and
10% for other trace elements.

3.2. In Situ Sr and Nd Isotopic Composition

In situ Sr and Nd isotopic analyses of apatite were undertaken using a Thermo
Scientific Neptune MC-ICP-MS and 193 nm excimer ArF LA system at the IGGCAS.
The instrumental operation, analytical procedures, and data reduction are discussed in
Yang et al. [50–52]. For Sr analysis, a laser repetition rate of 8 Hz with an energy fluence
of 15 J/cm2 was applied; the spot size was 80–120 µm. The influence of Ca on Sr isotope
analysis was insignificant. The 87Sr/86Sr ratios obtained for in-house standard apatites
AP1 and Slyudyanka were 0.711300 ± 0.000092 (2SD; n = 64) and 0.707752 ± 0.000010 (2SD;
n = 44), respectively, consistent with their reference values [52].

With respect to the Nd isotope, a laser repetition rate of 6 Hz with an energy fluence
of 15 J/cm2 was applied with spot sizes of 90 µm. The influence of 142Ce on 142Nd was
insignificant, so the main isobaric interference for Nd was that of 144Sm on 144Nd, which
was corrected with a procedure similar to that of McFarlane et al. [53]. The 147Sm/144Nd
and 143Nd/144Nd ratios obtained for in-house standard apatites MAD and Otter Lake
were 0.082703 ± 0.000091 (2SD; n = 64) and 0.511348 ± 0.0000054 (2SD; n = 95), and
0.08472 ± 0.00039 and 0.511955 ± 0.0000064, respectively, which are identical to values
obtained by solution methods and long-term determinations by LA-MC-ICP-MS [52,54].
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4. Results
4.1. Major and Trace Elements

Apatite grains from the SXD complex have uniform CaO (49.9–57.0 wt%) and P2O5
(39.8–42.7 wt%), high F (2.9–5.0 wt%), and are typical fluorapatite (Table 1 and Supplemen-
tary Materials S1). Apatites in SXD carbonatite and syenite are high in SrO (0.29–2.2 wt%)
and Na2O (0.09–0.56 wt%), whereas those in SXD hornblendite have relatively low Na2O
(0.03–0.17 wt%) and high SiO2 (0.07–0.4 wt%) and SO3 (0.09–0.52 wt%). BaO, MnO, and
Cl in most analyzed spots are below the detection limits, and SrO in apatite grains from
SXD hornblendite is below the detection limit. All apatites are enriched in LREEs relative
to heavy rare earth elements (HREEs), with (La/Yb)N ratios of 17–171, 16–64, and 20–45 for
those in carbonatite, syenite, and hornblendite, respectively (Table 2 and Supplementary
Materials S2, Figure 3a,c,e). In addition, apatites in SXD hornblendite show a discern-
able weak negative Eu anomaly (δEu = 0.73–0.95) [δEu = EuN/ (SmN + GdN)1/2]. In the
primitive mantle-normalized trace element diagrams (Figure 3b,d,f), all apatites show
enrichment of Th and LREEs, and depletion of HFSEs, such as Nb-Ta, Zr-Hf, and Ti.

Table 1. Average apatite compositions obtained by EPMA.

Sample SXD15-02 SXD15-04B SXS15-09 SXD15-26 SXD15-08 SXD15-10 SXD15-21

Lithology Carbonatite Syenite Hornblendite

Composition (n = 10) (n = 10) (n = 7) (n = 10) (n = 8) (n = 10) (n = 10)

CaO 53.13 52.93 52.97 53.44 51.57 52.45 55.78
Ce2O3 0.45 0.36 0.23 0.32 0.60 0.30 0.09
La2O3 0.25 0.16 0.10 0.13 0.26 0.12 0.06

SrO 0.58 1.12 1.88 1.03 1.89 1.62 b.d.l.
BaO b.d.l. 0.02 b.d.l. 0.02 b.d.l. b.d.l. b.d.l.

Na2O 0.33 0.25 0.15 0.21 0.37 0.21 0.11
Pr2O3 b.d.l. 0.03 0.03 0.03 0.05 0.02 0.04
Nd2O3 0.06 0.12 0.07 0.19 0.30 0.08 b.d.l.
P2O5 40.97 41.17 41.42 41.52 41.14 41.70 41.64
SiO2 0.11 0.05 0.01 0.04 0.01 0.01 0.20
SO3 0.11 0.07 0.06 0.04 0.08 0.08 0.27

MnO b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
F 3.55 3.97 4.24 3.70 4.06 3.70 3.42
Cl b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.

–O= (F, Cl)2 1.50 1.65 1.81 1.54 1.65 1.56 1.43
total 98.09 98.61 99.36 99.14 98.67 98.74 100.21

in apfu Structural formula calculated for 8 cations
Ca 4.89 4.88 4.86 4.89 4.78 4.83 5.00
Na 0.06 0.04 0.03 0.04 0.06 0.04 0.02
Sr 0.03 0.06 0.09 0.05 0.09 0.08 —
Ba — 0.00 — 0.00 — — —
La 0.01 0.00 0.00 0.00 0.01 0.00 0.00
Ce 0.01 0.01 0.01 0.01 0.02 0.01 0.00
Pr — 0.00 0.00 0.00 0.00 0.00 0.00
Nd 0.00 0.00 0.00 0.00 0.01 0.00 —
P 2.98 3.00 3.00 3.00 3.02 3.04 2.95
Si 0.01 0.00 0.00 0.00 0.00 0.00 0.02
S 0.01 0.00 0.00 0.00 0.00 0.00 0.02

Mn — — — — — — —
F 0.97 1.08 1.15 1.00 1.11 1.01 0.90
Cl — — — — — — —

Notes: b.d.l., below the detection limit; —, no data.
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Table 2. Average apatite trace element concentrations obtained by LA-MC-ICP-MS.

Sample SXD15-02 SXD15-04B SXS15-09 SXD15-26 SXD15-08 SXD15-10 SXD15-21

Lithology Carbonatite Syenite Hornblendite

(n = 10) (n = 10) (n = 8) (n = 10) (n = 10) (n = 10) (n = 10)

Sc 3.38 8.64 6.75 6.75 7.10 3.58 7.84
Ti 28.6 63.6 59.4 59.4 61.7 28.9 55.5
V 25.7 6.80 4.42 4.42 5.40 2.40 68.4
Cr 47.4 109 88.0 88.0 88.3 52.0 100.0
Mn 344 338 412 412 644 563 321
Fe 297 715 500 500 531 425 795
Co 7.91 18.5 14.0 14.0 14.3 8.23 16.5
Ni 16.4 39.6 29.2 29.2 28.1 16.9 34.1
Rb 0.72 1.37 1.33 1.33 1.21 0.76 1.46
Sr 12,671 15,997 24,873 24,873 22,815 21,857 1629
Y 354 480 488 488 937 846 199
Zr 1.11 2.24 1.85 1.85 1.96 1.04 13.7
Nb 0.97 0.59 0.37 0.37 0.36 0.27 0.44
Cs 0.15 0.33 0.24 0.24 0.22 0.13 0.34
Ba 27.3 20.7 65.6 65.6 9.09 18.4 5.81
La 1373 1078 950 950 1551 796 498
Ce 3204 3011 2584 2584 4634 2396 963
Pr 410 417 352 352 633 348 116
Nd 1789 1924 1618 1618 2986 1695 518
Sm 349 398 383 383 689 467 98.3
Eu 105 118 126 126 223 161 24.1
Gd 251 291 324 324 548 420 78.8
Tb 28.3 34.9 40.7 40.7 69.4 57.5 9.58
Dy 117 151 176 176 305 267 47.4
Ho 15.9 20.9 24.0 24.0 43.0 38.6 7.72
Er 27.2 36.9 40.2 40.2 76.2 69.3 16.3
Tm 2.45 3.38 3.42 3.42 6.96 6.56 1.78
Yb 10.9 14.4 14.1 14.1 29.4 28.0 9.87
Lu 1.05 1.36 1.20 1.20 2.68 2.59 1.21
Hf 0.25 0.64 0.44 0.44 0.43 0.29 0.51
Ta 0.05 0.08 0.07 0.07 0.08 0.06 0.09
Th 13.6 15.0 10.1 10.1 23.8 14.1 16.5
U 0.31 0.11 0.08 0.08 0.16 0.16 2.74
Pb 9.61 19.0 18.4 18.4 22.7 20.9 27.4

4.2. Sr and Nd Isotopic Composition

The Sr–Nd isotopic compositions of apatite are listed in Table 3 and Supplementary
Materials S3. The initial isotopic ratios of the apatites in the SXD carbonatite are calculated
back to 220Ma based on our unpublished dating results of biotite, yielding initial 87Sr/86Sr
ratios of 0.70202–0.70332 and εNd(t) values of 0.6–3.4 (Figure 4a). For SXD hornblendite and
syenite, the initial Sr and Nd isotopic ratios were recalculated based on the zircon U–Pb age
(435 Ma, our unpublished data). The initial 87Sr/86Sr and εNd(t) are 0.70301–0.70333 and
1.5–3.8, and 0.70337–0.70389 and 2.5–6.2 for hornblendite and syenite apatite, respectively
(Figure 4b).
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Figure 4. Sr–Nd isotopic diagram for the SXD Triassic carbonatite (a) and early Paleozoic
hornblendite–syenite intrusion (b). The data of Mesozoic dykes are from Nie et al. [46]. The East
African carbonatite line (EACL) and Oldoinyo Lengai are referred to in [57–59]. The normal litho-
spheric mantle is constrained by the Early Paleozoic mafic dykes in South Qinling [60,61]. The
Yangtze upper/middle crust data are from Chen and Jahn [62], Gao et al. [63], and Ma et al. [64]. The
data of the early Paleozoic mafic-ultramafic rocks in the South Qinling Belt are from [65].
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Table 3. Average apatite Sr–Nd isotope data obtained by LA-MC-ICP-MS.

Sample Lithology 87Rb/86Sr 2σ 87Sr/86Sr 2σ (87Sr/86Sr)i 2σ 147Sm/144Nd 2σ 143Nd/144Nd 2σ εNd(T) 2σ TDM(Ma) 2σ

εNd(220 Ma)
SXD15-02

Carbonatite

(n = 20) 0.00002 0.00001 0.70308 0.00006 0.70308 0.00006 0.10983 0.00044 0.51262 0.00003 2.1 0.6 784 45
SXD15-04B (n = 19) 0.00001 0.00001 0.70300 0.00005 0.703 0.00005 0.13221 0.00009 0.51264 0.00004 1.9 0.8 959 73
SXS15-09 (n = 18) 0.00001 0.00001 0.70302 0.00004 0.70302 0.00004 0.13986 0.00019 0.51264 0.00004 1.6 0.7 1080 76
SXD15-26 (n = 20) 0.00003 0.00001 0.70299 0.00006 0.70299 0.00006 0.12417 0.00052 0.51264 0.00003 2 0.6 912 61

εNd(435 Ma)
SXD15-08 Syenite (n = 15) 0.00003 0.00001 0.70313 0.00005 0.70313 0.00005 0.15269 0.00035 0.51264 0.00003 2.6 0.5 1296 73
SXD15-10 (n = 20) 0.00002 0.00001 0.70326 0.00004 0.70326 0.00004 0.16826 0.00016 0.51269 0.00003 2.6 0.7 1586 118
SXD15-21 Hornblendite (n = 20) 0.00149 0.00012 0.70351 0.00003 0.70351 0.00003 0.12192 0.00021 0.51266 0.00009 4.6 1.8 817 153

AP1 (n = 64) 0.00007 0.000006 0.711300 0.000092
Slyudyanka Standard (n = 44) 0.000006 0.000004 0.707752 0.000010

MAD (n = 95) 0.082703 0.000091 0.511348 0.0000054
Otter Lake (n = 44) 0.08472 0.00039 0.511955 0.0000064
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5. Discussion
5.1. Origin of the Apatite: Magmatic or Metasomatic?

Apatite, which occurs throughout early-stage magmatic to late-stage hydrothermal
environments, has distinct morphology and geochemical signatures [66]. Apatite of mag-
matic origin is generally euhedral to subhedral with or without zoning textures [18,21].
They typically contain F as the dominant volatile species over Cl and H2O [67]. Apatites
in various kinds of host igneous rocks are highly diverse in terms of trace element com-
position [1,19,27]. For example, apatites in granite are characterized by a strong negative
Eu anomaly, resulting mainly from plagioclase crystallization [68,69]. As the common
REE-enriched mineral in carbonatite, alkaline, mafic, and ultramafic rocks, apatite is en-
riched in LREEs with high (La/Yb)N and Sr/Y ratios, corresponding to the right-sloping
patterns in the chondrite-normalized REE diagram [18,21,27]. Metasomatic apatites usu-
ally show turbid cores and overgrowth rims with abundant inclusions of xenotime and
monazite. They have relatively lower REE concentrations. The preferential transport of
the LREEs away from the original apatite leads to passive enrichment of HREEs in the
metasomatic apatites, leaving low (La/Yb)N ratios and flat or even left-sloping patterns in
the chondrite-normalized REE diagram [3,12,48]. Hydrothermal apatites occur as fine an-
hedral grains and show association with baryte, fluorite, and REE minerals (e.g., synchysite
and monazite). Their REE patterns are highly variable [18,70–74] due to the control of REE
transport and fractionation by REE complexes of CO2 and saline (chloride or fluoride) in
hydrothermal fluids [75–79].

As shown in Figure 2a,b, the apatite (<50 µm) from the SXD carbonatite occurs as fine
anhedral inclusions in calcite and pyrite, suggesting that apatite can crystallize at early
magmatic stages. The apatite grains studied are euhedral to subhedral (>80 µm) with a
well-formed crystal shape (Figure 2g), irrespective of lithology. They have clear cores and
lack monazite inclusions. They are all typical fluorapatite as evidenced by high F and
undetected Cl contents. They are enriched in REEs and have high Sr/Y ratios (Figure 5a),
indicative of magmatic origin and little or no metasomatic influence [27]. They have high
(La/Sm)N and (La/Yb)N ratios, falling into the field of magmatic apatite and showing a
sharp contrast with the altered apatites from the SXD complex (Figure 5b) [48,70]. Moreover,
altered apatites are usually characterized by inclusions of xenotime and monazite [48],
which is not the case for the apatites we studied. In addition, they also show similar
compositions with the magmatic apatite of corresponding rock types (Figure 5c–e). The
Sr and Nd isotopic compositions of the apatites are homogenous. They overlap those of
their host rocks (Figure 4), indicating that the apatite had been fractionally crystallized
from the host magma that had evolved in a closed system. Trace element abundances of
the magmatic apatite are mainly controlled by partition coefficients, geochemistry of the
host magma, and crystallization phases simultaneous to or before the apatite. Thus, their
geochemical signatures are used to decipher the evolution of the parental magmas and the
nature of their mantle sources.

5.2. Constraining Magma Evolution by Apatite Composition
5.2.1. Carbonatite

Apatite is the primary REE-bearing accessory mineral in carbonatite. Previous studies
have demonstrated that REE substitutes on the Ca site accompanied by Na substitution on
the Ca site or Si substitution on the P site can compensate for charge excess [15,17,19,83].
The apatite from the SXD carbonatite shows low Ba, Si, S, and Mn contents, and there is no
apparent correlation between them. By contrast, Na, Sr, and LREEs correlate well with the
P and Ca (Figure 6a). In general, these elements are preferred to substitute for Ca [15–17].
Thus, the substitution formula is likely to be:

REE3+ + Na+ + Sr2+ ↔ 3Ca2+ (1)
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The apatites in SXD carbonatite show high total REE contents (up to 15000 ppm).
Experimental results reveal that REEs are moderately incompatible in apatite in the pure
carbonatitic melt without silica contents [84], and their compatible behaviors are inde-
pendent of temperature, pressure, or volatiles [84,85]. However, increasing evidence
demonstrates that the addition of silica elevates the polymerization of the carbonatite melt,
which significantly enhances the partition coefficients of REEs between apatite and melt by
means of facilitating the entry of REEs into the Ca site of apatite [13,18,42,86,87]. It is clear
that the SXD carbonatite is not pure, as evidenced by the whole-rock SiO2 content of 2.7%
on average and the occurrence of modal silicate minerals, such as biotite. So, the high REE
contents in SXD carbonatite apatite can be reasonably accounted for by the elevated silica
in the SXD carbonatite.

As a result of fractionation of REE-enriched apatite, the residual melt should be de-
pleted of REEs and have a lower enrichment of La with respect to Nd (i.e., LREE/HREE) [18],
which is consistent with the relatively flat chondrite-normalized REE patterns of the calcite



Minerals 2022, 12, 587 12 of 19

(Figure 3a) [37,38]. In addition, (La/Yb)N and Th are positively correlated with LREEs
(Figure 7a,c), which is probably due to the crystallization of pyrochlore or allanite in magma,
as both are enriched in LREEs. The difference between allanite and pyrochlore is that the
former is strongly enriched in Th over U. Therefore, the crystallization of allanite would
lead to an extreme depletion of Th with a slight decrease of U in the residual melt [88].
In the case of SXD carbonatite, apatite displays extremely low U (~0.1 ppm) but variable
Th (0.3–37 ppm) [85], which precludes allanite as a significant crystallization phase. Py-
rochlore is the dominant Nb-bearing accessory mineral in the SXD carbonatite. Its euhedral
hexagonal crystal shape suggests that it crystallized during early-stage magmatism. As
pyrochlore usually has high U (>1300 ppm) and Th (>200 ppm) contents [38], crystallization
of pyrochlore would decrease Nb, Th, U, and LREE contents in the residual melt, consistent
with the strong negative Nb anomaly of apatite and calcite (Figures 3b and 7c,d) [37,38].
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5.2.2. Syenite

The apatites from the SXD syenite have high Na2O, SrO, and LREEs (Figure 6a), which
are preferred to substitute for Ca [15–17], and the substitution formula may be:

REE3+ + Na+ + Sr2+ ↔ 3Ca2+ (2)

The relatively high Na2O contents of apatites suggest that they should have crystal-
lized from a Na-rich magma [87], which is consistent with the high Na2O (8.8–9.8 wt%)
of their host syenite. Experimental studies reveal that the REEs are compatible in apatite
crystallizing from silicate melts, and middle REEs (MREEs) usually have higher partition
coefficients than LREEs and HREEs (ap/liqDMREE> ap/liqDLREE or ap/liqDHREE) [83,87,89].
This is consistent with the concave-downward REE patterns of the apatite from the syenite
(Figure 3c). The extremely low Zr, Hf, and U contents compared with the host syenite are
indicative of the coeval crystallization of zircon. Generally, the partitioning of Sr between
apatite and silicate melt is relatively constant and insensitive to changes in temperature,
pressure, volatiles, or melt composition. Thus, the positive correlation between LREE and
Sr contents (Figure 7b) suggests that the partition coefficients of REEs are relatively constant
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as well. Therefore, the positive correlation between LREEs and (La/Yb)N (Figure 7a) is
likely attributed to the crystallization of LREE-rich minerals, such as monazite and allanite.
As allanite is enriched in Th and LREEs, its crystallization would decrease LREEs and Th in
the melt. Thus, the decrease of LREEs with decreasing Th (Figure 7c) shown by the apatite
in syenite points to a potential coeval crystallization of allanite rather than monazite, which
is also consistent with the absence of monazite in SXD syenite.

5.2.3. Hornblendite

The apatites from the hornblendite have relatively high Na, Si, and S, but low Sr
contents. They show an insignificant correlation between P + Ca and REE + Na, indicating
a different substitution mechanism from those in apatite for both carbonatite and syenite
(Figure 6a). There is a perfect negative correlation between P + Ca and REE + Si + S + Na
(Figure 6b) and a positive correlation between S + REE and Si and Na. Thus, the substitution
for the apatite from the SXD hornblendite is likely to be:

Si4+ + 2Na+ + 2S6+ + 4REE3+ ↔ 4P5+ + 5Ca2+ (3)

It has been well demonstrated that apatite from most mafic rocks shows smooth or
concave-downward REE patterns due to the high partition coefficients of MREEs [27,90,91].
Apatites from the SXD hornblendite exhibit weak concave-upward REE patterns with
slight negative Eu anomalies (δEu = 0.73–0.95, Figure 8). They usually occur interstitially,
implying crystallization later than the cumulus amphibole. Since the amphibole is in-
variably characterized by higher MREE partition coefficients relative to the LREEs and
HREEs, their cumulate would leave an MREE-decreased residual melt, from which the
apatite crystallized subsequently. That may be the main cause of the weak concave-upward
chondrite-normalized REE patterns in the SXD hornblendite apatite (Figure 3e). The SXD
hornblendite whole rock has a negligible Eu anomaly (0.96) compared to the apatite. As
there is no plagioclase in the SXD hornblendite, the negative Eu anomaly of apatite is not
caused by plagioclase fractionation. Ce and Eu generally have two ionic valences each:
Ce3+, Ce4, Eu2+, and Eu3+. Ce3+ and Eu3+ preferentially substitute for Ca2+ in apatite due
to their similar ionic radii [15,16,19,92]. Therefore, the weak negative correlation between
δEu and δCe most likely indicates more Ce3+ and Eu2+ relative to Ce4+ and Eu3+ in the host
magma, suggesting that magma evolution of SXD hornblendite may have proceeded under
relatively reduced conditions (Figure 8) [93]. Calcic amphibole (kaersutite and magnesio-
hastingsite) may incorporate more Eu2+, as their Ca2+ has a similar ionic radius with that
of Eu2+ [94–97].
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5.3. Implication for the Mantle Source

The magmatic apatites from the SXD complex show Sr–Nd isotopic compositions
overlapping with their host rocks, arguing for magma evolution in a closed system. Thus,
the isotopic ratios of apatites are representative of their mantle sources.

During the early Paleozoic, the SQB was in a rift setting, as evidenced by widespread
collapsed basins, faults, and rift-related igneous rocks [43,45]. Numerous mafic dykes and
sills of similar age to the SXD hornblendite and syenite are widely distributed in the North
Daba Mountains, Wudang terrane, and Suizao area [65,98]. They are all of the alkaline
affinity and are characterized by OIB-like trace element signatures [61,98,99]. The Sr–Nd–
Pb isotopic compositions reveal that their mantle source follows a mixing trend between
DMM/HIMU and EM (EMI, EMII, or both) components [99]. Accumulating geochemical
evidence and studies of pyroxenite-hornblendite xenoliths further point to a metasomatic
lithospheric mantle [46,100–102]. Considering the geochemical similarity, especially the
similar Sr and Nd isotopic compositions between the SXD hornblendite and syenite and the
early Paleozoic mafic-ultramafic rocks in the SQB (Figure 4b), it is reasonable to postulate
that the SXD hornblendite and syenite may share a common metasomatic lithospheric
mantle source with these early Paleozoic mafic-ultramafic rocks.

Carbonatite is considered the product of low-degree partial melting of the mantle
and is commonly associated with extensional settings [103]. Thus, the formation of SXD
carbonatites most likely suggests a shift from a compressional to a post-collision extensional
regime at ca. 220Ma. There are two types of Triassic mafic dykes occurring in the Wudang
terrane and they are considered to be derived from the asthenosphere (Mesozoic dyke
II in Figure 4b) and a mixed mantle source between the asthenosphere and subducted
crustal material (Mesozoic dyke I in Figure 4b), respectively [46]. It is clear that the SXD
carbonatite is different from these two types of dykes in terms of Sr and Nd isotopic com-
positions, implying a highly heterogeneous mantle beneath the SQB during the Triassic.
The Sr–Nd isotopic compositions of the apatite in SXD carbonatite fall into the field defined
by Oldoinyo Lengai carbonatite and on the East African carbonatite line (EACL), which are
considered to be connected to the HIMU and EM I mantle components [57–59]. Diverse
components have been proposed to account for the HIMU signature, such as the recycled
basaltic oceanic crust [104], metasomatic lithospheric mantle [105,106] or Archean to early
Proterozoic subduction-related carbonatite-metasomatized sub-continental lithospheric
mantle [107–109]. In the SXD case, however, the carbonatite has a lighter Mg isotopic
composition than the normal mantle (our unpublished data), unequivocally demonstrating
the involvement of recycled carbonate in its mantle source. Considering the diffusion coef-
ficient of the Mg isotope in inter-mineral systems [110,111], the recycled crustal materials
of Archean or Proterozoic would be re-equilibrated with the surrounding mantle. Thus, we
propose that sedimentary carbonates, subducted following the final closure of the Mianlue
ocean and subsequent amalgamation of the SQB and SCB in the Triassic, would be the
proper candidates to account for the light-Mg isotope signature. Therefore, we propose that
the SXD carbonatite may be derived from a mixed mantle source of HIMU components
and subducted sedimentary carbonates.

6. Conclusions

1. Apatites from the SXD complex are of magmatic origin and have not experienced
subsequent metasomatism or other alteration. Their Sr–Nd isotopic compositions that
overlap with host rocks indicate magma evolution in a relatively closed system with
no significant crustal contamination.

2. The major elemental substitution mechanism in apatite from SXD carbonatite is
REE3+ + Na+ + Sr2+ ↔ 3Ca2+, whereas those for apatites in syenite and hornblendite are
REE3+ + Na+ + Sr2+↔ 3Ca2+ and Si4+ + 2Na+ + 2S6+ + 4REE3+↔ 4P5+ + 5Ca2+, respectively.

3. Pyrochlore crystallization plays an important role in controlling the REE signature
of apatite from the carbonatite, while the fractionation of zircon, allanite, and amphi-
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bole from the magma significantly affects the geochemistry of apatites from syenite
and hornblendite.

4. The early Paleozoic hornblendite and syenite are derived from a metasomatic lithospheric
mantle. In contrast, their Triassic carbonatitic counterpart is derived from a mixed mantle
source consisting of HIMU components and recycled sedimentary carbonates.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12050587/s1, Supplementary Materials S1: Apatite major
elements obtained by EPMA; Supplementary Materials S2: In situ trace elements (ppm) of apatite
grains in the SXD complex; Supplementary Materials S3: In situ Sr and Nd isotopic compositions of
apatite grains in the Shaxiongdong complex by LA-MC-ICP-MS.
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